Измерительные преобразователи датчики доклад

Обновлено: 07.07.2024

Ни одна система управления не может работать без информации о состоянии объекта управления и его реакции на управляющее воздействие. Элементом систем, обеспечивающим получение такой информации, является измерительный преобразователь-датчик.

Число типов датчиков значительно превосходит число измеряемых величин, так как одну и ту же физическую величину можно измерять различными методами и датчиками разных конструкций.Для большинства датчиков характерно измерение электрическими методами не только электрических и магнитных, но и других физических величин. Такой подход обусловлен достоинствами электрических измерений, в виду того, что электрические сигналы можно просто и быстро передавать на большие расстояния, электрические величины легко, быстро и точно преобразуются в цифровой код, позволяют обеспечить высокую точность и чувствительность.

В качестве классификационных признаков датчиков можно принять многие характеристики: вид функции преобразования; род входной и выходной величины; принцип действия; конструктивное исполнение.По виду используемой энергии датчики можно подразделить на электрические, механические, пневматические и гидравлические. В зависимости от вида выходного сигнала: аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

По характеру преобразования входной величины в выходную: параметрические, генераторные, частотные, фазовые.

По виду измеряемой физической величины: линейных и угловых перемещениях, давления, температуры, концентрации веществ и т.д.

Принцип действия параметрических преобразователей заключается в преобразовании неэлектрических входных величин в параметры электрических цепей: сопротивление R, индуктивность L, емкость С, взаимоиндуктивность М. Для питания этих преобразователей требуются внешние источники. К таким датчикам относятся: резистивные, индуктивные, трансформаторные, емкостные преобразователи.

Генераторные преобразователи преобразуют входные величины в ЭДС. Они не требуют энергии дополнительных источников питания.

Это индукционные, термоэлектрические, пьезоэлектрические, фотоэлектрические преобразователи.

Фазовые и частотные преобразователи могут быть как параметрическими, так и генераторными.
Резистивные измерительные преобразователи

Реостатные – выполнены в виде реостата, подвижной контакт которого перемещается под воздействием входной измеряемой величины. Чаще всего реостатный датчик включается в измерительную систему по схеме потенциометра, их иногда называют потенциометрическими датчиками.

Выходной величиной датчика является электрическое сопротивление функционально связанное с положением подвижного контакта. Такие датчики служат для преобразования угловых или нелинейных перемещений в соответствующее изменение сопротивления, тока, напряжения.

Они также могут быть использованы для измерения давления, расхода, уровня. Их часто используют также в качестве промежуточных преобразователей неэлектрических величин в электрические.

В устройствах автоматики широко применяются проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малый температурный коэффициент сопротивления (ТКС).

К недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.

Обмотку выполняют изолированным проводом виток к витку или с заданным шагом. В качестве провода применяют константан, манганин.

Датчик данного типа не реагируют на знак входного сигнала, работают как на постоянном, так и на переменном токе.

Тензорезисторы. В основе их работы лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствительности Кт, определяемый как отношение изменения сопротивления к изменению длины проводника


.

Константан – Кт = 2

Нихром – Кт = 2,2

Хром – Кт = 2,5

Тензорезисторы используют для измерения давления жидкости и газов, при измерении упругих деформаций материалов: давлений изгибов, скручивания.

В качестве тензорезистивного материала можно использовать металлы с малым ТКС: манганин, константан, нихром, ртуть, высокотемпературные сплавы, полупроводниковые материалы: германий, кремний. Наибольшее распространение получили тензорезисторы из металла. Они разделяются на проволочные и фольговые, последние более совершенны.

Угольные преобразователи. Их принцип действия основан на изменении контактного сопротивления между частицами угля при изменении давления. Их применяют для измерения усилий, давлений, малых перемещений. Различают угольные столбики и тензолиты.

Первые представляют собой набор из 10-15 отшлифованных шайб, изготовленных из электродных углей.

Характеристика угольного преобразователя нелинейна, он имеет переменную чувствительность. Нестабильны в работе, характеристики зависят от температуры и влажности окружающей среды, качества подготовки поверхностей.

Вторые имеют малые размеры и массу. Их применяют для измерения быстроменяющихся и ударных напряжений в движущихся деталях небольшого размера, при этом они работают как на растяжение, так и на сжатие. Коэффициент чувствительности тензолитовых преобразователей больше, чем у тензорезисторов, и составляет К 20.¸= 15

Она выполняется в виде полосок, состоящих из смеси графита, сажи, бакелитового лака и других компонентов. Эти полоски наклеиваются на испытуемую деталь.

Резистивные преобразователи несмотря на присущие им недостатки до настоящего времени находят широкое применение.





Достоинство: независимость его точности от питающего напряжения резисторные датчики Для повышения чувст-вительности желательно увеличивать напряже-ние питания U0. Однако при этом растет мощ-ность рассеяние датчи-ка.

Емкостные преобразователи. Принцип действия основан на изменении емкости конденсатора под воздейтсивем входной преобразуемой величины


,

e – относительная диэлектрическая проницаемость диэлектрика; eгде 0 – диэлектрическая проницаемость вакуума; S – толщина диэлектрика или расстояния между пластинами.d– площадь пластины;

Емкостные датчики используют для измерения угловых и линейных перемещений, линейных размеров, уровня, усилий, влажности концентрации и др.

В емкостных плоскопараллельных датчиках изменяется плоскость перекрытия S (перемененная площадь перекрытия) статическая характеристика линейна.

В емкостных преобразователях с переменным воздушным зазором характеристика нелинейна.

Преобразователи и изменением диэлектрической проводимости среды между электродами широко используются для измерения уровня жидких и сыпучих веществ, анализа состава и концентрации веществ в химической, нефтеперерабатывающей промышленности, для счета изделий, охранной сигнализации. Они имеют линейную статическую характеристику.


Емкость измерительных преобразователей в зависимости от конструктивных особенностей колеблется от десятых долей до нескольких тысяч пикофарад, что приводит к необходимости использовать для питания датчиков напряжения повышений частоты Гц.

Это существенный недостаток подобных преобразователей.

Диэлектрические свойства среды иногда изменяются под воздействием температуры или механических усилий. Эти эффекты также используются для создания соответствующих измерительных преобразователей.

Изменение проницаемости под действием температуры описывается выражением


,


eгде т – диэлектрическая проницаемость материала при температуре ^ Тe; 0 – диэлектрическая проницаемость при температуре Т0 - температурный коэффициент;a; .

от приложенного к нему усилияeАналогичный вид имеет и зависимость Р

,
где – чувствительность материала к относительному изменению диэлектрической проницаемости


.
между электродами. Однако уменьшение зазора ограничивается диэлектрической прочностью межэлектродной среды и наличием силы электростатического притяжения пластин.dНачальная емкость преобразователей тем больше, чем меньше зазор

Погрешности емкостных преобразователей в основном определяются влиянием температуры и влажности на геометрические размеры и диэлектрическую проницаемость среды. Они являются практически безинерционными элементами.

К достоинствам относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Недостатки: низкий уровень выходной мощности сигнала, нестабильность характеристик при изменении параметров окружающей среды, влияние паразитных, емкостей. Для уменьшения потери мощности выходного сигнала согласную нагрузку с внутренним сопротивлением измерительной системы, т.е. схему настраивают на резонанс.

Реактивное сопротивление нагрузки выбирают равным по значению и обратным по знаку внутреннему сопротивлению датчика.

Измерительный преобразователь – специальное устройство, которое преобразует величину неэлектрического характера в электросигнал, а также наоборот. К преобразователям также относятся приборы, переводящие измеряемый параметр в иную величину, который будет удобным для исследования, преобразования, в том числе сохранения и передачи. Эти приборы необходимы во многих сферах, поэтому они получили значительное распространение. Так, к примеру, чтобы создать систему дистанционного контроля траты тепла или воды в ЖКХ требуются преобразователи импульсов в ток или напряжение. Счетчики создают импульсы, которые впоследствии преобразуются в электрическую величину.

Измерительный преобразователь можно поделить на целый перечень устройств:

  • Квантовые.
  • Ионизирующего излучения.
  • Оптоэлектронные.
  • Адсорбционные.
  • Электрохимические.
  • Индук­ционные.
  • Тепловые.
  • Электромагнитные.
  • Гальваномагнитные.
  • Емкостные.
  • Механиче­ские упругие.
  • Пьезоэлектрические.
  • Резистивные и так далее.

Также преобразователи можно классифицировать по целому ряду признаков:

  • По виду выходного сигнала.
  • По физическим закономерностям, которые используются для проведения измерений.
  • Функции преобразования и так далее.
Устройство

Имеется достаточно обширное разнообразие из­мерительных устройств. Однако вне зависимости от их видового разнообразия у всех у них имеется первичный измерительный преобразователь, который и проводит измерение величины. Как раз его, в конечном счете, и необходимо измерить, но величина на выходе должна быть уже в электрическом виде.

  • Измеряемая величина воздействует на чувствитель­ный орган, который имеет свое наименование – датчик. Это отдельный элемент, который находится в месте измерений и выполняет функции первичного преобразователя.
  • Далее находится промежуточный преобразователь, который переводит сигнал в удобную для восприятия величину. На них может быть возложены различные обязанности;

— масштабно-временное преобразование;
— цифро-аналоговое преобразование;
— масштабное преобразование;
— изменение величины;
— функциональное преобразование и так далее.

Однако следует учитывать, что в цепи могут находиться сразу несколько первичных преобразователей.

Типичным представителем преобразователя является тензорезистор. Это устройство имеет чувствительную часть, выполненную из специального тензочувствительного материала. Он крепится с помощью пайки на изделии. Для возможности преобразования от чувствительного элемента отходят выводные проводники, которые подключаются к электрической цепи. Ряд подобных устройств имеют дополнительно подложку, которая находится между изделием и чувствительной частью. Может быть установлена и защита, которая расположена поверх чувствительного элемента.

В результате типичный тензопреобразователь включает следующие элементы: чувствительный элемент, элемент связки, само изделие, подложку, узел пайки, защиту и выводные проводники.

Принцип действия

Понять принцип действия преобразователя можно на примере электронных весов. Именно в таких приборах работает измерительный преобразователь, который переводит величину силы тяжести, то есть вес какого-нибудь измеряемого изделия, в понятную для восприятия величину. Просто положив на весы небольшую запасную часть от машины, можно будет с точностью до граммов узнать его массу. В весах в качестве преобразователя работает тензометрический датчик.

Принцип действия весов объясняется измерением веса, который действует на тензодатчик. В процессе преобразования измеряется деформация, которая соответственно переводится в электрический сигнал. Последний поступает на монитор или иной элемент, с которого можно прочитать показания измеренной массы.

В основе функционирования тензодатчика используется тензоэффект, который кроется в смене сопротивления проводников во время деформации. То есть при изменении длины проводника изменяется и сопротивление.

Тензометрические преобразователи применяются не только в весах, но и во многих других устройствах.

При помощи них измеряются и исследуются:
  • Деформации в изделиях, в том числе свойства материалов.
  • Для получения величин, которые образуются в результате деформации соответствующего элемента.

В целом современные преобразователи получили большое распространение, ведь они удобны в управлении, имеют небольшой вес и габариты. Благодаря таким устройствам пользователь может дистанционно отслеживать все необходимые показатели.

Пьезоэлектрические преобразователи работают на базе обратного и прямого пьезоэлектрического эффектов. При механи­ческом действии на диэлектрики наблюдается их электрическая поляризация. При обратном действии в диэлектриках появляются напряжения или меняются их размеры.

Электромеханические преобразователи работают под действием тока, вследствие чего они начинают перемещаться. Гальваномагнитные преобразователи работают по принципу воздействия на них магнитного поля. Индукционные преобразователи действуют благодаря электро­магнитной индукции.

Электрохимические преобразователи действуют на принципах электродной системы и электролитической ячейки. Так при падении изменении напряжения или иного параметра в ячейке происходит изменение другой характеристики: индуктивность, емкость или сопротивлением. Базируясь на этих принципах, появляется возможность измерения температуры, давления и многих других требуемых величин.

Оптоэлектронные преобразователи работают на принципе преобразо­вания ультрафиолетовых и тепловых излучений. Преобразование данных в подобных устройствах может происходить различными способами: за счет изменения мощности излучения, модуляции оптического канала и так далее.

Применение

Измерительный преобразователь находит широчайшее применение. Такие устройства применяют на многих производствах, лабораториях и даже в быту. Это могут быть сложные приборы, которые собирают многочисленную информацию с датчиков или же простые устройства в виде домашних кухонных весов.

Можно назвать следующие области:
  • Металлургическая промышленность.
  • Нефтянка.
  • Химическая и газовая промышленность.
  • Научные и лабораторные установки.
  • Медицина.
  • Фармакология.
  • Геология.
  • Атомная промышленность.
  • Энергетика.
  • ЖКХ и так далее.
На любом производстве, где требуется наблюдение или регулирование технологического процесса, не обойтись без преобразователя. Такие преобразователи часто используются в специальных измерительных приборах, которые применяются для обработки сигналов:
  • Портативные измерительные приборы, к примеру, для получения показателей параметров воды или грунта.
  • Щитовые приборы, которые имеются практически в каждом здании.
  • Регистраторы и самописцы. Это сложнейшие приборы, которые отслеживают происходящие вокруг изменения и сохраняют все в памяти.
  • Цифровые преобразователи.
  • Весовые дозаторы, конвейерные и кухонные весы и так далее.
Как выбрать измерительный преобразователь

Измерительный преобразователь рекомендуется подбирать по следующим принципам:

  • Какой на выходе получается сигнал: цифровой или аналоговый? Именно этот сигнал будет выводиться на монитор или иной элемент, с которого будет считываться информация. Аналоговые преобразователи являются уже устаревшими устройствами, однако они до сих пор применяются. Дело в том, что бурный толчок их развития и производства пришелся на 1980-е года прошлого века.

Благодаря ним были налажены многие производства и области промышленности. В результате появились новые производства, которые были заточены на производство именно этих аналоговых преобразователей. Поэтому они и сегодня выпускаются, ведь они дешевы и весьма распространены.

Тем не менее, на смену им приходят цифровые устройства, они на порядок дороже по стоимости, но считаются более перспективными устройствами:

— они обеспечивают высокую степень передачи информации, точность и быстродействие;
— у них высокая электробезопасность;
— простота реализации;
— их можно интегрировать в различные современные системы телемеханики.

Некоторые современные преобразователи могут иметь одновременно и цифровые и аналоговые выходы.

  • Условия эксплуатации. Почти все преобразователи могут использоваться в широком диапазоне температур, но некоторые устройства могут иметь ограничения. При изменении температуры примерно на десять градусов может появиться погрешность примерно в 0,4%. Также возможны погрешности, которые связаны с влиянием магнитного поля, действующего в месте проведения измерения.

Поэтому при выборе необходимо определиться, какие задачи, в конечном счете, будет решать измерительный преобразователь.

Характеристики измерительных преобразователей. Надежность средств измерений. Выходное напряжение тахогенераторов. Основные характеристики, определяющие качество преобразователей. Алгоритмические методы повышения качества измерительных преобразователей.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 09.09.2016
Размер файла 266,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Измерения очень сильно влияют на решение научно-технических задач. Для каждого человека очень важную роль играет качество продукции. Именно поэтому вопрос о качестве занимает основное место.

Что такое качество? Качество - это совокупность признаков, характеристик и свойств, которые должны удовлетворять потребности потребителя.

А с помощью измерений человек изучает окружающий мир. Измерения занимают важное место в нашем мире. Они важны в разных отраслях, и в промышленности, и в науке, и в технике. В жизни каждую минуту происходят разные измерительные операции, по их результатам происходит обеспечение качества, которое необходимо для множества разных целей, в медицине, в экологии, в транспорте. Абсолютно в любой отрасли деятельности человека включается использование результатов измерений, контроля, испытаний.

Требования к повышению качества и надежности технических устройств непрерывно растут, в связи с этим появляется потребность к улучшению количества и качества измерений. В улучшении точности и скорости измерительных процессов, обязательно должны участвовать новые техники и развивающаяся наука.

Для развития измерительной техники используются мощные персональные электронно-вычислительные машины и разработки математического и программного обеспечения.

Актуальность заключается в том, чтобы повысить качество продукции, точности и быстродействия процессов, применив нынешние методы улучшения метрологических характеристик.

Один из способов улучшения качества измерительных преобразователей -- это использование специальных методов для улучшения их метрологических характеристик, так же для корректировки погрешностей ИП.

В последние время, учитывая то, что вычислительная техника развивается все больше начинают использоваться алгоритмические методы корректировки погрешности, которые выполняются при обработке сигнала измерительной информации.

Измерительные преобразователи - это средство, преобразующие физическую величину в измерительный сигнал или другую величину, это очень помогает в последующий преобразованиях, в хранение, передаче и обработке. Классификация измерительных преобразователей происходит по характеру входных и выходных величин, месту измерительной цепи и многими другими свойствами. Учитывая все это преобразования происходят с точностью и создают зависимость между входной и выходной величинами. Есть только один способ что бы построить измерительные устройства-это измерительное преобразование.

Виды измерительных преобразователей в измерительной цепи:

Первичный преобразователь (датчик) - это прибор который предназначен для преобразования измеряемых величин из одной в другую для того что бы в дальнейшем было удобно измерять или использовать их. Преобразованная величина может быть использована для любых целей.

Передающий преобразователь - нужен для того чтобы передавать измерительную информацию. Величина образуется на его выходе. Данный преобразователь может сразу выполнять роль первичного и передающего.

Промежуточный преобразователь -- в измерительной цепи стоит сразу после первичного, занимает последующее место после первичного в измерительной цепи. Осуществляет разные операции преобразования измерительного сигнала: изменение физического рода величины и масштабные (линейные или нелинейные), масштабно-временные, аналого-цифровые, цифро-аналоговые, функциональные преобразования.

Выходной преобразователь - в измерительной цепи стоит после всех остальных преобразователей. Отвечает за регистрирующие устройства, которые занимаются значениями измеряемых величин.

Характеристики измерительных преобразователей

1) По видам входа и выхода сигналов (аналоговый или дискретный);

2) Физическая природа входа и выхода сигналов:

Электрический вход--электрический выход;

Неэлектрический вход--электрический вход;

Электрический вход--неэлектрический выход;

Неэлектрический вход--неэлектрический выход.

3) Принцип действия: механические, тепловые, акустические, электрические, магнитные, электромагнитные и др.

4) Облик преобразования энергии: генераторные, параметрические, радиационные.

Эти характеристики определяют качество и эффект в совместном использовании измерительных преобразователей.

Диапазон измерения - это измеряемое значение величины, измерительным прибором, обозначаются как нижние и верхние измерения, максимальной и минимальной величинами параметров.

Чувствительность - это отношение между измеряемыми величинами на выходе и на входе. Отличается абсолютная S и относительная Sо чувствительности, которая описывается формулами:

Dу-- изменение выходной величины;

х -- измеряемая (входная) величина;

Dх -- изменение входной величины.

Порог чувствительности - действие происходящее на входе измерительного преобразователя, вызывающее наименьший эффект на выходе. По-другому говоря измерение величины, вызывающее минимальное изменение выходных величин. Порог чувствительности и чувствительность это разные понятия.

Точность - это самые близкие результаты измерений, к истинному результату измеряемой величины полученные в системе измерений. Общего способа определить точность пока нет. Но существуют погрешности для измерения точности. А пока что есть суждение погрешности для оценки точности в количестве. Тут имеется в виду несоответствие показаний приборов (номинальные значения мер) от истинных значений измеряемой величины (истинных значений). Это является важнейшей характеристикой СИ.

Динамические характеристики - это характеристика инерционности средства измерений, бывают полные и частные:

Полные - это величины, достаточно сложные и не являются наглядными, позволяющие оценить погрешности, вызванные иррациональностью средств измерений. Это дифференциальное уравнение связывающее выходную и выходную величины.

Частные - это параметры полной динамической характеристики тут используются разные факторы:

- полоса частот измеряемой величины (в пределах которой динамическая погрешность не превышается;

- время установления выходной величины.

Надежность средств измерений - это важная характеристика средств измерений. Известно, из-за влияния скрытых дефектов в качестве измерительной техники, и определяется как вероятность возникновения ошибки в пределах допустимого диапазона. В зависимости от условий эксплуатации приборов и их применения для измерения, устанавливается допустимый уровень метрологического защиты. Оценка надежности происходит различных количественных характеристиках, среди которых можно выделить вероятность безотказной работы, частоту отказов, время безотказной работы, время между отказами и др. При всем при этом отказ это событие, после которого характеристики СИ выходят за пределы, которые вообще могут быть допустимы.

Номинальная статическая характеристика преобразования. - это зависимость между значениями величин на выходе и входе. Проедставляется в виде: таблицы, графика или формулы. Называние - градуировочная характеристика средств измерений. Использование номинальной характеристики сопровождается погрешностями, появившимися из-за разницы номинальной характеристикики от индивидуально-градуировочной характеристикики.

Индивидуальная градуировочная характеристика она описывает свойства конкретного экземпляра ИП. Когда происходит серийный выпуск зависимость между величинами описывается номинальной функцией или номинальной статистической характеристикойкой преобразования.

Градуировочная характеристика ИП это зависимость между входной (Dх) и выходной (Dу) величинами (рис. 1)

Коэффициент преобразования - это отношение изменения сигнала на выходе ИП к его изменению на входе

Диапазон преобразования - это область где измеряется величина допускаемой погрешности преобразователя (т.е. абсолютная и относительная).

Преобразователи разделяются по направлению: механических, тепловых, химических, магнитных, биологических и др. физических величин.

Принцип действия делится на: генераторные, параметрические.

Классификация с принципом действия:

- Тахогенереторы (магнитоупргие, индуктивные)

- Фотоэлемент (фотодиод, фоторезистор и т.п.)

Рассмотрим тахогенераторы, они используются для того чтобы измерить скорость вращения объектов

Используют их в: устройствах электроприводов, транспортных средствах, станкостроениe и др.

У тахогенераторов бывают подвижные и неподвижные катушки.

Всеобщее устройство на рис. 2.

Выходное напряжение тахогенераторов устанавливается как

К- статический коэффициент тахогенератора.

Напряжение на выходе подлежит корректировке, учитывая снижение напряжения.

Uщ- напряжение падения,

Rя- сопротивление цепи,

Rц- сопротивление ИЦ.

График реальной и идеальной функции (рис.3)

На тахогенераторах анализируя переменный ток, выходная ЭДC будет такой:

p- число полюсов (пар),

n- частота (вращения машины).

Погрешность получается 0.2….0.5%

Рассмотрим оптические преобразователи

Они построены на использовании фотоэффекта.

Фотоэффекты делятся на 2 типа: внутренний и внешний.

Внутренний фотоэффект - это процесс, происходящий внутри кристаллической решётки твердого тела при воздействии светового потока. Там меняется энергетическое состояние носителей зарядов, оно ведет к их концентрации и происходит перераспределение внутри кристалла.

Этот тип свойствен для полупроводников и диэлектриков.

Внешний фотоэффект - это где электроны находятся в эмиссии под влиянием светового потока.

Погрешность - это отклонение между измеряемым значением величины от истинного значения. Мера точности измерения.

· Метод Корнфельда, это выбор доверительного интервала в границах от меньшего до большего результата измерения, и погрешности - половина разности между наибольшем и наименьшем результатом измерений:

· Средняя квадратическая погрешность определяется по формуле:

· Средняя квадратическая погрешность для среднего арифметического:

Что бы определить погрешность измерительного преобразователя нужно знать функцию преобразования или градуировочную характеристику.

Все измерения обозначаются в ед. величины на выходе. И тут у погрешности присутствует различие на входе и выходе.

Номинальная функция - приписана измерительному устройству и прописана в паспорте, применяют при выполнении измерений.

Реальная функция - обладает конкретным экземпляром измерительного устройства.

Абсолютная погрешность по выходу (Dу) - это разность величин, входной (Yп) и выходной (Yп) которая определяется при помощи градуировочной характеристики, приписанной данному ИП.

Абсолютная погрешность по входу (Dх) - разность между значением величины на входе (Xп), которое устанавливается по действительному знач. на входе (Yп) с помощью градуировочной характеристики.

j - обратное преобразование

Yп - фактическое значение сигнала на выходе;

Xп устанавливается по значению Yп сигнала на выходе с помощью функции преобразования

Еще Yп - значение выходного сигнала, которое вырабатывается преобразователем, лишенным погрешности.

Относительная погрешность входа (dх) - это отношение между абсолютной погрешностью входа к истинному значению величины входа.

Относительная погрешность выхода (dу) - это отношение между абсолютной погрешностью выхода к значению величины выхода, которое определяется значением величины входа градуировочной характеристикой.

Приведенная погрешность по входу (выходу) - это отношение между абсолютной погрешностью к нормирующему значению входа XN (выходного YN) сигнала.

Основные характеристики, определяющие качество измерительных преобразователей

В первую очередь самые важные аспекты для выбора измерительных преобразователей:

Погрешность - это мера точности измерения. Разница между измеряемым значением и истинным значением.

Результат измерений у измерительного преобразователя представляется в единицах выходной величины.

Диапазон измерения - это диапазон значений измеряемой величины, измеряемый данным прибором; он описывается верхним и нижним пределами измерений, самой маленькой и большой величиной, которая соответствует измерению имеющимся измерительным преобразователем.

Стоимость - это значимый аспект, который учитывается для выбора измерительного преобразователя. От стоимости зависит какая будет погрешность.

Срок службы - не менее значимый фактор, чтобы знать на сколько долго будет служить датчик.

Стоимость обслуживания - так же значимый аспект из важных характеристик при выборе измерительного преобразователя.

Все эти важные факторы будут очень важны покупателю при выборе и покупке датчика.

Разработка критериев качества

Центральной составляющей является метрологическое обеспечение систем качества.

Схема изображена на рис. 4.

Рис. 4. Метрологическое обеспечение систем качества

На (рис. 1) представлены основные составляющие метрологическое обеспечения систем менеджмента качества. В ходе контроля на каждой позиции измерения, осуществляется измерение одного или нескольких параметров, которые могут совершаться не одним типом ИП, а рядом альтернативных. Одно из важных характеристик метрологического обеспечения - это выбор ИП, которое гарантирует максимум точности измерений при минимуме затрат в процессе производства.

Рабочие ИП являются основным объектом исследований, поскольку использование конкретных измерительных позициях на производственном участке применяется выбор их типов. Для измерений можно выбрать разные ИП, на любой из измерительных позиций, которые потом будут обладать такими различными параметрами (метрологические, технические и эксплуатационные) и должны удовлетворять требования заказчика.

Этап первый. Исследования - это составление шкалы приоритетов параметров ИП. С помощью использования статистических методов можно провести исследование. Существует очень много баз данных по ИП, но все же порядок и форма и методы предоставления параметров в разных базах данных различаются.

Для решения задач надо трансформировать последовательность представления параметром ИП в определенную форму, в порядке убывания их значимости. Этот порядок называется шкалой приоритетов параметров ИП. Исследование, которое проведено заключается в статистическом анализе ряда паспортов ИП одинаковой физической величины (давление), которые берутся с сайтов изготовителей, их каталогов и других справочных источников, для построения шкалы приоритетов параметров ИП. Полученные из источников данные записаны в таблицу (табл. 1).

Ни одна система управления не может работать без информации о состоянии объекта управления и его реакции на управляющее воздействие. Элементом систем, обеспечивающим получение такой информации, является измерительный преобразователь-датчик.

Число типов датчиков значительно превосходит число измеряемых величин, так как одну и ту же физическую величину можно измерять различными методами и датчиками разных конструкций.

Для большинства датчиков характерно измерение электрическими методами не только электрических и магнитных, но и других физических величин. Такой подход обусловлен достоинствами электрических измерений, в виду того, что электрические сигналы можно просто и быстро передавать на большие расстояния, электрические величины легко, быстро и точно преобразуются в цифровой код, позволяют обеспечить высокую точность и чувствительность.

В качестве классификационных признаков датчиков можно принять многие характеристики: вид функции преобразования; род входной и выходной величины; принцип действия; конструктивное исполнение.

По виду используемой энергии датчики можно подразделить на электрические, механические, пневматические и гидравлические. В зависимости от вида выходного сигнала: аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

По характеру преобразования входной величины в выходную: параметрические, генераторные, частотные, фазовые.

По виду измеряемой физической величины: линейных и угловых перемещениях, давления, температуры, концентрации веществ и т.д.

Принцип действия параметрических преобразователей заключается в преобразовании неэлектрических входных величин в параметры электрических цепей: сопротивление R, индуктивность L, емкость С, взаимоиндуктивность М. Для питания этих преобразователей требуются внешние источники. К таким датчикам относятся: резистивные, индуктивные, трансформаторные, емкостные преобразователи.

Генераторные преобразователи преобразуют входные величины в ЭДС. Они не требуют энергии дополнительных источников питания.

Это индукционные, термоэлектрические, пьезоэлектрические, фотоэлектрические преобразователи.

Фазовые и частотные преобразователи могут быть как параметрическими, так и генераторными.

Резистивные измерительные преобразователи

Реостатные — выполнены в виде реостата, подвижной контакт которого перемещается под воздействием входной измеряемой величины. Чаще всего реостатный датчик включается в измерительную систему по схеме потенциометра, их иногда называют потенциометрическими датчиками.

Емкостные преобразователи

. Емкостные датчики можно разделить на две основные группы - датчики параметрические (недифференциальные) и датчики дифференциальные. В схемах с параметрическими датчиками происходит преобразование входной неэлектрической величины (угла поворота оси ротора датчика) в электрическую выходную величину .

Выходной величиной датчика является электрическое сопротивление функционально связанное с положением подвижного контакта. Такие датчики служат для преобразования угловых или нелинейных перемещений в соответствующее изменение сопротивления, тока, напряжения.

Они также могут быть использованы для измерения давления, расхода, уровня. Их часто используют также в качестве промежуточных преобразователей неэлектрических величин в электрические.

В устройствах автоматики широко применяются проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малый температурный коэффициент сопротивления (ТКС).

К недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.

Обмотку выполняют изолированным проводом виток к витку или с заданным шагом. В качестве провода применяют константан, манганин.

Датчик данного типа не реагируют на знак входного сигнала, работают как на постоянном, так и на переменном токе.

Тензорезисторы. В основе их работы лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствительности Кт, определяемый как отношение изменения сопротивления к изменению длины проводника

Константан — Кт = 2

Тензорезисторы используют для измерения давления жидкости и газов, при измерении упругих деформаций материалов: давлений изгибов, скручивания.

В качестве тензорезистивного материала можно использовать металлы с малым ТКС: манганин, константан, нихром, ртуть, высокотемпературные сплавы, полупроводниковые материалы: германий, кремний. Наибольшее распространение получили тензорезисторы из металла. Они разделяются на проволочные и фольговые, последние более совершенны.

Угольные преобразователи. Их принцип действия основан на изменении контактного сопротивления между частицами угля при изменении давления. Их применяют для измерения усилий, давлений, малых перемещений. Различают угольные столбики и тензолиты.

Первые представляют собой набор из 10-15 отшлифованных шайб, изготовленных из электродных углей.

Характеристика угольного преобразователя не линейна, он имеет переменную чувствительность. Нестабильны в работе, характеристики зависят от температуры и влажности окружающей среды, качества подготовки поверхностей.

Вторые имеют малые размеры и массу. Их применяют для измерения быстроменяющихся и ударных напряжений в движущихся деталях небольшого размера, при этом они работают как на растяжение, так и на сжатие. Коэффициент чувствительности тензолитовых преобразователей больше, чем у тензорезисторов, и составляет К = 15 20.

Она выполняется в виде полосок, состоящих из смеси графита, сажи, бакелитового лака и других компонентов. Эти полоски наклеиваются на испытуемую деталь.

Резистивные преобразователи несмотря на присущие им недостатки до настоящего времени находят широкое применение.

Достоинство: независимость его точности от питающего напряжения

Для повышения чувствительности желательно увеличивать напряжение питания U0. Однако при этом растет мощность рассеяние датчика.

Емкостные преобразователи. Принцип действия основан на изменении емкости конденсатора под воздействием входной преобразуемой величины

где — относительная диэлектрическая проницаемость диэлектрика;

0 — диэлектрическая проницаемость вакуума;

  • S — площадь пластины;
  • толщина диэлектрика или расстояния между пластинами.

Емкостные датчики используют для измерения угловых и линейных перемещений, линейных размеров, уровня, усилий, влажности концентрации и др.

В емкостных плоскопараллельных датчиках изменяется плоскость перекрытия S (перемененная площадь перекрытия) статическая характеристика линейна.

В емкостных преобразователях с переменным воздушным зазором характеристика не линейна.

Преобразователи и изменением диэлектрической проводимости среды между электродами широко используются для измерения уровня жидких и сыпучих веществ, анализа состава и концентрации веществ в химической, нефтеперерабатывающей промышленности, для счета изделий, охранной сигнализации. Они имеют линейную статическую характеристику.

Емкость измерительных преобразователей в зависимости от конструктивных особенностей колеблется от десятых долей до нескольких тысяч пикофарад, что приводит к необходимости использовать для питания датчиков напряжения повышений частоты Гц.

Это существенный недостаток подобных преобразователей.

Диэлектрические свойства среды иногда изменяются под воздействием температуры или механических усилий. Эти эффекты также используются для создания соответствующих измерительных преобразователей.

Изменение проницаемости под действием температуры описывается выражением

где т — диэлектрическая проницаемость материала при температуре Т; 0 — диэлектрическая проницаемость при температуре Т0;

Аналогичный вид имеет и зависимость от приложенного к нему усилия Р

где — чувствительность материала к относительному изменению диэлектрической проницаемости

Начальная емкость преобразователей тем больше, чем меньше зазор между электродами. Однако уменьшение зазора ограничивается диэлектрической прочностью межэлектродной среды и наличием силы электростатического притяжения пластин.

Погрешности емкостных преобразователей в основном определяются влиянием температуры и влажности на геометрические размеры и диэлектрическую проницаемость среды. Они являются практически безинерционными элементами.

К достоинствам относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Недостатки: низкий уровень выходной мощности сигнала, нестабильность характеристик при изменении параметров окружающей среды, влияние паразитных, емкостей. Для уменьшения потери мощности выходного сигнала согласную нагрузку с внутренним сопротивлением измерительной системы, т.е. схему настраивают на резонанс.

Реактивное сопротивление нагрузки выбирают равным по значению и обратным по знаку внутреннему сопротивлению датчика.

Такие преобразователи составляют большую группу преобразователей для измерения различных физических величин и в зависимости от принципа действия бывают параметрическими и генераторными.

К параметрическим относятся те, в которых преобразуется выходное механическое воздействие в изменение параметров магнитной цепи — магнитной проницаемости , магнитного сопротивления RМ, индуктивность обмотки L.

К генераторным — преобразователи индукционного типа, использующие закон электромагнитной индукции для получения выходного сигнала. Они могут быть выполнены на базе трансформаторов и электрических машин. Последняя группа — это тахогенераторы, сельсины, поворотные трансформаторы.

Значения L и М можно изменять, уменьшая или увеличивая зазор , изменяя положение якоря, изменяя сечение S магнитного потока, поворачивая якорь относительно неподвижной части магнитной цепи, вводя в воздушный зазор пластину из ферромагнитного материала, соответственно уменьшая 0 и магнитное сопротивление зазора.

Измерительные преобразователи, преобразующие естественную входную величину в виде перемещения в изменение индуктивности называют индуктивными.

Преобразователи, преобразующие перемещение в изменение взаимоиндуктивности М, принято называть трансформаторными.

  • В трансформаторных преобразователях изменение взаимоиндуктивности М можно получить не только при изменении магнитного сопротивления, но и при перемещении одной из обмоток вдоль или поперек магнитной цепи.

Если к замкнутой магнитной цепи преобразователя приложить сжимающие, растягивающие или скручивающие усилия, то под их воздействием изменится магнитная проницаемость 0 сердечника, что приведет к изменению магнитного сопротивления сердечника

и соответственно к изменению L или М.

Преобразователи, основанные на изменении магнитного сопротивления, обусловленного изменением магнитной проницаемости ферромагнитного сердечника под воздействием механической деформации, называются магнитоупругими. Их широко применяют для измерения сил, давлений, моментов.

Если в зазоре постоянного магнита, или электромагнита, через обмотку которого пропускается постоянный ток, перемещать обмотку, то согласно закону электромагнитной индукции в обмотке появляется ЭДС, равная

где — скорость изменения магнитного потока, сцепляющегося с витками обмотки W.

Поскольку скорость изменения магнитного потока определяется скоростью перемещения обмотки в воздушном зазоре, то преобразователь имеет естественную входную величину в виде скорости линейных или угловых перемещений, а выходная в виде индуктируемой ЭДС. Такие преобразователи называют индукционными.

электрический датчик преобразователь измерение

Выходной сигнал получается в виде переменного напряжения, снимаемого с Rн. Питание от сети. Зазор меняется под воздействием перемещения якоря. Индуктивность обмотки L является функцией размера зазора.

Индуктивность обмотки и ток в ней могут изменяться за счет изменения зазора или его площади.

Погрешность определяется стабиль-ностью напряжения и частоты источника питания, влиянием температуры на актив-ное сопротивление обмотки и размеры рабочего зазора.

Чувствительность является нелинейной функцией

Анализ принципа действия и рассмотрения статической характеристики однотактного измерительного индуктивного преобразователя позволяет выявить его следующие недостатки:

  • фаза выходного сигнала не зависит от направления перемещения якоря;
  • для измерения перемещения в обоих направлениях необходим начальный зазор 0, что приводит к наличию остаточного (начального значения) напряжения Uвых.о;

— на якорь постоянно действует электромагнитная сила, стремящая притянуть якорь. При большой мощности выходного сигнала она может принимать существенные значения, что требует введение компенсирующих сил, создаваемых противодействующими пружинами, что усложняет устройство.

Из-за указанных недостатков однотактные индуктивные датчики используют только в качестве вспомогательных элементов.

Непосредственно для измерений применяют двухтактные датчики, которые включают по дифференциальной или мостовой схемам.

Дифференциальная схема включения индуктивного преобразователя требует использование трансформатора TV со средней точкой.

Оба сердечника идентичны по конструктивным и магнитным характеристикам. Расположенные на них обмотки W1 и W2 имеют также одинаковые параметры и включены последовательно — встречно.

В такой схеме ток нагрузки равен разности токов

При отсутствии входного сигнала зазоры 1 = 2. Равны и индуктивности L1 = L2, определяемые размерами зазоров. Выходное напряжение равно нулю.

При перемещении якоря на расстояние Х 1 и 2 становятся неравными, что приводит к изменению индуктивностей, а, следовательно, к дисбалансу токов I1 и I2, в результате через Rн течет ток Iн и появляется выходное напряжение.

Если изменяется направление перемещения якоря, фаза выходного напряжения сдвигается на 1800 относительно напряжение питания, являющегося опорным.

Измерительные датчики или измерительные преобразователи – это один из обязательных компонентов различных автоматизированных систем. Их назначение – прием информации о работе контролируемого устройства. На основании полученных данных контроллер выполняет определенное действие. Датчик может быть удален на значительное расстояние от устройства, которое принимает его сигналы. Измерительные датчики могут применяться в исследовательских целях, в системах контроля качества и автоматизированного управления, а также в других областях, где нужно получить данные о состоянии внешней среды.

Измерительные датчики: суть, принцип работы, виды и применение

Основные принципы работы


https://techtrends.ru/catalog/izmeritelnye-datchiki/" target="_blank">Измерительные датчики также называют первичными преобразователями (ПП), так как они контактируют непосредственно с исследуемыми объектами во внешней среде. Основное назначение таких устройств – преобразование контролируемой величины (давления, температуры, скорости) в сигнал, который можно измерить, передать или зарегистрировать. Это чувствительный орган, на основании показаний которого автоматизированная система принимает решения и выполняет требуемые действия в соответствии с заданным алгоритмом.


  • омического (реостатного) – он используется в датчиках перемещения, измерения основаны на изменении показателей сопротивления;
  • фотоэлектрического – он применяется для обнаружения объекта без физического контакта с ним. Выходной сигнал устройства начинает меняться, как только меняется уровень освещенности чувствительного элемента;
  • индуктивного – измерение осуществляется на основе изменения индуктивности катушки с сердечником. Устройства такого типа способны выявлять перемещение металлических объектов – этот принцип используется в различных системах контроля;
  • емкостного – в зависимости от перемещения обкладок, меняется емкость плоского или цилиндрического конденсатора. Устройства такого типа применяют для контроля угловых перемещений, давления и других показателей.


Современные приборы обладают сложной конструкцией, защищенной от ложных срабатываний, что обеспечивает максимальную точность измерений и оперативность реагирования на изменившиеся показатели.


izmeritelnye_datchiki-1-1-2.jpg

Виды и характеристики


Датчики принято классифицировать по нескольким принципам. Можно выделить следующие разновидности датчиков по типу измеряемой величины:


В зависимости от вида выходного сигнала, различают электрические и неэлектрические датчики. Первая группа наиболее многообразна, так как полученный электрический сигнал удобно анализировать, а его величины являются универсальными. Кроме того, его можно передавать контроллеру на большое расстояние, что позволяет помещать датчик на значительное расстояние. Электрический сигнал может быть преобразован в цифровой код для удобства расшифровки и позволяет измерить требуемые параметры с высокой точностью.


Электрические измерительные датчики принято делить еще на 3 группы:


Еще одной разновидностью можно назвать контактные резисторные устройства – они дают резкое изменение сопротивления электрической цепи при изменении контролируемого показателя.

Возможности использования


Различные типы датчиков стали неотъемлемой частью промышленного оборудования и иных технических устройств. Они применяются в автоматизированных производственных линиях, системах контроля доступа, робототехнике, а также в различных бытовых приборах. Именно они обеспечивают работоспособность выключателей, термостатов, барометров, термометров и других устройств.


Датчики в устройствах играют роль рецепторов, позволяющих технике воспринимать сигналы извне и запускать заданные программным обеспечением алгоритмы. Это дало возможность автоматизировать многие процессы: оператору не нужно постоянно контролировать определенный уровень давления, температуры и другие показатели. Устройство самостоятельно фиксирует изменения, а информация передается контроллеру.


Возможности применения датчиков постоянно расширяются. Они стали обязательной составляющей современной робототехники.


izmeritelnye_datchiki-1-1-3.jpg

Плюсы и минусы


Для использования в промышленном оборудовании, бытовой технике и различных автоматизированных системах датчики должны соответствовать следующим требованиям:


  1. Точная зависимость выходного значения от входного показателя – приборы обеспечивают высокую точность реагирования и не допускают ложного срабатывания.
  2. Постоянство временных характеристик – устройство должно работать безотказно при длительном использовании.
  3. Максимально высокая чувствительность – чем она выше, тем точнее реагирование на изменения контролируемого параметра.
  4. Отсутствие какого-либо воздействия на рабочие процессы в контролируемой системе и ее параметры – установка датчиков в норме не оказывает влияния на работоспособность.


Дополнительными плюсами являются небольшие размеры и возможность использования в различных условиях. Современные датчики удобны для монтажа, их применение дает возможность контролировать рабочие параметры с автоматическим срабатыванием исполнительных механизмов при изменении показателей. У каждого типа устройств есть и свои минусы, поэтому нужно подобрать подходящий первичный преобразователь для решения определенной задачи.

Читайте также: