Эволюционная роль мутаций 9 класс доклад

Обновлено: 17.05.2024

Благодаря изучению генетических процессов в популяции живых организмов, эволюционная теория получила новый толчок и дальнейшее развитие. Велик вклад в популяционную генетику русского учёного С. Четверикова. Он обратил внимание на насыщенность природных популяций рецессивными мутациями, а так же на колебания частоты генов в популяциях, в зависимости от действия факторов внешней среды и обосновал положение о том, что эти два явления – ключ к пониманию процессов эволюции.

Действительно, мутационный процесс – постоянно действующий источник наследственной изменчивости. Гены мутируют с определённой частотой. Подсчитано, что в среднем одна гамета из 10 тыс. – 1 млн. гамет несёт вновь возникшую мутацию в определённом локусе. Так как одновременно мутируют многие гаметы, то 10-15% гамет несут те или иные мутационные аллели. Поэтому природные популяции насыщены самыми разнообразными мутациями. Благодаря комбинативной изменчивости, мутации могут широко распространяться в популяциях. Большинство организмов гетерозиготно по многим генам. Можно было бы предположить, что в результате полового размножения среди потомства будут постоянно выделяться гомозиготные организмы, а доля гетерозигот должна неуклонно падать. Однако этого не происходит. Дело в том, что в подавляющем большинстве случаев гетерозиготные организмы лучше приспособлены, чем гомозиготные.

В примере с бабочкой, березовой пяденицей, казалось бы, светлоокрашенных бабочек, гомозиготных по рецессивному аллелю (аа), обитающих в лесу с тёмными стволами берёз, быстро должны уничтожить враги и единственной формой в данных условиях обитания должны стать тёмноокрашенные бабочки, гомозиготные по доминантному аллелю (АА). Но на протяжении длительного времени в закопчённых берёзовых лесах Юга Англии постоянно встречаются светлые бабочки берёзовой пяденицы. Оказалось, что гусеницы, гомозиготные по доминантному аллелю, плохо усваивают листья берёз, покрытые гарью и копотью, а гетерозиготные гусеницы растут на этом корме гораздо лучше. Следовательно, большая биохимическая гибкость гетерозиготных организмов приводит к их лучшему выживанию и отбор действует в пользу гетерозигот.

Таким образом, хотя большинство мутаций в данных конкретных условиях оказываются вредным и в гомозиготном состоянии мутации, как правило, снижают жизнеспособность особей, они сохраняются в популяциях благодаря отбору в пользу гетерозигот.

Для понимания эволюционных преобразований важно помнить, что мутации, вредные в одних условиях, могут повышать жизнеспособность в других условиях среды. Помимо приведённых примеров можно указать на следующий. Мутация, обуславливающая недоразвитие или полное отсутствие крыльев у насекомых, безусловно, вредна в обычных условиях и бескрылые особи быстро вытесняются нормальными. Но на океанических просторах и горных перевалах, где дуют сильные ветры, такие насекомые имеют преимущество перед особями с нормально развитыми крыльями.

Таким образом, мутационный процесс – источник резерва наследственной изменчивости популяций. Поддерживая высокую степень генетического разнообразия популяций, он создаёт основу для действия естественного отбора.

Генетические процессы в популяциях

В разных популяциях одного вида, частота мутационных генов неодинакова. Практически нет двух популяций с совершенной частотой встречаемости мутационных признаков. Эти различия могут быть обусловлены тем, что популяции обитают в неодинаковых условиях внешней среды. Направленное изменение частоты генов в популяциях обусловлено действием естественного отбора. Но и близко расположенные, соседние популяции могут отличаться друг от друга столь же значительно, как и далеко расположенные. Это объясняется тем, что в популяциях ряд процессов приводит к ненаправленному случайному изменению частоты генов, или, другими словами, их генетической структуры.

Например, при миграции животных или растений, на новом месте обитания появляется незначительная часть исходной популяции. Генофонд вновь образованной популяции неизбежно меньше генофонда родительской популяции, и частота генов в ней будет значительно отличаться от частоты генов исходной популяции. Гены, до того редко встречающиеся, вследствие полового размножения быстро распространяются среди новой популяции. В то же время широко распространённые гены могут отсутствовать, если их не было в генотипе основателей новой популяции.

Другой пример. Природные катастрофы – лесные или степные пожары, наводнения и т.п. – вызывают массовую, неизбежную гибель живых организмов, особенно малоподвижных форм: растений, грибов, моллюсков, земноводных и т.д. Особи, избежавшие гибели, остаются в живых благодаря чистой случайности. В популяции, пережившей катастрофу, происходит понижение численности. При этом частоты аллелей будут иными, чем в исходной популяции. Вслед за спадом численности начинается массовое размножение, начало которому даёт оставшаяся, немногочисленная группа. Генетический состав этой группы определяет генетическую структуру всей популяции в период её расцвета. При этом некоторые мутации могут совсем исчезнуть, а концентрация других может случайно резко повыситься.

К изменениям частоты генов в популяциях приводит так же ограничение обмена генами между ними, вследствие пространственной изоляции. Реки служат преградой для сухопутных видов, горы и возвышения изолируют равнинные популяции. Каждая из изолированных популяций обладает специфическими особенностями, связанными с условиями жизни. Важное следствие изоляции – близкородственное скрещивание – инбридинг. Благодаря инбридингу рецессивные аллели, распространяясь в популяции, проявляются в гомозиготном состоянии, что снижает жизнеспособность организмов. В человеческих популяциях, изоляты, с высокой степенью инбридинга встречаются в горных районах и на островах. Сохранила ещё значение изоляция отдельных групп населения по кастовым, религиозным, расовым и другим причинам.

Эволюционное значение различных форм изоляции состоит в том, что она закрепляет и усиливает генетические различия между популяциями, а так же в том, что разделённые части популяции или вида подвергаются неодинаковому давлению отбора.

Таким образом, изменения частоты генов, вызванные теми или иными факторами внешней среды, служат основой возникновения различий между популяциями и в дальнейшем обусловливают преобразование их в новые виды. Поэтому изменения популяций в ходе естественного отбора называют микроэволюцией.

1. Работа С. Четверикова в области популяционной генетики.

2. Эволюционная роль мутаций.

3. Мутационный процесс – источник резерва наследственной изменчивости популяций.

Нажмите, чтобы узнать подробности

Мутация – изменение наследственного аппарата клетки, затрагивающие целые хромосомы или их части.

Изучением природных мутаций занимался отечественный ученый С.С.Четвериков и голландский ботаник Де Фриз.

Мутация – непрерывный, случайны процесс, но не беспричинный!

Воздействия, которые вызывают мутации называются мутагенами. Основными мутагенами являются: все виды излучений, химические вещества, вирусы, бактерии, чрезмерная высокая или низкая температура т др.

Мутации бывают: вредные, нейтральные и вредные. Одна и та же мутация может поменять свое значение при изменившихся условиях. Большинство мутаций вредны, но редко возникающие полезные мутации являются исходным материалом для эволюции.

Для всех организмов в естественном состоянии характерно свободное скрещивание – стабилизирующий аппарат генотипов в популяции. (Генотип – совокупность генов организма).

Ген – участок молекулы ДНК, содержащий наследственную информацию. Ген имеет два аллеля (аллель – конкретное состояние гена): доминантный ген – А, рецессивный ген – а. При слиянии двух клеток образуется зигота, если она имеет два одинаковых аллеля гена, то она называется гомозигота (АА, аа), если разные аллелли – гетерозигота (Аа).

Возникающие рецессивные мутации уходят в гетерозиготное состояние и незаметны. Но каждый вид (популяция), как губка, насыщается такими мутациями. Таким образом имеет место скрытая изменчивость.

Частота мутаций 10 -4 , 10 -8 .

У каждого организма количество генов велико, следовательно вероятность встречаемости мутации больше, количество особей в популяции велико. Таким образом, можно говорить о том, что мутация – обычное явление.

Поскольку генетическое разнообразие является результатов эволюции, то мутация необходима для эволюционного процесса.

Эволюционная роль мутаций

Мутация – изменение наследственного аппарата клетки, затрагивающие целые хромосомы или их части.

Изучением природных мутаций занимался отечественный ученый С.С.Четвериков и голландский ботаник Де Фриз.

Мутация – непрерывный, случайны процесс, но не беспричинный!

Воздействия, которые вызывают мутации называются мутагенами. Основными мутагенами являются: все виды излучений, химические вещества, вирусы, бактерии, чрезмерная высокая или низкая температура т др.

Мутации бывают: вредные, нейтральные и вредные. Одна и та же мутация может поменять свое значение при изменившихся условиях. Большинство мутаций вредны, но редко возникающие полезные мутации являются исходным материалом для эволюции.

Для всех организмов в естественном состоянии характерно свободное скрещивание – стабилизирующий аппарат генотипов в популяции. (Генотип – совокупность генов организма).

Ген – участок молекулы ДНК, содержащий наследственную информацию. Ген имеет два аллеля (аллель – конкретное состояние гена): доминантный ген – А, рецессивный ген – а. При слиянии двух клеток образуется зигота, если она имеет два одинаковых аллеля гена, то она называется гомозигота (АА, аа), если разные аллелли – гетерозигота (Аа).

Возникающие рецессивные мутации уходят в гетерозиготное состояние и незаметны. Но каждый вид (популяция), как губка, насыщается такими мутациями. Таким образом имеет место скрытая изменчивость.

Частота мутаций 10 -4 , 10 -8 .

У каждого организма количество генов велико, следовательно вероятность встречаемости мутации больше, количество особей в популяции велико. Таким образом, можно говорить о том, что мутация – обычное явление.

Поскольку генетическое разнообразие является результатов эволюции, то мутация необходима для эволюционного процесса.

Последовательность событий при видообразовании

Изменение среды обитания или положения вида (популяции) в ней

Обострение борьбы за существование между особями





Изменение направлений естественного отбора соответственно новым условиям борьбы за существование

Отбор особей, наслед. изменения которых позволяют им осваивать новые территории или местообитание



Географическое видообразование




Экологическое видообразование

Расселение на новой территории

Освоение новых экологических ниш в пределах старого ареала

Географическое изоляция между популяциями





Возникновение новых видов

Отбор в новых условиях среды

Отбор в новых условиях среды

Возникновение новых видов









Последовательность событий при видообразовании

Изменение среды обитания или положения вида (популяции) в ней

Обострение борьбы за существование между особями





Изменение направлений естественного отбора соответственно новым условиям борьбы за существование

Отбор особей, наслед. изменения которых позволяют им осваивать новые территории или местообитание



Географическое видообразование




Экологическое видообразование

Расселение на новой территории

Освоение новых экологических ниш в пределах старого ареала

Географическое изоляция между популяциями





Возникновение новых видов

Отбор в новых условиях среды

Отбор в новых условиях среды

Возникновение новых видов










-75%

Мутацией называют стойкие изменения в генотипе, которые происходят из-за влияния внешних и внутренних факторов. Родоначальником термина является Гуго де Фриз — голландский ботаник и генетик. Процесс, когда появляются мутации, именуется мутагенезом. В сегодняшней статье мы затронем тему мутирования и поговорим о том, какова роль мутации в процессе эволюции.


Причины явления

Процесс мутации характеризуется двумя качествами — спонтанностью и индуцированностью. Появление спонтанной мутации характеризуется самопроизвольностью и встречается на любой стадии развития организма. Что касается окружающей среды, то она должна быть естественной.

Индуцированный вид мутации является наследственным изменением генома, которое происходит вследствие воздействия различных мутагенов. Организмы помещаются либо в искусственно созданные (экспериментальные), либо в неблагоприятные окружающие условия.

Живые клетки воспринимают мутагенез как естественный для них процесс. К основным процессам, ответственным за мутацию, относят: репликацию и нарушенность восстановления ДНК, транскрипционный процесс и генетическую рекомбинацию.


Мутагенез и его модели

В объяснении и понимании природы и механизмов появления мутаций помогают специальные научные подходы. Полимеразные изменения основываются на теории о прямой и единственной зависимости мутаций с ошибками ДНК-полимера. В таутомерных моделях мутагенеза, предложенных двумя известными биологами, впервые была затронута мысль о том, что основной пласт мутаций заключается в возможности ДНК-оснований располагаться в разных таутомерных формах.

Ранняя классификация мутаций

Генетиком Меллером была создана классификация мутаций, основанная на видах изменения функционирования генов. Как результат появились следующий виды:

  1. Аморфный. Во время мутирования ген теряет практически все свои функции. Примером мутации могут служить изменения у дрозофилы.
  2. Гипоморфный. Изменившиеся аллели продолжают действовать по тому же сценарию, что и дикие. Синтезирование белкового продукта проводится в меньшем количестве.
  3. Антиморфный. Изменение мутантного признака. Примерами мутации стали некоторые зерна кукурузы - окрашиваются в бурый цвет, а не в пурпурный.
  4. Неоморфный.


Поздняя классификация мутаций

В современных научных справочниках есть упоминание о формальной классификации, которая отталкивается от изменений, проходящих в различных структурах. Исходя из этого разделения, выделяются следующие мутации:

  1. Геномные.
  2. Хромосомные.
  3. Генные.

С геномными мутациями связаны изменения хромосом, общее количество которых не соотносится с галоидным набором.

Хромосомным мутациям приписывают перестройку отдельных хромосом в большом количестве. Генетический материал в таком случае теряет какую-то часть или, наоборот, удваивает ее.

Что касается генной мутации, то она лишь незначительно изменяет ДНК-структуру гена, в отличие от других видов, однако ее возникновение случается гораздо чаще.

Внутри генного вида выделяется еще один подвид, именуемый точечной мутацией. В ней одно азотистое основание заменяется на другое.

Эволюционная роль мутации

Бывает и такое, что вредность мутаций постепенно заменяется на полезность. Толчком для таких изменений становятся постоянно меняющиеся условия существования организмов. Так какую роль играют мутации?


Возьмем в пример естественный отбор — известный эволюционный процесс, во многом зависящий от изменчивости. Рассмотрим эволюционную роль мутации на примере мутантов-меланистов (особей с темной окраской), которые были обнаружены английскими учеными 14 века при изучении березовых пядениц. Помимо бабочек, окрашенных в типично светлые цвета, были найдены и другие особи, чей окрас был гораздо темнее. Причиной такого сильного отличия стал мутировавший ген.

Дело в том, что обычным местом обитания для таких бабочек являются деревья, на стволах которых обильно растет лишайник. Царившая в ранние годы промышленная революция вместе с сильным загрязнением атмосферных слоев привели к гибели лишайников. На когда-то светлых стволах появилась копоть, которая мешала естественной маскировке березовой пяденицы. Все это привело к тому, что особи, чьим место обитания были промышленные районы, изменили цвет своего морфа со светлого на темный. Такая эволюционная роль мутации помогла выжить многим бабочкам, в то время как их не очень удачные светлые сородичи стали жертвами нападений хищных птиц.

Подобные изменения происходят у самых разнообразных видов по всему миру. Появление таких полезных признаков, являющихся основой эволюционной роли мутации, приводит к тому, что естественный отбор дает начало новым подвидам и видам среди живых организмов. Мутирование происходит постоянно, потому что это естественная способность наших генов.

Еще больше информации о мутации вы найдете в учебниках по биологии и специальной научной литературе.

Изменение генома, которое наследуется потомками организма или клетки, называется мутацией. Впервые этот термин использовал ученый Гуго де Фриз в 1901 году. Хотя сейчас такое явление считается отклонением от нормальной структуры ДНК, в процессе эволюции оно играло важную роль, поскольку благодаря ему животные приспосабливались к новым условиям обитания.

  • Причины появления
  • Связь с процессами в ДНК
  • Модели мутагенеза
  • Принятая классификация
  • Последствия для организма
  • Роль в эволюции

Классификация и роль мутаций в эволюции

Причины появления

Геномы животных и человека относительно стабильны, что сохраняет видовую структуру и возможность нормального развития. Для поддержания этого процесса в клетках работают репарационные системы, они исправляют нарушения в цепи ДНК. Но если бы изменения вообще не могли сохраняться, то живые организмы не приспособились бы к новым условиям обитания. Процесс эволюции остановился бы. Большое значение для создания должного уровня наследственной изменчивости имеют мутации.

Хуго де Фриз

  • формы константы;
  • возможность вторичного возникновения;
  • разделение на полезные и вредные;
  • зависимость от количества исследованных видов.

Основа мутации — это изменения ДНК или хромосомы, передающиеся по наследству. Изменчивость универсальна — она наблюдается у животных, людей, растений, бактерий, вирусов.

Существует два типа мутаций — индуцированные и спонтанные. В первом случае изменения возникают из-за наследственности, а у предков они появлялись из-за неблагоприятных условий окружающей среды или в результате экспериментов. Спонтанные зарождаются самопроизвольно в течение всей жизни даже при нормальных условиях обитания. Они встречаются с довольно маленькой частотой на нуклеотид за клеточную генерацию.

Связь с процессами в ДНК

Мутации возникают периодически из-за процессов, которые осуществляются в клетках живых организмов. Основные из них:

  • репликация;
  • рекомбинация;
  • репарация.

Репликация ДНК

При репликации происходят спонтанные изменения нуклеотидов. К примеру, при дезаминировании цитониза в структуру ДНК напротив гуанина включается урацил, то есть вместо канонической пары Ц-Г образуется У-Г. В новую цепь добавляется аденин, появляется У-А, а после следующей репликации — Т-А. В этом случае наблюдается транзиция — так называют точечную замену одного пиримидина или пурина другим.

Если мутация связана с рекомбинацией, то она образована на основе неравного кроссинговера. Это происходит только в тех случаях, когда хромосома содержит сразу несколько дуплицированных генных копий, которые сохранили похожую нуклеотидную последовательность. В итоге в одной рекомбинантной хромосоме происходит делеция, а в другой — дупликация.

Если нарушения появились в генах, которые генерируют белки, то они приводят к увеличению или снижению числа других мутирующих частиц.

Модели мутагенеза

Модели мутагенеза

Ученые пытаются обосновать природу и особенности появления мутаций. Сегодня в исследованиях используется полимеразная модель, но есть и иные виды. Характеристика основной модели базируется на единственной причине образования отклонений — случайных ошибках ДНК-полимеразы. Биологи Уотсон и Крик предложили еще одну модель — таутомерную. Они считали мутацию обыкновенным физико-химическим явлением.

Полимеразную модель впервые выстроил Бреслер. Он предположил, что единственная причина мутаций — это ошибки ДНК-полимераз. В цепи они иногда встраивают напротив фотодимеров некомплементарные нуклеотиды. На основе этих утверждений было создано А-правило. Оно звучит так: ДНК-полимераза добавляет аденины напротив поврежденных участков.

Таутомерная модель основывается на работах других ученых. По мнению Крика и Уотсона, основания ДНК-структуры при неблагоприятных условиях переходят в неканонические виды, которые изменяют характер их спаривания. Кристаллы нуклеиновых кислот ученые облучали ультрафиолетом и выявили редкие таутомерные соединения цитозина. Этот опыт повторялся неоднократно, но все же аргументы и эксперименты Уотсона с Криком многие биологи ставили под сомнение.

Ученый Полтев вместе с другими авторами определил ещё одну модель мутагенеза. Он выявил молекулярный механизм, позволяющий распознать пары оснований нуклеиновых кислот с помощью полимеразы. В итоге выяснилось, что отклонения в ДНК вызваны дезаминированием 5-метилцитозином, а это приводит к транзиции от цитозина к тимину.

Принятая классификация

По разным параметрам выделяют определенные классификации мутаций. Ученый Меллер выделял их по особенностям изменения генов на аморфные, гипоморфные и антиморфные. При первых синтезируется меньше белка, вторые характеризуются полной потерей генной функции, а при третьих изменяется признак отклонения. Но современная классификация отличается. Мутации бывают разными:

  • геномными;
  • хромосомными;
  • генными.

 Ученый Меллер

Геномные делятся на полиплоидизацию, то есть образование клеток с двумя и более наборами хромосом, и анеуплоидию — изменение их количества. При хромосомных мутациях перестраиваются отдельные участки цепи. Тогда можно наблюдать потерю или удвоение генов, изменение сегментов в структурной таблице ДНК, перенос части генетического материала с одной клетки на другую. Иногда объединяются целые хромосомы.

На генном уровне изменения не так заметны, как при других видах мутации, но встречаются такие отклонения чаще. Обычно происходят делеции, вставки или замены нуклеотидов, дупликации и инверсии других частей цепи. Если изменяется только одна составляющая, то говорят о точечном виде. По характеру действия гена мутанта выделяют еще три вида отклонений:

  • физиологические;
  • морфологические;
  • биохимические.

Первый тип понижает жизнеспособность организма, приводит к серьезным болезням и даже к летальному исходу. Примерами можно назвать гемофилию у человека, дыхательные функции у дрожжей, хлорофилльные мутации у растений.

Коротконогие животные,

Морфологические отклонения заставляют изменяться органы, затормаживают рост. В результате получаются карликовые растения и коротконогие животные, люди с брахидактилией. Биохимические мутации нарушают синтез веществ из-за отсутствия необходимого фермента. Организмы, страдающие от этого вида, могут жить только в той среде, где есть подобное вещество.

Также разделяют мутации в биологии и медицине на соматические и генеративные. Первые не наследуются организмами, поэтому не имеют никакой ценности для эволюции. Вторые начинают появляться на этапе развития клеток половой системы. Чем раньше они разовьются, тем больше вероятность того, что отклонения передадутся потомству.

Практически все мутации являются рецессивными. Нарушения в ДНК считаются вредными, а подобный характер позволяет им сохраняться в гетерозиготном состоянии. Проявляются они только в случаях, когда благотворно влияют на организм.

Последствия для организма

Обычно мутации отрицательно сказываются на многоклеточном организме. Они приводят к отмиранию клеток — апоптозу. Если внутренние и внешние защитные механизмы не смогли обнаружить отклонение, то ген получат все потомки, что полностью изменит функционирование пораженных частей.

Мутации в соматических клетках

Мутации в соматических клетках часто приводят к образованию злокачественных опухолей. Так возникают фибромы, наросты на мягких тканях, онкология. Нарушения в половых структурах вызывают изменения у организмов-потомков.

Если условия проживания стабильны или изменяются практически незаметно, то у большинства существ генотип стремится к оптимальному уровню. Мутации в этом случае нарушают функции организма, снижают его иммунитет и способность приспосабливаться к новой окружающей среде. Но в редких случаях свойства отклонений оказываются полезными — они позволяют человеку или животному быстрее адаптироваться.

Роль в эволюции

Мутация считается хорошим фактором при эволюционном отборе. Если условия существенно изменились, то вредные ранее отклонения могут стать полезными. При изучении березовых пядениц в Англии XIX века ученые обнаружили меланистов — темноокрашенных бабочек. Такую расцветку они приобрели из-за мутации гена. Светлые крылья позволяют им прятаться на стволах деревьев, покрытых лишайниками.

Из-за развития промышленности и выбросов загрязнений в атмосферу березки покрылись копотью и стали темными. Мутировавшие бабочки легко прятались на их стволах от птиц, ведь в районах, над которыми держится смог, хищники активно выедали светлых пядениц.

Мутировавшие бабочки

Если мутация касается пассивных структур ДНК, то в фенотипе она не проявляется. Но ее можно обнаружить с помощью генного анализа. Так как отклонения обычно происходят по естественным причинам, то, согласно исследованиям, их частота должна быть почти постоянной.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Эволюционная роль мутаций

Описание презентации по отдельным слайдам:

Эволюционная роль мутаций

Эволюционная роль мутаций

В настоящее время на нашей планете обитает несколько миллионов видов живых ор.

В настоящее время на нашей планете обитает несколько миллионов видов живых организмов, каждый из которых по-своему уникален.

Во все века человечество пыталось найти ответы на вопросы: Каким образом сфор.

Во все века человечество пыталось найти ответы на вопросы: Каким образом сформировалось это колоссальное разнообразие? Почему каждый вид оптимально приспособлен к условиям своего обитания? Чем отличаются одни виды от других? Почему одни виды процветают, а другие вымирают и исчезают с лица Земли?

Дайте определение понятий: Эволюция - Популяция - Вид -

Дайте определение понятий: Эволюция - Популяция - Вид -

1. Элементарная единица эволюции Популяция 2. Элементарный эволюционный матер.

1. Элементарная единица эволюцииПопуляция 2. Элементарный эволюционный материалМутации – генотипическое разнообразие в популяциях 3. Элементарное эволюционное явлениеДлительное и направленное изменение генофонда 4.Элементарные эволюционные факторыНаследственная изменчивость, борьба за существование, естественный отбор – направляющий фактор 5. Элементарный объект отбораОтдельная особь с определенным фенотипом

С.С. Четвериков Популяции подобно губке, впитывают рецессивные мутации, остав.

С.С. Четвериков Популяции подобно губке, впитывают рецессивные мутации, оставаясь при этом фенотипически однородными. Существование такого открытого резерва наследственной изменчивости создает возможность для эволюционных преобразований популяции под воздействием естественного отбора. Занимался изучением природных мутаций, изменений наследственных свойств организма. Внес значительный вклад в развитие популяционной генетики.

Единица наследственности - ген Ген – это участок молекулы ДНК, содержащий нас.

Единица наследственности - ген Ген – это участок молекулы ДНК, содержащий наследственную информацию.

Мутационный процесс – постоянно действующий источник наследственной изменчиво.

Мутационный процесс – постоянно действующий источник наследственной изменчивости. Гены мутируют с определенной частотой. В процессе полового размножения мутации могут широко распространяться в популяциях. Большинство организмов гетерозиготно по многим генам, то есть в его клетках гомологичные хромосомы несут разные формы одного и того же гена. Гетерозиготные организмы лучше приспособлены, чем гомозиготные.

Гусеницы бабочки березовой пяденицы

Гусеницы бабочки березовой пяденицы

Мутации, вредные в одних условиях, могут повышать жизнеспособность в других у.

Мутации, вредные в одних условиях, могут повышать жизнеспособность в других условиях.

Мутационный процесс – источник резерва наследственной изменчивости популяций.

Мутационный процесс – источник резерва наследственной изменчивости популяций. Поддерживая высокую степень генетического разнообразия популяций, он создает основу для действия естественного отбора. В разных популяциях одного вида частота мутантных генов неодинакова. Нет популяций с совершенно одинаковой частотой встречаемости мутантных признаков. Эти различия могут быть обусловлены тем, что популяции обитают в неодинаковых условиях внешней среды. Направленное изменение частоты генов в популяциях обусловлено действием естественного отбора.

Волны жизни колебания численности особей в популяции. Термин введён русским б.

Волны жизни колебания численности особей в популяции. Термин введён русским биологом С. С. Четвериковым в 1915 году. Подобные колебания численности могут быть сезонными или несезонными, повторяющимися через различные промежутки времени; обычно они тем длиннее, чем продолжительнее цикл развития организмов. Впоследствии термин был заменён понятием популяционные волны (один из 4 элементарных эволюционных факторов — мутационный процесс, популяционные волны, изоляция и естественный отбор). Основное значение сводится к случайным изменениям концентраций различных мутаций, содержащихся в популяциях, а также к ослаблению давления отбора при увеличении и его усилению при уменьшении численности особей в популяции. Под термином иногда подразумевают этапы развития растительного и животного мира, примерно соответствующие смене геологических циклов.

Дрейф генов, процессы, определяющие изменение частоты генов, или частоты мута.

Дрейф генов, процессы, определяющие изменение частоты генов, или частоты мутантных форм в популяциях. Термин предложен американским генетиком С. Райтом (1931).

Можно ли считать все причины, вызывающие гибель организмов, естественным отбо.

Можно ли считать все причины, вызывающие гибель организмов, естественным отбором? Естественный отбор не является единственной причиной гибели организмов. Смерть животного может быть следствием случайного события (лесного пожара, наводнения или другого стихийного бедствия, которое не оставляет шансов на выживание).

Эволюционные факторы Направляющие эволюционный процесс Ненаправляющие эволюци.

Эволюционные факторы Направляющие эволюционный процесс Ненаправляющие эволюционный процесс Естественный отбор (на фоне борьбы за существование) Наследственная изменчивость. - Дрейф генов. - Волны жизни. - Изоляция. Действует в популяции, изменяя ее генофонд Возможный результат: возникновение новых популяций, подвидов, видов (видообразование)

Совокупность эволюционных процессов, протекающих в популяциях вида и приводящ.

Совокупность эволюционных процессов, протекающих в популяциях вида и приводящих к изменению генофондов этих популяций и образованию новых подвидов, видов, называется микроэволюцией. Эволюция на уровне систематических единиц выше вида, протекающая миллионы лет и недоступная непосредственному изучению, называется макроэволюцией. Эти два процесса едины.


Прочитайте текст учебника на стр. 57 – 58. Рассмотрите рисунок на стр. 34. Ус.

Прочитайте текст учебника на стр. 57 – 58. Рассмотрите рисунок на стр. 34. Устно ответьте на вопросы на стр. 58

Домашнее задание: Стр. 55-58 Привести примеры ароморфозов, идиоадаптаций и де.

Домашнее задание: Стр. 55-58 Привести примеры ароморфозов, идиоадаптаций и дегенераций. Повторить определения вид, популяция, эволюция, макроэволюция, микроэволюция.

Читайте также: