История изобретения транзистора доклад

Обновлено: 16.05.2024

Мы живем в эпоху, сущность которой определяют цифровые технологии и электроника. И краеугольный камень этого мира — миниатюрная микросхема, состоящая из кремниевых транзисторов. А они, в свою очередь, были бы невозможны без полупроводников.

Микросхемы, транзисторы и полупроводники можно найти почти в любом устройстве сложнее вентилятора, начиная со стиральных машин и заканчивая космическими спутниками и аппаратами ИВЛ. Поэтому освоение полупроводников можно без сомнений назвать главным изобретением XX века. Рассказываем историю рождения технологии, сформировавшей нашу реальность.

Что такое полупроводники и почему они наше всё

Для начала немного физики. Полупроводники — это вещества с особыми свойствами проводимости электричества. На этих свойствах основана вся современная электроника — именно они позволяют модулировать, усиливать и направлять ток и обмениваться электросигналами.

Но сам по себе полупроводник — это всего лишь материал. Для того, чтобы использовать его особенности, инженеры разработали транзисторы — сложные миниатюрные устройства, управляющие током и преобразующие его. Главный элемент транзистора — p-n-переход (positive-negative), в котором соприкасаются два полупроводника. А из комбинаций транзисторов состоят микросхемы, которые используют обмен сигналами между ними для вычислений.

Свойствами полупроводников обладают многие другие элементы и вещества, например германий или сапфир, но в подавляющем большинстве случаев сегодня используется кремний. Для того, чтобы усилить особые свойства полупроводников, они обогащаются добавками — например, мышьяком. Добавление примесей — отдельная непростая задача, которую можно решить множеством способов.

Первые догадки

История покорения полупроводников началась в 1833 году, когда физик Майкл Фарадей заметил, что электропроводность сульфида серебра повышается при нагревании. Другие металлы реагируют обратным образом — чем выше температура, тем хуже через них проходит ток. Через пять лет Антуан Анри Беккерель заметил, что некоторые материалы меняют электропроводность под воздействием света.


Майкл Фарадей

По сути, четыре эти открытия описывают основные свойства полупроводников. Но сущность этих свойств осталась для физиков XIX века загадкой — тогдашняя наука была не способна объяснить их. Исследовать полупроводники удалось лишь в 1920-1940-х годах, когда ученые смогли объяснить их устройство материалов на атомарном уровне.

Германий меняет мир

Электроника, то есть совокупность технологий, позволяющих использовать электрический ток для вычислений и обработки информации, появилась еще в 1930-х годах. До середины 1950-х основным компонентом электронного оборудования были вакуумные лампы. Именно их использовали первые компьютеры, созданные в годы Второй Мировой войны для военных целей.

Главным недостатком вакуумных ламп была чрезвычайная громоздкость. Вакуумная лампа примерно такого же размера, как лампочка накаливания. А транзистор, который выполняет ту же роль, крошечный: первая в истории серийная интегральная микросхема Intel 4004, выпущенная в 1971 году, была 5 сантиметров в длину и вмещала 2300 транзисторов. Поэтому ламповые компьютеры занимали по несколько комнат, но действовали очень медленно.


Первая в истории серийная интегральная микросхема Intel 4004

Кроме того, лампы потребляли гигантские объемы энергии и выделяли огромное количество тепла. Для того, чтобы электроника развивалась дальше, нужно было создать гораздо более экономичный электронный компонент — то есть транзистор.

Первый патент на концепцию полупроводникового транзистора, в котором использовался сульфид меди, еще в 1926 году подал польско-американский изобретатель Юлиус Лилиенфельд. Однако ему так и не удалось воплотить свое гипотетическое изобретение в жизнь — идея была реализована лишь 20 лет спустя.

Транзистор создали ученые из лабораторий корпорации Bell. Они начали изучать потенциал p-n перехода полупроводников еще в середине 1930-х. Однако из-за Второй Мировой войны почти всем передовым американским физикам пришлось пойти работать на армейские проекты, где разрабатывали радары и ядерное оружие. Исследования остановились на несколько лет, и возобновились после разгрома стран Оси.

Первый рабочий транзистор был создан в конце 1947 года. В качестве полупроводника в нем был использован германий — его научились очищать и выращивать раньше, чем кремний. Транзистор разработала группа инженеров во главе с Уильямом Шокли, Уолтером Браттейном и Джоном Бардином. В 1950 году Шокли получил патент на оригинальный транзистор, а Браттейн и Бардин — на его трехэлектродную версию. В 1956 году все трое были награждены Нобелевской премией по физике. Бардин стал единственным человеком, получившим эту премию дважды — в 1972 году он вместе с двумя другими физиками был награжден ей за разработку теории сверхпроводимости.


Тот самый патент Шокли

Открытие транзисторов породило совершенно новую индустрию, причем главным их покупателем стали военные, а чуть позже и НАСА. Лидером отрасли, помимо Bell, стала компания Philco, транзисторы которой первые годы были даже быстрее. Но уже в 1955 году группа ученых из Bell совершила еще одну мини-революцию, создав диффузионный транзистор — он отличался особым способом добавления усиливающих примесей а вещество-полупроводник.

Военные требуют кремния

Германиевые транзисторы стали огромным прорывом. Тем не менее, у них было как минимум два существенных недостатка — они сильно нагревались и не могли работать на высоких температурах. Забегая вперед, отметим, что и для современных интегральных микросхем германий не подходит. Физики знали, что гораздо более удобным полупроводником является кремний. Об этом было известно и военным, которые требовали разработать универсальные и жаропрочные кремниевые транзисторы.

Квалифицированных ученых в США в те годы было очень мало — с 1946 по 1948 год американские университеты выпустили всего 416 физиков и 378 математиков. Фундаментальная наука в стране как отрасль только зарождалась — до Второй Мировой государство почти не финансировало ученых, и им приходилось заниматься сугубо практическими и быстро коммерциализируемыми исследованиями для нужд промышленности, а почти все прорывные теоретические открытия совершались в Европе. Именно Вторая Мировая война, в начале которой Америка заметно отставала в технологиях от Германии, побудила Вашингтон создать первые федеральные программы поддержки фундаментальных исследований.

Количество ученых в США вскоре возросло во много раз, что быстро сделало их мировым лидером во многих отраслях науки. Однако этот эффект проявился лишь через десятилетие. А в 1950-х инновационными исследованиями могли заниматься всего несколько сотен человек на всю огромную страну. Потеряв группу специалистов, компания могла утратить инновацию Поэтому главным механизмом конкуренции стало переманивание ученых.


Слева еще германиевый, а справа уже кремниевый транзистор от Texas Instruments

Эти новые кремниевые транзисторы от Texas Instruments были адаптированы для использования в военной аппаратуре: бортовых радарах, средствах связи и навигационном оборудовании. К концу 1950-х они сделали Texas Instruments лидером отрасли и главным получателем военных госзаказов в сфере электроники. Очень вовремя — из-за Холодной войны в ВПК потекли огромные деньги. Их продажи выросли с нескольких сотен тысяч долларов в 1954 году до более чем 80 миллионов долларов в 1960 году.

В следующей статье мы расскажем о создании микрочипа, рождении современной Кремниевой долины, а также о состоянии полупроводниковой индустрии сегодня.

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Изобретение транзистора

Электронные лампы

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Изобретение транзистора

Первый транзистор

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Изобретение транзистора

Изобретение транзистора, Джон Бардин, Уильям Шокли и Уолтер Браттейн

За сотрудничество в разработке первого в мире действующего транзистора в 1948 году они разделили Нобелевскую премию 1956 года.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Как это было, первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля.

В изоляторах двигаться под действием электрического поля просто нечему.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 — 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радио-лаборатории О.В. Лосев. Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).

Изобретение транзистора

Изобретение транзистора

Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

Изобретение транзистора

Изобретение транзистора на основе графена

По сравнению с существующими технологиями это позволит ровно в три раза сократить количество транзисторов в одном корпусе. Кроме того, по мнению ученых рабочие частоты нового полупроводникового материала могут достигать до 1000 ГГц. Параметры, конечно, очень заманчивые, но пока новый полупроводник находится на стадии разработки и изучения, а кремний до сих пор остается рабочей лошадкой. Его век еще не закончился.

Видео


Кто создал первый транзистор? Этот вопрос волнует очень многих. Первый патент для полевого транзисторного принципа был оформлен в Канаде австро-венгерским физиком Юлием Эдгаром Лилиенфельдом 22 октября 1925 года, но Лилиенфельд не опубликовал никаких научных статей о своих устройствах, и его работа была проигнорирована промышленностью. Таким образом первый в мире транзистор канул в историю. В 1934 году немецкий физик доктор Оскар Хайль запатентовал другой полевой транзистор. Нет прямых доказательств того, что эти устройства были построены, но позже работа в 1990-х годах показала, что один из проектов Лилиенфельда работал так, как описано, и давал существенный результат. Ныне известным и общепринятым фактом считается то, что Уильям Шокли и его помощник Джеральд Пирсон создали рабочие версии аппаратов из патентов Лилиенфельда, о чем, разумеется, никогда не упоминали ни в одной из своих более поздних научных работ или исторических статей. Первые компьютеры на транзисторах, разумеется, были построены значительно позже.

Старый транзистор.

Лаборатория Белла

Дальнейшие изыскания Шокли

После войны Шокли решил попытаться построить триодоподобное полупроводниковое устройство. Он обеспечил финансирование и лабораторное пространство, и затем стал разбираться с возникшей проблемой совместно с Бардином и Браттеном. Джон Бардин в конечном итоге разработал новую ветвь квантовой механики, известную как физика поверхности, чтобы объяснить свои первые неудачи, и этим ученым в конечном итоге удалось создать рабочее устройство.

Ключом к развитию транзистора стало дальнейшее понимание процесса подвижности электронов в полупроводнике. Было доказано, что если бы был какой-то способ контролировать поток электронов от эмиттера до коллектора этого вновь обнаруженного диода (обнаруженный 1874 г., запатентованный 1906 г.), можно было бы построить усилитель. Например, если поместить контакты по обе стороны от одного типа кристалла, ток не пройдет через него.

Модель первого транзистора.

На самом деле делать это оказалось очень сложно. Размер кристалла должен был бы быть более усредненным, а число предполагаемых электронов (или отверстий), которые необходимо было "впрыскивать", было очень большим, что сделало бы его менее полезным, чем усилитель, потому что для этого потребовался бы большой ток впрыска. Тем не менее вся идея кристаллического диода заключалась в том, что сам кристалл мог удерживать электроны на очень небольшом расстоянии, находясь при этом практически на грани истощения. По-видимому, ключ заключался в том, чтобы контакты ввода и вывода были очень близки друг к другу на поверхности кристалла.

Труды Браттена

Первый транзистор.

Присоединение Брея

Ранним свидетелем этого явления был Ральф Брей, молодой аспирант. Он присоединился к разработке германиевого транзистора в Университете Пердью в ноябре 1943 года и получил сложную задачу измерения сопротивления рассеяния на контакте металл-полупроводник. Брей обнаружил множество аномалий, таких как внутренние барьеры высокого сопротивления в некоторых образцах германия. Наиболее любопытным явлением было исключительно низкое сопротивление, наблюдаемое при применении импульсов напряжения. Первые советские транзисторы разрабатывались на основе этих американских наработок.

Транзисторное радио.

Прорыв

16 декабря 1947 года, используя двухточечный контакт, был сделан контакт с поверхностью германия, анодированной до девяносто вольт, электролит смылся в H2O, а затем на нем выпало несколько золотых пятен. Золотые контакты были прижаты к голым поверхностям. Разделение между точками было около 4 × 10 -3 см. Одна точка использовалась как сетка, а другая точка - как пластинка. Уклонение (DC) на сетке должно было быть положительным, чтобы получить усиление мощности напряжения на смещении пластины около пятнадцати вольт.

Изобретение первого транзистора

С историей сего чудомеханизма связано множество вопросов. Часть из них знакома читателю. К примеру: почему первые транзисторы СССР были PNP-типа? Ответ на этот вопрос кроется в продолжении всей этой истории. Браттен и Х. Р. Мур продемонстрировали нескольким коллегам и менеджерам в Bell Labs во второй половине дня 23 декабря 1947 года результат, которых они добились, потому этот день часто упоминается в качестве даты рождения транзистора. PNP-контактный германиевый транзистор работал в качестве речевого усилителя с коэффициентом усиления мощности 18. Это ответ на вопрос, почему первые транзисторы СССР были PNP-типа, ведь их закупили именно у американцев. В 1956 году Джон Бардин, Уолтер Хаузер Браттен и Уильям Брэдфорд Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие эффекта транзистора.

Музей транзисторов.

Двенадцать человек упоминаются как непосредственное участие в изобретении транзистора в лаборатории Bell.

Самые первые транзисторы в Европе

Первая коммерческая линия по производству транзисторов в мире была на заводе Western Electric на Union Boulevard в Аллентауне, штат Пенсильвания. Производство началось 1 октября 1951 г. с точечного контактного германиевого транзистора.

Дальнейшее применение

Вплоть до начала 1950-х этот транзистор использовался во всех видах производства, но все еще существовали значительные проблемы, препятствующие его более широкому применению такие, как чувствительность к влаге и хрупкость проводов, прикрепленных к кристаллам германия.

Первый контактный транзистор.

Шокли часто обвиняли в плагиате из-за того, что его работы были очень приближены к трудам великого, но непризнанного венгерского инженера. Но адвокаты Bell Labs быстро уладили эту проблему.

Статический индукционный прибор, первая концепция высокочастотного транзистора, был изобретен японскими инженерами Jun-ichi Nishizawa и Y. Watanabe в 1950 году и, наконец, смог создать экспериментальные прототипы в 1975 году. Это был самый быстрый транзистор в 80-е годы ХХ столетия.

В 1953 году Филко разработал первый в мире высокочастотный поверхностно-барьерный прибор, который также был первым транзистором, подходящим для высокоскоростных компьютеров. Первое в мире транзисторное автомобильное радио, изготовленное Philco в 1955 году, использовало поверхностно-барьерные транзисторы в своей схеме.

Решение проблем и доработка

С решением проблем хрупкости осталась проблема чистоты. Создание германия требуемой чистоты оказалось серьезной проблемой и ограничило количество транзисторов, которые фактически работали из данной партии материала. Чувствительность германия к температуре также ограничивала его полезность.

Старый радио-транзистор.

Ученые предположили, что кремний будет легче изготовить, но мало кто изучил эту возможность. Morris Tanenbaum в Bell Laboratories были первыми, кто разработал рабочий кремниевый транзистор 26 января 1954 г. Несколько месяцев спустя, Гордон Тил, работающий самостоятельно в Texas Instruments, разработал аналогичное устройство. Оба эти устройства были сделаны путем контроля легирования кристаллов одного кремния, когда они выращивались из расплавленного кремния. Более высокий метод был разработан Моррисом Таненбаумом и Кальвином С. Фуллером в Bell Laboratories в начале 1955 года путем газовой диффузии донорных и акцепторных примесей в монокристаллические кремниевые кристаллы.

Полевые транзисторы

Полевой транзистор был впервые запатентован Юлисом Эдгаром Лилиенфельдом в 1926 году и Оскаром Хейлом в 1934 году, но практические полупроводниковые устройства (транзисторы с полевым эффектом перехода [JFET]) были разработаны позднее, после того как эффект транзистора наблюдался и объяснялся командой Уильяма Шокли в Bell Labs в 1947 году, сразу же после истечения двадцатилетнего патентного периода.

Первым типом JFET был статический индукционный транзистор (SIT), изобретенный японскими инженерами Jun-ichi Nishizawa и Y. Watanabe в 1950 году. SIT - это тип JFET с короткой длиной канала. Полупроводниковый полевой транзистор (МОП-транзистор) из металла-оксида-полупроводника, который в значительной степени вытеснил JFET и оказал глубокое влияние на развитие электронной электронной техники, был изобретен Дауном Кахнгом и Мартином Аталлой в 1959 году.

Полевые транзисторы могут быть устройствами с мажоритарным зарядом, в которых ток переносится преимущественно мажоритарными носителями или устройствами с носителями меньших зарядов, в которых ток в основном обусловлен потоком неосновных носителей. Прибор состоит из активного канала, через который носители заряда, электроны или отверстия поступают из источника в канализацию. Концевые выводы источника и стока подключаются к полупроводнику через омические контакты. Проводимость канала является функцией потенциала, применяемого через клеммы затвора и источника. Этот принцип работы дал начало первым всеволновым транзисторам.

Все полевые транзисторы имеют клеммы источника, стока и затвора, которые примерно соответствуют эмиттеру, коллектору и базе BJT. Большинство полевых транзисторов имеют четвертый терминал, называемый корпусом, базой, массой или субстратом. Этот четвертый терминал служит для смещения транзистора в эксплуатацию. Редко приходится делать нетривиальное использование терминалов корпуса в схемах, но его присутствие важно при настройке физической компоновки интегральной схемы. Размер ворот, длина L на диаграмме, - это расстояние между источником и стоком. Ширина - это расширение транзистора в направлении, перпендикулярном поперечному сечению на диаграмме (т. е. в/из экрана). Обычно ширина намного больше, чем длина ворот. Длина затвора 1 мкм ограничивает верхнюю частоту примерно до 5 ГГц, от 0,2 до 30 ГГц.

Транзистор — небольшое влиятельное изобретение, которое сильно изменило ход истории компьютеров и всей электроники.

История компьютеров

Вы можете рассматривать компьютер как созданный из множества различных изобретений или компонентов. Мы можем назвать четыре ключевых изобретения, которые оказали огромное влияние на компьютеры. Воздействие достаточно велико, чтобы их можно было назвать поколением изменений.

Первое поколение компьютеров зависело от изобретения электронных ламп; для второго поколения — транзисторы; для третьего — интегральная схема; а четвертое поколение компьютеров появилось после изобретения микропроцессора.

Влияние транзисторов

Транзисторы изменили мир электроники и оказал огромное влияние на компьютерный дизайн. Транзисторы из полупроводников заменили лампы в конструкции компьютеров. Заменив громоздкие и ненадежные электронные лампы на транзисторы, компьютеры теперь могли выполнять те же функции, используя меньше энергии и места.

До транзисторов цифровые схемы состояли из вакуумные трубки. История компьютера ENIAC красноречиво свидетельствует о недостатках электронных ламп в компьютерах. Транзистор — это устройство, состоящее из полупроводниковых материалов (германий и кремний), которое может как проводить, так и изолировать транзисторы, переключать и модулировать электронный ток.

Изобретатели транзисторов

Джон Бардин , Уильям Шокли и Уолтер Браттейн были учеными из Bell Telephone Laboratories в Мюррей-Хилле, штат Нью-Джерси. Они исследовали поведение кристаллов германия как полупроводников, пытаясь заменить вакуумные лампы в качестве механических реле в телекоммуникациях.

Электронные лампы, используемые для усиления музыки и звука. голос, сделал междугородные звонки практичным, но трубки потребляли электроэнергию, выделяли тепло и быстро перегорали, что требовало большого ухода.

пришли к безуспешному концу, когда последняя попытка попробовать более чистое вещество в качестве точки контакта привела к изобретению первого транзисторного усилителя с точечным контактом. Уолтер Браттейн и Джон Бардин создали точечный транзистор, состоящий из двух контактов из золотой фольги, установленных на кристалле германия.

В 1952 году переходный транзистор был впервые использован в коммерческом продукте. слуховой аппарат Sonotone. В 1954 году был изготовлен первый транзисторный радиоприемник Regency TR1. Джон Бардин и Уолтер Браттейн получили патент на свой транзистор. Уильям Шокли подал заявку на патент на транзисторный эффект и транзисторный усилитель.

Читайте также: