Квантовая математика доклад кратко

Обновлено: 18.05.2024

В конце октября со слов Google (формально — материнской компании Alphabet), где построен 54-кубитовый квантовый вычислитель, многие вслед за WSJ опубликовали новость, что задача, для которой традиционному суперкомпьютеру потребовалось бы 10 тыс. лет, решена этим вычислителем за минуты.

Кандидат технических наук Андрей Анненков

Утверждение Google опротестовали конкуренты из IBM: никакие не 10 тыс. лет, суперкомпьютер справится за пару дней. WSJ добавила, опираясь на собственных экспертов, что практического значения (читай: перспективы продажи технологии) событие не имеет вне зависимости от того, правду или нет сообщает миру Google.

Это тоже квантовая пропаганда. Квантовые вычисления ни в Google, ни в IBM не вылупились из лабораторной стадии. Теоретически ясно, что обработку данных действительно можно вести иначе, чем это происходит в обычных компьютерах, и что квантовые вычисления для нескольких — буквально нескольких — задач несопоставимо эффективнее возможностей традиционных компьютеров.

Задачи эти, однако, настолько важны для государств, что сомневаться в концентрации ресурсов, достаточных для практической реализации квантовых вычислений, не приходится. Оценить необходимое для практических результатов время, правда, нельзя. Не исключено, что они уже и достигнуты, но используются спецслужбами тайно.

Теория

Квантовые вычисления обеспечиваются возможностью зафиксировать взаимосвязь совокупности (регистра) кубитов, находящихся в суперпозиции. Кубиты можно ввести в так называемое запутанное (общее, единое) состояние, когда измерение одного кубита фиксирует не только его состояние, но и состояние всех N-кубитов в регистре. Если N-кубиты в регистре запутаны, тогда одной операцией квантовый компьютер может сразу, одновременно, обработать 2 N бит данных.

Практика

К числу таких задач, в частности, относятся:

Но пока это лишь теоретические возможности. Физическая реализация квантовых компьютеров находится в стадии исследований и экспериментов, а развитие алгоритмов квантовых вычислений обеспечивается имитацией квантовых компьютеров с помощью устройств, лишенных квантовой природы.

Программное обеспечение квантовых вычислений — системы программирования и отладки программ — только предстоит создать. Это нетривиальная задача. Она не решена даже для традиционных суперкомпьютеров, мощность которых эффективно используется только для ограниченного круга задач.

Квантовые коммуникации


Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с. Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Наименьшая порция энергии излучения атома

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга.

Уравнение Шредингера

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Принцип неопределенности Гейзенберга

Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы. Математически это записывается так:

Принцип неопределенности Гейзенберга

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


Надеемся, что эта статья помогла Вам немного размять мозги, вспомнить хорошо забытое старое, а может быть и узнать что-то новое. Здесь мы постарались рассказать о квантовой механике просто, понятно и по возможности интересно. Конечно, данная тема не может быть раскрыта в рамках одной статьи, поэтому о парадоксах, нерешенных задачах, черных дырах и котах Шредингера мы поговорим в самое ближайшее время. А пока, чтобы закрепить знания, предлагаем посмотреть тематическое видео. Возможно вас также заинтересуют правила оформления чертежей по ЕСКД.

И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к нашим авторам – профессионалам, которые были взращены с квантовой механикой на устах!


Математики сообщили о нахождении квантового квадрата Эйлера шестого порядка, у которого не существует классического аналога. Полученное решение оказалось эквивалентно максимально запутанному состоянию четырех квантовых игральных костей, которое невозможно было бы обнаружить традиционными методами. Результат работы поможет улучшить методы коррекции ошибок при квантовых вычислениях. Исследование опубликовано в Physical Review Letters.

Латинским квадратом называют квадратную матрицу, заполненную элементами некоторого счетного множества таким образом, чтобы в каждой ее строке и каждом столбце каждый элемент множества встречался только один раз. Наиболее известным латинским квадратом можно назвать квадрат 3×3, который необходимо заполнить натуральными числами, играя в судоку. Латинские квадраты нашли применение в комбинаторике, статистике, криптографии и многих других научных разделах.

Их можно усложнить, помещая в ячейки элементы не одного, а двух различных множеств (в этом случае еще говорят про пару ортогональных латинских квадратов). Такие объекты носят название греко-латинских квадратов или квадратов Эйлера в честь знаменитого математика, который активно их изучал. Для небольших размерностей такие структуры можно представить с помощью игральных карт, которые следует разместить таким образом, чтобы все масти и карты всех достоинств встречались в каждой строке и в каждом столбце ровно один раз. Эйлер не нашел греко-латинских квадратов 2×2 и 6×6, но смог построить их для 3, 4 и 5 порядков. Он также высказал гипотезу, согласно которой не существует таких квадратов порядка N=4n+2, где n — натуральное число. Для квадратов 6×6 эту гипотезу аналитически подтвердил Терри в 1901 году, однако спустя почти 60 лет с помощью компьютеров были найдены греко-латинские квадраты 10 и 22 порядков, что опровергло предположение Эйлера.


Квадрат Эйлера 3x3, записанный через греческие и латинские буквы, через масти и достоинства карт, а также простой парой натуральных чисел

Suhail Ahmad Rather et al. / Physical Review Letters, 2022

Теория латинских квадратов снова заинтересовала математиков в связи с распространением квантовой информатики. В квантовых вариантах квадратов в ячейках расположены не отдельные элементы множеств, а вектора гильбертовых пространств, описывающие их квантовую суперпозицию. В этом случае условие неравенства всех членов ряда или строки заменяется на условие ортогональности всех векторов. На базе этой идеи недавно была предложена квантовая версия судоку.

Группа математиков из Индии и Польши при участии Кароля Жичковского (Karol Życzkowski) продолжила работу в этом направлении и получили решение для квантового эйлерового квадрата 6×6. Это решение математически эквивалентно не наблюдавшемуся ранее абсолютно максимально запутанному состоянию четырех шестиуровневых кудитов, которое крайне полезно для квантовой коррекции ошибок в квантовых компьютерах.

Запутанными считаются такие состояния составной квантовой системы, которые не могут быть представлены в виде произведения состояний ее отдельных частей. Если все части попарно между собой запутаны максимально возможным образом, физики говорят об абсолютно максимально запутанном (absolutely maximally entangled, AME) состоянии всей системы. Такие состояния важны для ряда практических приложений, в особенности для коррекции ошибок в квантовых вычислениях, поскольку при их использовании можно найти ошибку меньшим числом измерений.

Исследователи активно ищут AME-состояния для системы из разного числа частиц, обладающих различным количеством уровней (кудитов). Примечательно, что для четырех кудитов такие состояния были найдены во множестве случаев кроме случая с шестью уровнями (его обозначают AME(4,6)). Если двухуровневый кудит — кубит — можно представить себе как квантовое обобщение монетки, то шестиуровневый (авторы назвали его кугексом) — как обобщение игральной кости.

Оказалось, что четыре кугекса можно описать той же математикой, что и пару квантовых латинских квадратов шестого порядка. Действительно, каждый элемент двойного квадрата с координатами i, j будет содержать в себе амплитуды k-го элемента первого множества (достоинства карты) и l-го элемента второго множества (масть карты). Однако точно также выглядит связь между одной парой двух кугексов в состоянии i и j с другой парой в состоянии k и l. Найдя решение для квантового квадрата Эйлера, математики обнаружили, что соответствующее четырехкугексное состояние — абсолютно максимально запутанное.

Чтобы его найти, авторы стартовали с классической конфигурации квадрата, которая лишь слегка не удовлетворяет условию (некоторые масти и достоинства повторяются), а затем применили к нему поисковый алгоритм, который искал решение для каждой ячейки в виде простых унитарных матриц 2×2. Этого оказалось достаточно: каждый вектор в квадрате связывает не более двух соседних мастей и достоинств. Более того, алгоритм показал, что существует всего три различные числовые амплитуды, связанные законом Пифагора для сторон прямоугольного треугольника, причем амплитуды катетов соотносятся друг с другом через золотое сечение. Поэтому соответствующее AME-состояние математики назвали золотым.


Вектора, расположенные в 3 из 36 ячейках квантового квадрата Эйлера шестого порядка. Для визуализации в терминах игральных карт авторы ввели две новые масти (на рисунке не присутствуют).

image

На шестом десятке уже поздно становиться настоящим специалистом по алгебраической геометрии, но мне наконец-то удалось в неё влюбиться. Как и следует из её названия, этот раздел математики использует для изучения геометрии алгебру. Примерно в 1637 году Рене Декарт заложил фундамент этой области знаний, взяв плоскость, мысленно нарисовав на ней сетку и обозначив координаты за x и y. Можно записать уравнение вида x 2 + y 2 = 1, и получить кривую, состоящую из точек, координаты которых удовлетворяют этому уравнению. В этом примере мы получим круг.

Для того времени это была революционная идея, потому что она позволяет нам системным образом преобразовывать вопросы геометрии в вопросы об уравнениях, которые при достаточном знании алгебры можно решить. Некоторые математики занимались этой великолепной областью всю свою жизнь. Мне она до последнего времени не нравилась, но я смог связать её с моим интересом к квантовой физике.

В детстве физика нравилась мне больше математики. Мой дядя Альберт Баэз, отец знаменитой фолк-певицы Джоан Баэз, работал на ЮНЕСКО и помогал развивающимся странам с обучением физике. Мои родители жили в Вашингтоне. Когда дядя приезжал в город, он открывал свой портфель, доставал оттуда магниты или голограммы, и с их помощью объяснял мне физику. Это было потрясающе. Когда мне было восемь лет, он подарил мне написанный им учебник по физике для колледжа. Хотя я и не мог его понять, но сразу понял, что хочу этого. Я решил стать физиком, и родители обеспокоились, потому что знали, что для физики нужна математика, а я в ней был не очень силён. Деление в столбик казалось мне невыносимо скучным, и я отказывался делать домашнюю работу по математике с её бесконечно повторяющейся рутиной. Но позже, когда я осознал, что играясь с уравнениями, смогу больше узнать о Вселенной, она меня увлекла. Загадочные символы походили на волшебные заклинания, и в каком-то смысле так оно и было. Наука — это магия, которая на самом деле работает.

Почему алгебраическая геометрия ограничивает себя многочленами? Математики изучают всевозможные виды функций, но хотя они и очень важны, на каком-то уровне их сложность только отвлекает от фундаментальных загадок связи между геометрией и алгеброй. Ограничив ширину своих поисков, алгебраическая геометрия может глубже исследовать эти загадки. Она занималась этим веками, и теперь мастерство работы с многочленами поистине поражает: алгебраическая геометрия превратилась в мощный инструмент теории чисел, криптографии и многих других областей. Но для её истинных почитателей ценность этой области заключается в самой себе.

Если вы ничего не поняли… то это я и имел в виду. Чтобы разобраться даже в первой главе Хартсхорна, нужен довольно большой объём фоновых знаний. Читать Хартсхорна — это как пытаться догнать гениев многих веков, стремившихся бежать со всех ног.


Одним из этих гениев был научный руководитель Хартсхорна — Александр Гротендик. Примерно с 1960 по 1970 годы Гротендик совершил революционный переворот в алгебраической геометрии, сделав её частью эпичного путешествия с целью доказательства гипотез Вейля, связывающих многообразия с решениями проблем из теории чисел. Гротендик предположил, что гипотезы Вейля можно подтвердить, усилив и углубив связь между геометрией и алгеброй. У него было чёткое представление о том, как это должно произойти. Но для обеспечения точности этой идеи требовался огромный труд. Чтобы выполнить его, он организовал семинар. Гротендик почти каждый день выступал с докладами и воспользовался помощью лучших математиков Парижа.


Давай пробежим матема-фон: Александр Гротендик на своём семинаре.

Безостановочно работая в течение десятилетия, они написали тысячи страниц новой математики, наполненной ошеломительными концепциями. В конце концов, воспользовавшись этими идеями, Гротендик успешно доказал все гипотезы Вейля, кроме последней, самой сложной. К удивлению Гротендика, её решил его студент.

Если бы я выбрал другой путь, то мог подойти к его работе через изучение теории струн. Физики, изучающие теорию струн, постулируют, что кроме видимых измерений пространства и времени (трёх измерений для пространства и одного для времени) существуют дополнительные измерения пространства, настолько скрученные, что их невозможно увидеть. В некоторых их теориях эти дополнительные измерения образуют многообразие. Поэтому, исследователи теории струн легко могут столкнуться со сложными вопросами из алгебраической геометрии. А это, в свою очередь, заставляет их столкнуться с Гротендиком.


И в самом деле. лучше всего теорию струн рекламирует не успешное предсказание экспериментальных результатов — этим она совершенно не может похвастаться — а способность решать проблемы в пределах чистой математики, в том числе и алгебраической геометрии. Например, теория струн потрясающе хорошо может подсчитывать количество кривых разного вида, которые можно отрисовать в определённых многообразиях. Поэтому сегодня можно увидеть теоретиков струн, общающихся с алгебраическими геометрами, и каждая из сторон при этом может удивить другую своими открытиями.

Но источник моего личного интереса к работе Гротендика был другим. У меня всегда были серьёзные сомнения в теории струн, а подсчёт кривых в многообразиях — это последнее, чем бы я хотел заниматься: это как скалолазание — очень увлекательно наблюдать, но слишком страшно, чтобы заниматься самому. Оказалось, что идеи Гротендика насколько обобщены и сильны, что распространяются за пределы алгебраической геометрии на множество других областей. В частности, на меня произвела большое впечатление его 600-страничная неопубликованная рукопись Pursuing Stacks, написанная в 1983 году. В ней он заявляет, что топология (если объяснять в широком смысле, то это теория о том, какие формы может принимать пространство, если нас не волнует его изгибание или растягивание, а интересуют только виды отверстий) может быть целиком сведена к алгебре!

Если нужно объяснение: математики иногда шутят, что топологи не видят разницы между пончиком и чашкой кофе.

Алгебраическая топология — это красивая область, существовавшая задолго до Гротендика, но он был одним из первых, кто серьёзно предложил метод сведения всей топологии к алгебре. Благодаря моей работе в физике его предложение показалось мне чрезвычайно восхитительным. И вот почему: в тот момент я взялся за сложную задачу объединения двух лучших теорий физики: квантовой физики, описывающей все силы, кроме гравитации, и общей теории относительности, описывающей гравитацию. Похоже, что пока мы этого не сделаем, наше понимание фундаментальных законов физики обречено быть неполным. Но реализовать это чертовски трудно. Причина заключается в том, что квантовая физика основана на алгебре, а в общей теории относительности активно используется топология. Но это подсказывает нам направление атаки: если мы сможем выяснить, как свести топологию к алгебре, то это, возможно, поможет нам сформулировать теорию квантовой гравитации.

Мои коллеги-физики на этом моменте взвыли бы и начали жаловаться, что я слишком всё упрощаю: в квантовой физике используется не просто алгебра, а общая теория относительности — это не только топология. Тем не менее, именно возможные физические преимущества сведения топологии к алгебре восхитили меня в работе Гротендика.

Что же изменилось? Я осознал, что алгебраическая геометрия связана с отношениями между классической и квантовой физикой. Классическая физика — это физика Ньютона, в которой мы предполагаем, что можем измерить всё с полной точностью, хотя бы в теории. Квантовая физика — это физика Шрёдингера и Гейзенберга, ею управляет принцип неопределённости: если мы измеряем некоторые аспекты физической системы с полной точностью, другие должны оставаться неопределёнными.

Например, в классической физике мы иногда можем описать систему точкой в многообразии. Не стоит ожидать, что это возможно в общем случае, но во многих важных случаях такое происходит. Например, рассмотрим вращающийся объект: если мы зафиксируем длину стрелки его углового момента, то стрелка всё равно может указывать в любом направлении, то есть её конец должен лежать на сфере. Таким образом, мы можем описать вращающийся объект точкой на сфере. И эта сфера на самом деле является многообразием, "сферой Римана", названной в честь одного из величайших алгебраических геометров 19-го века Бернхарда Римана.


Ричард Фейнман однажды сказал, что для продвижения в решении сложной физической задачи ему нужно взглянуть на неё под особым углом:

"[…] Мне нужно думать, что у меня есть какой-то кратчайший путь решения текущей проблемы. То есть как будто у меня есть талант, которым не пользуются другие, или особый взгляд, который они по глупости не посчитали превосходным взглядом на вещи. Мне необходимо думать, что по какой-то причине мои шансы выше, чем у других. В глубине души я знаю, что скорее всего эта причина ложна, и вероятнее всего, выбранный мной взгляд уже использовался другими. Но меня это не волнует: я обманываю себя, убеждая, что у меня есть дополнительный шанс".

Возможно, именно этого мне до недавнего времени не хватало в алгебраической геометрии. Разумеется, алгебраическая геометрия — это не просто задача, которую нужно решить, а комплекс знаний — но это настолько огромная, пугающая совокупность, что я не решался касаться его, пока не нашёл этот кратчайший путь. Теперь я могу читать Хартсхорна, переводить некоторые из результатов в факты о физике, и у меня появился шанс на понимание всего этого. Это превосходное ощущение.

Об авторе: Джон Баэз — профессор математики из Калифорнийского университета в Риверсайде и приглашённый исследователь Центра квантовых технологий Сингапура. Он ведёт блог Azimuth о математике, естественных науках и проблемах окружающих среды. Подписывайтесь на него в Twitter: @johncarlosbaez.

Читайте также: