Генетические теории пола дифференцировка пола доклад

Обновлено: 13.05.2024

Дифференциация пола – это процесс формирования морфофизиологических и поведенческих различий между полами в онтогенезе. Она представляет собой цепь закономерно сменяющих друг друга этапов, причем каждый последующий этап основывается на предыдущем.

На 1-м этапе на основе детерминации пола происходит дифференциация гонад.

На 2-м этапе дифференцированные гонады выделяют гормоны, которые активируют гены, обусловливающие половую дифференциацию фенотипа и мозга.

На 3-м этапе вследствие дифференциации мозга и процессов социализации формируется половое поведение.

Дифференциация гонад. У эмбриона млекопитающих происходит закладка бисексуальной системы эмбриональных гонад и двух пар половых протоков – мюллеровых и вольфовых каналов. Под действием гена SRY эмбриональные гонады преобразуются в семенники, а в случае отсутствия этого гена – в яичники.

При дифференцировке эмбриональных гонад в яичники не происходит выделения тестостерона и АМН. Это сопровождается запрограммированным преобразованием мюллеровых каналов в женскую проводящую систему, состоящую из матки и яйцеводов. Воль-фовы каналы дегенерируют.

Дифференциация гамет. Дифференциация гамет – процесс преобразований первичных половых клеток (ППК, или гоноцитов) в мужские (сперматогонии) или женские (оогонии) половые клетки. Этот процесс независим от дифференциации гонад и определяется половым кариотипом.

Процессы дифференциации гамет и гонад являются примером такого явления как автономность развития частей единой структуры. Это типично для процессов онтогенеза: другим примером может служить независимость формирования индуктора и компетентной ткани. Целостность морфогенеза достигается синхронизацией событий. В случае десинхронизации обычно наблюдаются различные пороки развития.

Фенотипическая половая дифференциация. Развитие вторичных половых признаков у млекопитающих контролируется многими генами. Одним из основных является ген Tfm, локализованный на Х-хромосоме. Это ген рецептора андрогенов. Его регуляторные белки, связываясь с тестостероном, активируют гены, необходимые для дифференцировки по мужскому типу.

Локализация гена Tfm на Х-хромосоме показывает, что клеточные рецепторы тестостерона должны быть как на XX-, так и на ХY-кариотипах. Поэтому введение тестостерона в зародыши XX вызывает развитие вторичных половых признаков самца. Однако отсутствие гормона АМН у таких зародышей приводит к развитию как женских, так и мужских половых путей и формированию гермафродитизма.

В результате половой дифференциации формируются:

Первичные половые признаки – морфофизиологические характеристики половой системы у разных полов.

Вторичные половые признаки – морфофизиологические характеристики фенотипов разных полов, не относящихся к половой системы.

Степень различия между полами по вторичным половым признакам получила название половой диморфизм.

Гермафродитизм – это направление в процессах дифференциации пола, приводящее к формированию организмов с признаками обоих полов.

Половая дифференциация мозга и поведения. Главным фактором маскулинизации мозга и опосредуемого им поведения является также тестостерон. Опыты на животных показали, что самцы, кастрированные на ранней стадии, демонстрируют поведение, характерное для самок.

Для маскулинизации мозга тестостерон должен воздействовать в особые чувствительные критические периоды онтогенеза, причем его отсутствие в это время не может быть компенсировано в дальнейшем. Именно своевременное воздействие этого гормона закладывает базовые основы полового поведения.

Если формы полового поведения у беспозвоночных обычно стереотипны и жестко детерминированы, то у высших позвоночных они демонстрируют широкий диапазон индивидуальной изменчивости под влиянием сообщества и научения. Многочисленные работы этологов показали роль импринтинга, изоляции, общения с матерью и сородичами в последующем формировании полового поведения у птиц и млекопитающих. У млекопитающих особое значение имеет контакт с матерью. Однако, даже выращенные с матерью, но в изоляции от сверстников самцы, часто оказываются неспособными к спариванию, к установлению коммуникаций.

Половая социализация – это процесс формирования моделей полового поведения в ходе постнатального развития.

Для социальных животных возможность спаривания самым тесным образом связана с их положением в группе, поэтому процесс социализации приобретает важнейшее значение. На протяжении постнатального онтогенеза половая социализация может представлять особый, длительный и многоэтапный процесс, где каждый последующий этап зависит от предыдущего и где имеются свои критические периоды.

Необычайно широк репертуар полового поведения у человека вследствие влияния разнообразных факторов культуры.

В процессах дифференциации, как и детерминации, особое значение имеет понятие критического периода. Каждый этап дифференциации пола происходит только в определенный период развития организма. Если такой критический период пропущен, т. е. в необходимое время запускающие сигналы отсутствовали, то последствия обычно необратимы. Поскольку разные этапы дифференцировки запускаются различными пусковыми механизмами и в разное время, то в онтогенезах наблюдаются многочисленные варианты отклонений. Особенно часто такие отклонения встречаются при формировании половых признаков и полового поведения.

Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здсь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.

1. Генетика пола.

Пол - совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

2.1. Генетические механизмы формирования пола.

Начало изучению генотипического определения пола было положено открытием американскими цитологами у насекомых различия в форме, а иногда и в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и классическими опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а в седьмой паре одна хромосома такая же, как соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая - Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи женского пола - ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек, птиц, ZZ-ZO - ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки - это диплоидные особи, а самцы (трутни) - гаплоидные. Самки развиваются из оплодотворенныз яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина - одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина - Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) - одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A - бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.


Рис.1. Вид половых хромосом человека в метафазе митоза.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон, воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины - только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов.

2.2. Наследование признаков, сцепленных с полом.

Морган и его сотрудники заметили, что наследование окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красноглазые самцы и самки. При скрещивании этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота проявления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х - хромосоме, а Y - хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой самкой из F1. В потомстве были получены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х - хромосома несет ген окраски глаз. В Y - хромосоме соответствующего локуса вообще нет. Это явление известно под названием наследования, сцепленного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери - признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой)

В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Ха Ха) с мужчиной дальтоником (Хаy) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе - гемофилию. Это заболевание появляется почти исключительно только у мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:

Генетика является одной из самых прогрессивных наук естествознания. Ее
достижения изменили естественнонаучное и во многом философское понимание
явлений жизни. Роль генетики для практики селекции и медицины очень велика.
Значение генетики для медицины будет возрастать с каждым годом, ибо генетика
касается самых сокровенных сторон биологии и физиологии человека. Благодаря
генетике, ее знаниям, разрабатываются методы лечения ряда наследственных
заболеваний, таких, как фенилкетонурия, сахарный диабет и другие.

Содержание работы

Введение. 2
1. Генетика пола. 2
2.1. Генетические механизмы формирования пола. 3
2.2. Наследование признаков, сцепленных с полом. 6
2.3. Наследование признаков, контролируемых полом. 11
3. Сцепленное наследование признаков. 11
3.1. Хромосомная теория наследственности. 12
3.2. Механизм сцепления. 13
3.3. Кроссинговер. 14
3.4. Группы сцепления и карты хромосом у человека. 18
4. Заключение. 19
5. Библиографический список. 20

Файлы: 1 файл

генетическое опред-ие пола.docx

1. Генетика пола. . . 2

2.1. Генетические механизмы формирования пола. . 3

2.2. Наследование признаков, сцепленных с полом. . 6

2.3. Наследование признаков, контролируемых полом. . 11

3. Сцепленное наследование признаков. . 11

3.1. Хромосомная теория наследственности. . 12

3.2. Механизм сцепления. . . 13

3.3. Кроссинговер. . . 14

3.4. Группы сцепления и карты хромосом у человека. . 18

4. Заключение. . . 19

5. Библиографический список. . . 20

Генетика является одной из самых прогрессивных наук естествознания. Ее

достижения изменили естественнонаучное и во многом философское понимание

явлений жизни. Роль генетики для практики селекции и медицины очень велика.

Значение генетики для медицины будет возрастать с каждым годом, ибо генетика

касается самых сокровенных сторон биологии и физиологии человека. Благодаря

генетике, ее знаниям, разрабатываются методы лечения ряда наследственных

заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здсь

медико-генетическая работа призвана облегчить страдания людей от действия

дефектных генов, полученных ими от родителей. Внедряются в практику приемы

медико-генетического консультирования и прентальной диагностики, что

позволяет предупредить развитие наследственных заболеваний.

1. Генетика пола.

Пол - совокупность признаков, по которым производится специфическое

разделение особей или клеток, основанное на морфологических и физиологических

особенностях, позволяющее осуществлять в процессе полового размножения

комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится

специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток,

называется первичными половыми признаками. Это гонады (яичники или

семенники), их выводные протоки, добавочные железы полового аппарата,

копулятивные органы. Все другие признаки, по которым один пол отличается од

другого, получили название вторичных половых признаков. К ним относят:

характер волосяного покрова, наличие и развитие молочных желез, строение

скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей

2.1. Генетические механизмы формирования пола.

Начало изучению генотипического определения пола было положено открытием

американскими цитологами у насекомых различия в форме, а иногда и в числе

хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и

классическими опытами немецкого генетика Корренса по скрещиванию однодомного

и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus

самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а

в седьмой паре одна хромосома такая же, как соответствующая хромосома самки,

а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или

гетерохромосомы, или половые хромосомы. У самки две одинаковые половые

хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая -

Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы

аутосомами. Таким образом, хромосомная формула у самки названного клопа

запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и

существует в принципе тот же аппарат для определения пола, однако

гетерозиготны в отношении реализаторов пола не мужские, а женские организмы.

Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи

женского пола - ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек,

птиц, ZZ-ZO - ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный,

широко распространен у пчел и муравьев. У этих организмов нет половых

хромосом: самки - это диплоидные особи, а самцы (трутни) - гаплоидные. Самки

развиваются из оплодотворенныз яиц, а из неоплодотворенных развиваются

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе

наблюдается типичное менделевское расщепление по половым хромосомам. каждая

яйцеклетка содержит одну Х-хромосому, а другая половина - одну Y-хромосому.

Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с

генотипом ХХ называют гомогаметным, так как у него образуются одинаковые

гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным,

так как половина гамет содержит Х-, а половина - Y-хромосому. У человека

генотипический пол данного индивидума определяют, изучая неделящиеся клетки.

Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид.

Другая, если она имеется, бывает в покоящемся состоянии в виде плотного

темно-окрашенного тельца, называемого тельцем Барра (факультативный

гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-

хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) - одно. У

человека Y-хромосома является генетически инертной, так как в ней очень мало

генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень

сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как

и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной,

а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но

все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа

XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A - бесплодных

умственно отстающих мужчин. Такие генотипы возникают в результате

нерасхождения половых хромосом, что приводит к нарушению развития (например,

синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе,

так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-

хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Рис.1. Вид половых хромосом человека в метафазе митоза.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый

H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому.

Единственной функцией его считается дифференцировка гонад. Вторичные половые

признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами.

Развитие мужских вторичных половых признаков контролирует тестостерон,

воздействующий на все клетки организма, включая клетки гонад. Мутация всего

одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к

синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в

действию тестостерона, в результате чего взрослый организм приобретает черты,

характерные для женского пола. При этом внутренние половые органы оказываются

недоразвитыми и такие особи полностью стерильные. Таким образом, в определении

и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный

и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины - только одну,

экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих

полов. Это объясняется тем, что у женщин в каждой клетке полностью

инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше.

Х-хромосома инактивируется на ранней стадии эмбрионального развития,

соответствующей времени имплантации. при этом в разных клетках отцовская и

материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-

хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи,

гетерозиготные по генам половых хромосом, представляют собой мозаики (пример,

Таким образом, пол человека представляет собой менделирующий признак,

наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой

оказывается гетерогаметный пол (XY), который скрещивается с рецессивной

гомозиготой, представленной гомогаметным полом (XX). В результате в природе

обнаруживается наследственная дифференцировка организмов на мужской и женский

пол и устойчивое сокращение во всех поколениях количественного равенства

2.2. Наследование признаков, сцепленных с полом.

Морган и его сотрудники заметили, что наследование окраски глаз у дрозофилы

зависит от пола родительских особей, несущих альтернативные аллели. Красная

окраска глаз доминирует над белой. При скрещивании красноглазого самца с

белоглазой самкой в F1, получали равное число красноглазых самок и

белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой

самкой в F1 были получены в равном числе красноглазые самцы и самки

. При скрещивании этих мух F1, между собой были получены

красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной

белоглазой самки. Тот факт, что у самцов частота проявления рецессивного

признака была выше, чем у самок, наводил на мысль, что рецессивный аллель,

определяющий белоглазость, находится в Х - хромосоме, а Y - хромосома лишена

гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного

белоглазого самца с красноглазой самкой из F1. В потомстве были

получены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо

заключил, что только Х - хромосома несет ген окраски глаз. В Y - хромосоме

соответствующего локуса вообще нет. Это явление известно под названием

наследования, сцепленного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В

Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у

особей мужского пола признаки, определяемые генами этого участка, проявляются

даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет

объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме

наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х- хромосомой, в том числе

гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение

эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких

признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома

закономерно переходит от одного пола к другому, при этом дочь наследует

Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья

наследуют признак матери, а дочери - признак отца получило, название

крисс-кросс (или крест-накрест).

Известны нарушения цветового

зрения, так называемая цветовая слепота. В основе появления этих дефектов

зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется

дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было

установлено, что цветовая слепота наследуется согласно вполне закономерным

правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за

мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная

картина перекрестного наследования. Все дочери от такого брака получат признак

отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери,

страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой)

Р Х а Х а х Х а y

F1 Х а Х а , Х а y

В том же случае, когда наоборот, отец является дальтоником, а мать имеет

нормальное зрение, все дети оказываются нормальными. В отдельных браках, где

мать и отец обладают нормальным зрением, половина сыновей может оказаться

пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще

встречается у мужчин. Э.Вильсон объяснил наследование этого признака,

предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным

(XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной

нормальной женщины (Х а Х а ) с мужчиной дальтоником (Х

а y) все дети рождаются нормальными. Однако при этом, все дочери становятся

скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить

рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе -

Особенности генетического механизма определения пола

Суть генетического механизма в определении пола

Генетическое определение пола — это определенные закономерности наследования разнообразными животными и людьми половых признаков.

Почти всех животные представлены особями двух полов: женским и мужским. По принадлежности к полу расщепление происходит в соотношении 1:1. Это значит, что количество самцов и самок в определенном биологическом виде примерно одинаковое.

Если говорить о растениях, то им свойственна двудомность: женские и мужские цветы располагаются на одном растении.

Пол представляет собой совокупность признаков, по которым особи и клетки разделяются между собой. В основе такого разделения лежат морфологические и физиологические особенности, благодаря которым в процессе полового размножения осуществляется комбинирование в потомках наследственных родительских задатков.

Пол — важная характеристика любого организма, так как от него зависит важнейшее свойство живого организма: самовоспроизведение.

Благодаря ученому Г. Менделю стало известно, что признаки в потомстве расщепляются по определенному признаку в одном случае. А именно, когда особь или родитель была гетерозиготной (то есть, имела генотип Аа) по конкретному признаку, а другая особь обладала рецессивным генотипом и была гомозиготной по гену, имевшему возможность определять половую принадлежность организма.

Т. Морган и его последователи в начале 20 века сформулировали теорию наследования пола, закрепленного генетически. Ими было установлено, что самцы и самки различаются набором хромосом. Такой прорыв дал возможность генетике как науке уйти далеко вперед и начать новый этап в развитии.

Хромосомные пары в организмах обоих полов ничем не различаются. Исключение — одна пара половых хромосом.

Одинаковые пары хромосом в генотипе называются аутосомы.

Половые хромосомы — пара хромосом, которая содержит половые признаки.

Основные механизмы хромосомного определения пола

Рассмотрим основные типы хромосомного определения пола.

Половые хромосомы содержат множество наследуемых вместе с полом признаков. Отличающаяся от других пара хромосом называется парой половых хромосом.

К примеру, у самцов и самок мух дрозофил в каждой клетке есть три пары аутосом и одна пара половых хромосом: у самок — две X-хромосомы, а у самцов — хромосомы X и Y.

Механизм определение пола будущей особи происходит в процессе оплодотворения. Все зависит от того, какая хромосома содержится в сперматозоиде: если X-хромосома, то из оплодотворенной яйцеклетки произойдет развитие самки, если Y-хромосома — самца (соотношение половых хромосом у него будет иметь вид XY).

Такое скрещивание всегда дает соотношение полов, равное 1:1.

Для самок дрозофил характерно образование яйцеклеток, содержащих только X-хромосомы. Поэтому женский пол дрозофил получил название гомогамного. У самцов образуются сперматозоиды либо с хромосомой X, либо с хромосомой Y — в равном соотношении. Поэтому мужской пол называют гетерогаметным.

Как и когда определяется пол человека?

Мужской пол у людей определяется Y-хромосомой: она передается по мужской линии от сына к отцу в процессе оплодотворения. Из этого следует, что пол будущего организма зависит от попадания в зиготу конкретной половой хромосомы отцовского организма.

В Y-хромосоме человека содержит в себе белки генов, необходимых для того, чтобы мужские половые железы и мужские половые признаки нормально развивались. Железы — источник выделения мужских половых гормонов, формирующих половую систему организма.

Механизм определения пола следующий.

Если в ходе оплодотворения сливаются яйцеклетка и сперматозоид, содержащий X-хромосому, то в клетках развивающегося зародыша не будет Y-хромосомы и, соответственно, специфических мужских белков, которые она кодирует. Поэтому в зародыше получат развитие женские половые признаки, а также яичники и половые пути.

У человека и дрозофилы гомогаметный женский пол. У этих двух видов отмечается одинаковость общей схемы наследования пола. Также совпадают и закономерности наследования половых признаков.

Некоторые виды живых организмов отличаются другим хромосомным механизмом определением пола:

  • у птиц, бабочек и рептилий самцы гомогамные: их пол обозначается в виде ZZ;
  • самки этих особей являются гетерогаметными: они обозначаются как ZW.

К слову, обозначения выше — условные: латинские буквы можно менять на другие, но важно соблюдать правильную закономерность.

В случае партеногенетического размножения ZW-видов рождаются только самцы. Так происходит у комодских варанов (varanus komodoensis).

Отдельные насекомые, такие как прямокрыле, к примеру, отличаются наличием всего одной хромосомы в половом наборе самцов. Этот половой набор обозначается как XO. Самки являются гомогаметными: генетический набор имеет вид XX.

Для пчел и муравьев вообще не свойственно хромосомное определение пола, так как половые хромосомы у них вообще отсутствуют. Для самок характерны клетки тела с диплоидным набором, а для самцов характерно развитие при помощи партеногенеза.

Для такого тапа полового размножения свойственно:

Образованные при помощи партеногенеза самцы отличаются гаплоидным набором хромосом. Сперматозоиды у самцов развиваются без мейоза, поэтому сокращение хромосомного набора бессмысленно.

У крокодилов тоже нет половых хромосом. Развивающийся при оплодотворении в яйце зародыш получает определенный пол в результате определенных температурных условий окружающей среды. Высокая температура формирует самок, а низкая — самцов.

Генетический механизм определения пола для различных организмов свой. Почти всегда он имеет определенные оригинальные особенности, зависящие от ряда факторов.

Точно также эволюционные проблемы нельзя решить в плоскости неэволюционных наук, оперирующих малыми масштабами времени. Поэтому, заранее обречены на неуспех, все попытки разгадать загадки асимметрии в рамках эмбриологии, патологии или аномалий развития, а так же попытки, решить проблему пола, как репродуктивную.
Что общего между такими разными явлениями, как женский–мужской пол, правое–левое полушария мозга, правши–левши общества, ДНК–белки, аутосомы–половые хромосомы?

Содержание

Введение.
Пол. Биологическое, социальное определение.
Определения дифференциации полов из различных источников.
Анализ проблемы пола.
Эволюционная теория пола В. А. Геодакяна
Значение дифференциации полов для эволюции человека.
Вывод.

Работа содержит 1 файл

ЗДО Федорова Ольга (1).docx

Получение экологической информации от среды

Во-первых, изменение факторов среды может элиминировать самую чувствительную к данному фактору часть особей популяции, в результате естественного отбора. Bo-вторых, изменение факторов среды, создав дискомфортные условия, может полностью или частично отстранить от размножения другую часть популяции, за счет полового отбора. В-третьих, изменившаяся среда модифицирует выжившую часть популяции, создавая морфо-физиологические, поведенческие и другие ненаследуемые адаптации, за счет нормы реакции. Например в холоде у животных укорачиваются хвосты, гуще становится мех, утолщается подкожная жировая прослойка. Человек использует пещеры, одежду, огонь.

Механизмы регуляции параметров популяции

Повышенная смертность мужского пола

В ходе онтогенеза соотношение полов у многих видов растений, животных и человека понижается. Это связано с повышенной смертностью и повреждаемостью мужских систем по сравнению с соответствующими женскими. Эта картина наблюдается почти на всех стадиях онтогенеза и на всех уровнях организации, исследуем ли мы различные виды (человек, животные или растения), разные уровни организации (особь, орган, ткань или клетка) или устойчивость к разным вредным факторам среды (низкие и высокие температуры, голод, яды, паразиты, болезни и др.).

Организменные механизмы регуляции соотношения полов.

Отрицательная обратная связь реализуется у растений через количество пыльцы, а у животных — через интенсивность половой деятельности, старение, сродство и гибель гамет. При этом, малое количество пыльцы, интенсивная половая деятельность самцов, свежая сперма и старые яйцеклетки должны приводить к увеличению рождаемости мужских особей.

Каждому потомку отец и мать передают примерно одинаковое количество генетической информации, но количество потомства, которому может передать генетическую информацию самец, несравненно больше количества, которому может передать информацию самка. Каждый самец в принципе может передать информацию всему потомству популяции, в то время как самки такой возможности лишены. То есть пропускная способность—"сечение"—канала связи самца с потомством значительно больше, чем сечение канала связи самки.

Онтогенетическая и филогенетическая пластичность

Широкая норма реакции делает женский пол более изменчивым и пластичным в онтогенезе. Она позволяет особям женского пола покинуть зоны элиминации и дискомфорта, собраться в зоне комфорта и уменьшить фенотипическую дисперсию и смертность.

Половой диморфизм по признакам

Все признаки можно разделить на три группы по степени различия между полами.

Признаки одинаковые у обоих полов

К первой группе отнесем те признаки, по которым между мужским и женским полом нет никакой разницы. К ним относятся качественные признаки, которые проявляются на уровне вида — общий для обоих полов план и принципиальное строение тела, число органов и многие другие. Половой диморфизм по этим признакам в норме отсутствует. Но он наблюдается в области патологии. У девочек чаще проявляются атавистические аномалии (возвраты или остановки развития), а у мальчиков — футуристические (поиск новых путей).

Признаки присущие только одному полу

Ко второй группе относятся признаки, встречающиеся только у одного пола. Это первичные и вторичные половые признаки: половые органы, молочные железы, борода у человека, грива у льва, а также многие хозяйственные признаки (продукция молока, яиц, икры и т. д.). Половой диморфизм по ним носит генотипический характер, поскольку в фенотипе одного пола эти признаки отсутствуют, но наследственная информация об этих признаках записана в генотипе обоих полов.

Признаки, присутствующие у обоих полов

Третья группа признаков находится посередине между первой (половой диморфизм отсутствует) и второй группой (половой диморфизм носит абсолютный характер). К ней относятся признаки, которые встречаются и у мужского пола, и у женского, но распределены в популяции с разной частотой и степенью выраженности. Это количественные признаки: рост, вес, размеры и пропорции, многие морфофизиологические и этолого-психологические признаки.

Эволюционная теория пола — правила

Экологическое правило дифференциации полов

В оптимальных, стабильных условиях среды, когда нет необходимости в высокой эволюционной пластичности, основные характеристики уменьшаются и имеют минимальное значение, то есть падает рождаемость (одновременно и смертность) мальчиков, сокращается их разнообразие и разница между мужским и женским полом. Все это снижает эволюционную пластичность популяции

Правило критерия эволюции признака

Признак эволюционирует если по нему существует половой диморфизм и стабилен когда половой диморфизм отсутствует.

Филогенетическое правило полового диморфизма

Если по какому-либо признаку существует генотипический популяционный половой диморфизм, то этот признак эволюционирует от женской формы к мужской.

Филогенетическое правило полового диморфизма

Филогенетическое правило дисперсии полов

Если дисперсия признака у мужского пола больше, чем у женского, эволюция находится в дивергентной фазе, если дисперсии полов равны, фаза эволюции стационарная, если дисперсия больше у женского пола, то фаза конвергентная.

Онтогенетическое правило полового диморфизма

“Если по какому-либо признаку существует популяционный половой диморфизм, то в онтогенезе этот признак меняется, как правило, от женской формы к мужской”.

Основная статья: Онтогенетическое правило полового диморфизма

Филогенетическое правило реципрокных эффектов

Тератологическое правило полового диморфизма

Основная статья: Тератологическое правило полового диморфизма

Если имеется система связанных между собой явлений, в которых можно выделить ориентированные во времени прошлую и будущую формы, то существует соответствие (более тесная связь) между всеми прошлыми формами, с одной стороны, и между будущими—с другой.

5. Значение дифференциации полов для эволюции человека.

Филогенетическое и онтогенетическое правила полового диморфизма, связывающие явление полового диморфизма с динамикой признака в филогенезе и онтогенезе, дают возможность, зная одно явление, предсказать два других. Известно, что у далеких филогенетических предшественников человека глаза были расположены латерально, их зрительные поля не перекрывались и каждый глаз был связан только с противоположным полушарием мозга — контралатерально Применение тех же правил к обонятельному рецептору человека, приводит к выводу, что в филогенезе обоняние человека, в отличие от зрения, ухудшается. Поскольку, как было показано, у людей с возрастом происходит атрофия обонятельных волокон и их количество в обонятельном нерве неуклонно уменьшается, то можно предсказать, что их число у женщин должно быть больше, чем у мужчин.

Читайте также: