Электрические машины постоянного тока доклад

Обновлено: 09.05.2024

В современной электроэнергетике используется преимущественно переменный ток, но достаточно широко используется и постоянный. Это объясняется теми достоинствами постоянного тока, которые сделали его незаменимым при решении многих практических задач. Так, среди электрических машин двигатели постоянного тока занимают особое положение. Двигатели постоянного тока позволяют осуществить плавное регулирование скорости вращения в любых пределах, создавая при этом большой пусковой момент. Это свойство двигателей постоянного тока делает их незаменимыми в качестве тяговых двигателей городского и железнодорожного транспорта (трамвай, троллейбус, метро, электровоз, тепловоз). Двигатели постоянного тока используются также в электроприводе некоторых металлорежущих станков, прокатных станов, подъемно-транспортных машин, экскаваторов. Постоянный ток используется также для питания электролитических ванн, электромагнитов различного назначения, аппаратуры управления и контроля, для зарядки аккумуляторов. Это питание осуществляется от генераторов постоянного тока, приводимых в действие, как правило, асинхронными и синхронными двигателями переменного тока. Однако генераторы часто заменяют выпрямителями (на полупроводниковых диодах и тиристорах) и постоянный ток получают из переменного.

Машины постоянного тока входят также в электрооборудование автомобилей, судов, самолетов и ракет.

Принцип работы и устройство генератора постоянного тока. типы обмоток якоря

Принцип работы генератора постоянного тока основан на возникновении ЭДС в рамке, вращающейся в магнитном поле (Рис.6-1, а). За один оборот в каждой рабочей (активной) части рамки ЭДС дважды меняет знак. Чтобы ток во внешней цепи имел только одно направление (постоянное), применяют коллектор - два полукольца, соединенные с концами рамки, а рамку соединяют с внешней цепью через вращающийся коллектор и неподвижные щетки. Как только активная сторона рамки начнет пересекать линии магнитной индукции в противоположном направлении по сравнению предыдущим, соединенное с этой стороной полукольцо коллектора начнет соприкасаться с другой щеткой. Благодаря такому устройству направление тока во внешней цепи остается неизменным, хотя его значение изменяется (пульсирует, Рис.6-1, б).

Устройство промышленного генератора постоянного тока изображено на рисунке 6-2. На внутренней поверхности станины I , изготовленной из цельного чугунного литья, жестко укреплены главные полюсы 2 с обмотками возбуждения и дополнительные полюсы с обмотками для компенсации ЭДС самоиндукции и реакции якоря.

В большинстве случаев электромагниты питаются от самого генератора. Внутри станины помещается якорь 3, представляющий собой металлический цилиндр, набранный из штампованных пластин электротехнической стали. В продольных пазах на поверхности якоря размещается обмотка якоря, состоящая из соединенных между собой секций. Для сглаживания пульсаций ЭДС и тока обмотка якоря равномерно размещена по всей поверхности, магнитное сопротивление между полюсами уменьшается благодаря стальному сердечнику якоря. Выводы обмоток припаивают к изолированным друг от друга и от корпуса машины медным пластинам коллектора 4, причем конец одной секции и начало следующей припаивают к одной и той же пластине. Коллектор жестко укреплен на валу якоря, на этом же валу крепят и вентилятор. Вал якоря помещается в подшипники подшипниковых щитов 5, укрепляемых на боковых сторонах станины. Между якорем и полюсами статора образуется незначительный воздушный зазор, благодаря которому якорь может свободно вращаться. На цилиндрическую поверхность коллектора накладываются угольные щетки, вставленные в щеткодержатели 6. Для уменьшения сопротивления щетки часто прессуются из смеси угольного и медного порошка.

Машины постоянного тока часто делают многополюсными (Рис.6-3), при этом в каждой секции обмотки за один оборот значение и знак ЭДС изменяются столько раз, сколько полюсов. Магнитная цепь такой машины более сложная, при этом число пар щеток равно числу пар полюсов, а щетки одинаковой полярности соединяют вместе.

Принципы работы генератора постоянного тока рассмотрим более подробно.

Если якорь изготовить в виде кольца и на нем разместить обмотку в виде замкнутого тороида, то такой якорь называют кольцевым, а обмотку - спиральной. При вращении этого якоря в магнитном поле в витках его обмотки будут индуцироваться ЭДС (Рис.6-4, а). Оказывается, что в витках одной половины обмотки ЭДС имеет один знак, в витках другой половины - противоположный.

Если витки равномерно распределены по поверхности якоря, то тока в обмотке не будет, так как действие ЭДС обеих половин взаимно компенсируется. Если, например, у витков с внешней стороны частично снять изоляцию и с двух противоположных сторон наложить две неподвижные щетки (а и Ь) так, чтобы при вращении якоря они могли касаться каждого витка, то легко заметить, что вся обмотка как бы разделится пополам и при вращении якоря витки одной половины обмотки будут постепенно переходить в другую, при этом число витков каждой половины, полярность и значение ЭДС будут оставаться низменными. Если теперь подключить нагрузку к щеткам, то во внешней цепи и в каждой половине обмотки установится постоянный ток.

Очевидно, что для более полного использования ЭДС обмотки щетки надо подключать в тех точках, где ЭДС не наводится. Прямая, проходящая через две такие точки, называется геометрической нейтралью (ГН). При таком расположении щеток обмотка оказывается разделенной на две параллельные ветви, соединенные между собой и внешней цепью щетками. Если щетки сместить относительно геометрической нейтрали, то в части витков каждой параллельной ветви ЭДС будет иметь противоположную полярность, а под щетками может начаться искрение, так как в заворачиваемых щетками витках (секциях) ЭДС отлична от нуля.

Кольцевой якорь можно усовершенствовать, если не снимать изоляцию с витков обмотки, а сделать от них отводы, соединенные с пластинами коллектора, а щетки наложить на коллектор (Рис.6-4, б). Если у такой машины сделать четыре полюса, то обмотка разделится на четыре части (Рис.6-5, а). Если далее вместо двух щеток поставить четыре и одноименные соединить между собой (Рис.6-5, б), то обмотка будет иметь четыре параллельные ветви. Легко видеть, что с увеличением числа параллельных ветвей ток нагрузки может быть соответственно увеличен. Рассмотренный выше кольцевой якорь со спиральной обмоткой имеет существенные недостатки. Во-первых, магнитный поток замыкается через стенку кольца (якоря), минуя внутреннюю полость, поэтому активной стороной каждого витка обмотки является та, которая расположена на поверхности, а внутренняя часть витка для получения ЭДС не используется и служит лишь соединительным проводником. Это обстоятельство приводит к нерациональному расходу меди. Во-вторых, спиральную обмотку нельзя сделать по шаблону, поэтому в настоящее время машины с кольцевым якорем не изготовляют.

Минуя внутреннюю полость, поэтому активной стороной каждого витка обмотки является та, которая расположена на поверхности, а внутренняя часть витка для получения ЭДС не используется и служит лишь соединительным проводником. Это обстоятельство приводит к нерациональному расходу меди. Во-вторых, спиральную обмотку нельзя сделать по шаблону, поэтому в настоящее время машины с кольцевым якорем не изготовляют.

Недостатки кольцевого якоря устраняют заменой его барабанным. Обмотки барабанного якоря (Рис.6-6) укладывают в специальные пазы на поверхности цилиндра (якоря) в виде отдельных секций, определенным образом соединенных с пластинами коллектора и между собой. Секция - это часть обмотки между двумя соседними отводами к коллектору. Обе стороны каждой секции являются активными; секции изготовляют по шаблону.

ЭДС и электромагнитный момент генератора постоянного тока

Выведем зависимость ЭДС генератора от параметров машины, скорости вращения якоря и магнитного потока.

ЭДС, индуцируемая в каждом витке обмотки, может быть определена по формуле . (1). Применительно к машине постоянного тока эта формула (и весь последующий вывод) значительно упрощается введением понятия средней индукции. Пусть магнитный поток, создаваемый главным полюсом, Ф, тогда при 2 p полюсах общий магнитный поток равен 2р Ф. Однако можно с достаточной точностью допустить, что индукция распределена равномерно во всем воздушном зазоре, поэтому для расчетов можно взять ее среднее значение:

где d - диаметр сердечника якоря, l - образующая цилиндра якоря (длина якоря). Тогда средняя ЭДС одного проводника обмотки при = 90° равна

где l - длина активной части проводника (равна образующей цилиндра якоря); v - линейная (окружная) скорость движения проводника.

Подставим в формулу (3) значение средней индукции В ср и линейной скорости и после преобразования получим:

где n - скорость вращения якоря.

Пусть обмотка содержит 2а параллельных ветвей, тогда в каждой параллельной ветви будет активных проводников. Так как ЭДС генератора равна ЭДС параллельной ветви, то можно записать:

где - ЭДС генератора.

Подставим выражение (4) в уравнение (3), после сокращения получим:

В полученной формуле выделенная дробь содержит параметры, зависящие от конструкции машины. Для данной конструкции машины эта величина постоянная. Обозначим эту дробь через с, тогда для ЭДС генератора окончательно имеем:

Таким образом, ЭДС генератора постоянного тока пропорциональна значению магнитного потока Ф и скорости вращения якоря п. Следовательно, для поддержания постоянного напряжения на зажимах генератора можно изменять ЭДС либо значением магнитного потока, либо скоростью вращения ротора (либо тем и другим). На практике ротор генератора приводят во вращение двигателем, работающим нормально при определенной скорости вращения вала, а магнитный поток изменяют путем изменения тока в обмотке возбуждения. Мощность генератора постоянного тока можно представить формулой механической мощности (Р = ), причем под работой А следует понимать работу, затрачиваемую па преодоление тормозного момента, развиваемого якорем, за один оборот при вращении якоря со скоростью n (без потерь). Тогда эту формулу можно записать так:

где F - сила, действующая на якорь. При таком взаимодействии на каждый проводник обмотки якоря с током I действует сила , а на N проводников обмотки

Учитывая соотношение (2), последнее уравнение можно записать следующим образом:

Подставив уравнение (10) в уравнение (8), получим выражение для мощности:

Так как Ф, то окончательно имеем:

Для общего момента машины М можно записать:

где постоянный для данной машины коэффициент, зависящий от особенностей ее конструкции. Таким образом, электромагнитный момент машины выражается формулой М = сФ1 я . (13)

Электрические машины постоянного тока широко применяются в различных отраслях промышленности. Значительное распространение электродвигателей постоянного тока (Direct Current electric motors or DC electric motors) объясняется их ценными качествами: высокими пусковым (starting), тормозным (braking) и перегрузочным (overload) моментами (torque), сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения. Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов.

Файлы: 1 файл

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА.doc

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА

(ELECTRIC MACHINES OF THE DIRECT CURRENT)

4.1 Общие сведения

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока (Direct Current electric motors or DC electric motors) объясняется их ценными качествами: высокими пусковым (starting), тормозным (braking) и перегрузочным (overload) моментами (torque), сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных (low-power) двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

Генераторы постоянного тока (DC generators) общего применения в настоящее время используются реже, чем электродвигатели, поскольку значительное распространение получают ионные и полупроводниковые преобразователи.

Электродвигатели и генераторы постоянного тока составляют значительную часть электрооборудования летательных аппаратов (electric equipments of flying machines). Генераторы постоянного тока применяют в качестве источников питания; их максимальная мощность достигает 30 кВт. Электродвигатели летательных аппаратов используют для привода различных механизмов; мощность их имеет значительный диапазон – от долей до десятков киловатт. На самолетах, например, устанавливается более 200 различных электродвигателей постоянного тока. Двигатели постоянного тока широко используются в электрической тяге (electrical haulage), в приводе подъемных устройств (lifting machines), для привода металлорежущих станков (cutting machine). Мощные двигатели (powerful motors) постоянного тока применяются для привода прокатных станов (rolling mills) и на судах для вращения гребных винтов. Постоянный ток (direct current) для питания двигателей получается с помощью генераторов постоянного тока или выпрямительных установок, преобразующих переменный ток в постоянный.

Генераторы постоянного тока являются источником питания (power supply) для промышленных установок, потребляющих постоянный ток низкого напряжения (low voltage current) (электролизные и гальванические установки). Питание обмоток возбуждения (excitation winding) мощных синхронных генераторов осуществляется во многих случаях от генераторов постоянного тока (возбудителей).

В зависимости от схемы питания обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

4.2 Устройство принцип действия машины постоянного тока

Конструктивно машина постоянного тока состоит из неподвижного статора (индуктора) с полюсами (poles) и вращающегося ротора (якоря) с коллектором (commutator). Статор является источником магнитного поля и механическим остовом машины, якорь- часть машины, в обмотке которой индуцируется э. д. с. – электродвижущая сила (electro motive force).

На одном валу с якорем (armature) жестко закрепляется коллектор, электрически соединенный с его обмоткой. Коллектор - характерная деталь машины постоянного тока. Его медных пластин касаются неподвижные угольно-графитовые щетки, размещенные в щеткодержателях на траверсе и электрически соединенные с внешней цепью. Во избежание искрения щетки тщательно притираются к коллектору, а их умеренный нажим должен быть отрегулирован.

Принцип действия машин постоянного тока основан на законе электромагнитной индукции и законе Ампера. Магнитное поле (magnetic field) машины создается постоянным током (током возбуждения) в обмотке полюсов или постоянными магнитами (permanent magnets) в машинах малой мощности. Его силовые линии замыкаются через стальные станину (frame), сердечники полюсов (poles body) и сердечник якоря (armature core), дважды преодолевая на своем пути воздушный зазор между ними.

Существует два режима работы электрических двигателей:

- режим генератора (generator mode);

- режим двигателя (motor mode).

В режиме генератора машина преобразует механическую энергию в электрическую: к обмотке возбуждения статора подводится постоянный ток возбуждения, а якорь вращается каким-либо первичным двигателем. При этом провода обмотки якоря пересекают магнитные силовые линии (line of flux) полюсов и в них индуцируются э. д. с. С помощью коллектора и щеток, которые являются механическим выпрямителем (mechanical rectifier), эти переменные пульсирующие э. д. с. суммируются в постоянную по значению и направлению э. д. с. машины Е. Если к щеткам подключить приемник, то в нем установится постоянный ток I.

В режиме двигателя машина преобразует электрическую энергию в механическую: к якорю и к обмотке возбуждения машины одновременно подводится постоянный ток от источника. Взаимодействие магнитного поля полюсов статора с током обмотки якоря создает вращающий электромагнитный момент, который и приводит в движение якорь (ротор).

4.3 Устройство и расположение главных и добавочных полюсов

Каждая машина постоянного тока имеет одну или несколько пар главных полюсов (main poles), расположенных по окружности якоря (armature girth) строго симметрично и поочередно: северный – южный – северный и т. д. Сердечник главного полюса набирают из листовой электротехнической стали (electric grade sheet) и крепят к станине при помощи болтов. Шихтовка (reclaimer operation) сердечника уменьшает потери в стали от вихревых токов (eddy currents), которые возникают в сердечнике из-за пульсации магнитного тока, обусловленных зубчатостью якоря. Эти потери могут стать очень большими, так как сталь сердечника обычно насыщена.

На каждый главный полюс надеты одна или несколько катушек (coils), предназначенных для создания магнитного потока машины или для других целей. Обмотка параллельного возбуждения (winding of parallel excitation), создающая, как правило, основной магнитный поток, выполнена проводом малого сечения. Обычно катушки этой обмотки имеют самые большие размеры. Обмотка последовательного возбуждения (winding of consecutive excitation) служит чаще для компенсации размагничивающего действия реакции якоря, то есть является вспомогательной обмоткой, поэтому катушки ее невелики по размерам. Однако они выполнены из провода большого сечения, так как по ним проходит ток, равный току обмотки якоря.

Добавочные полюсы (interpoles) выполняют из цельного куска стали. Это обусловлено тем, что сталь добавочных полюсов при работе машины не насыщена, а воздушный зазор под ним больше, чем под главными, поэтому потери в стали от вихревых токов невелики. Добавочные полюсы устанавливают в промежутках между главными. Число их обычно равно числу главных полюсов, однако двухполюсные машины (bipolar machines) небольшой мощности могут быть выполнены и с одним добавочным полюсом.

4.4 Устройство якоря и коллектора

Вращающаяся часть машины постоянного тока включает в себя вал (shaft) с подшипниками (bearings), на который насажаны якорь с обмоткой, уложенной в пазах сердечника якоря (armature slots), коллектор (collector) и крыльчатку вентилятора (fan).

Сердечник якоря набран из листов электротехнической стали, которые располагаются так, чтобы образовался скос пазов сердечника на одно зубцовое деление. Это необходимо для уменьшения добавочных потерь и шумности машины. Сердечник якоря может иметь аксиальные вентиляционные каналы (ventilating passage). От проворачивания на валу сердечник удерживается продольной шпонкой (key) или рифлениями, а плотность прилегания листов друг к другу обеспечивается нажимными шайбами и кольцевой шпонкой.

Обмотка якоря выполнена из медного провода в виде жестких или мягких секций и уложена в пазы. На лобовые части обмотки намотаны проволочные бандажи, противодействующие центробежным силам. Концы секций обмотки присоединены к пластинам коллектора (commutator bars) с помощью петушков (commutator neck). Количество коллекторных пластин практически всегда равно числу секций обмотки якоря и равно или кратно числу пазов якоря. Пластины коллектора собраны в виде барабана (drum), изолированы друг от друга и от корпуса миканитовыми прокладками (mica plate) и плотно стянуты нажимными кольцами (или запрессованы в пластмассовую втулку).

Крыльчатка вентилятора (fan impeller) установлена на валу со стороны, противоположной коллектору. Она прогоняет через машину воздух, который засасывается в машину со стороны коллектора через специальные люки, и осуществляет тем самым отвод тепла, выделяемого при работе машины. Холодный воздух омывает сначала коллектор, затем якорь, катушки полюсов и после этого выбрасывается крылаткой в окружающееся пространство. Недостаток такого способа охлаждения состоит в том, что угольная пыль от щеток загрязняет всю машину. Однако при обратном направлении движения воздуха он, прежде чем попасть в машину, нагревался бы самим вентилятором, что в конечном итоге привело бы к увеличению габаритов и массы машины.

Положение вращающегося якоря относительно главных и добавочных полюсов строго зафиксировано с помощью подшипниковых щитов, в которых закреплены наружные кольца подшипников. В свою очередь подшипниковые щиты плотно закреплены на станине. В подшипниковых щитах предусмотрены люки для осмотра и ухода за коллектором, а также отверстие для прохода охлажденного воздуха. В машинах водозащищенного исполнения охлаждающий воздух внутрь машины не проходит и отводит тепло посредствам внешнего обдува, поэтому коллекторные люки таких машин снабжены глухими крышками.

4.5 Устройство щеточного аппарата

Щеточный аппарат (brush ring) совместно с коллектором служит для соединения обмотки якоря с внешней сетью и преобразования тока. Он состоит из траверсы (brush rocker), щеткодержателей (brush holders) и щеток.

Траверсу машины постоянного тока выполняют из стали или алюминиевого сплава. Она имеет вид кольца с разрезом и с выступами для закрепления пальцев щеткодержателей (brush-holder finger). Пальцы выполняют обычно из стеклотекстолита. Если же они выполнены из металла, то должны быть изолированы пластмассовыми втулками и шайбами. На пальцах закреплены щеткодержатели, которые служат для удержания щеток в определенном положении относительно коллектора. Щетки должны быть расположены в шахматном порядке, чтобы предотвратить неравномерный износ коллекторных пластин. Щетки устанавливаются в обоймах щеткодержателей и прижимаются к коллектору пружинами. Сила нажатия пружин должна обеспечить хороший контакт щетки с коллектором, не вызывая слишком больших потерь на трение. Проверка нажатия осуществляется динамометром или приближенно при помощи полоски папиросной бумаги. В последнем случае полоску папиросной бумаги надо положить под щетку и вытягивать ее. Если бумага выходит с трудом, но еще не рвется, то давление нормальное.

Электродвигатель постоянного тока

Несмотря на то, что переменный ток активно применяется человеком в быту и на различных производствах, машины постоянного тока, несмотря на некоторую ограниченность, до сих пор активно применяются в различных сферах деятельности человека. Суть работы данных агрегатов одна – преобразование механической энергии в электрическую, и наоборот.

Сегодня мы расскажем вам много интересного про эти уже давно изобретенные агрегаты, которые до сих пор практически ни в чем не изменились.

Особенности двигателей постоянного тока

Постоянного тока машина промышленная

У двигателей постоянного тока есть одно неоспоримое преимущество перед аналогами, работающими на переменном токе. Эти агрегаты могут плавно и точно регулировать свою скорость вращения, у них высокое быстродействие, а также они обладают большими перегрузочными и пусковыми моментами.

Сегодня их используют в основном в следующих отраслях:

  • В металлорежущих станках, роботах, манипуляторах, грузоподъемных механизмах, прокатных станках (электроприводы подач и главного движения);
  • В тяговых приводах мощных транспортных средств, таких как: тягачи, троллейбусы, трамваи, электровозы;

Машина постоянного тока – двигатель троллейбуса

  • В мощных снегоочистителях;
  • В качестве исполнительных элементов автоматизированных систем управления и прочее.

Как устроены машины, работающие на постоянном токе

Электрические машины постоянного тока являются обратимыми устройствами, то есть они при определенном подключении могут использоваться либо как двигатель, либо как генератор тока.

Устройство машин постоянного тока – генератор в разрезе

На картинке выше показано классическое строение такой машины:

  1. Коллектор – металлический скользящий контакт, через который ротор коммутируется с внешними электрическими цепями;
  2. Щетки (обычно графитовые или медно-графитовые) – ответная часть скользящего контакта, которая постоянно трется о коллектор при вращении ротора;

Коммутация в машинах постоянного тока

  1. Ротор (якорь)- подвижная часть агрегата. При его вращении запускается процесс электромагнитной индукции.
  2. Главные полюса;
  3. Катушка обмотки возбуждения;

Совет! Пункты 4 и 5 являются частями статора – неподвижной электрической части машины, которая может выступать в роли мощного электромагнита (режим двигателя) или обмотки индуктирующей напряжение (генераторный режим).

  1. Станина – корпус агрегата;
  2. Боковая крышка, которая закрывает крыльчатку охлаждения и является держателем подшипников качения, на которых вращается ротор;
  3. Вентилятор – призван охлаждать машину во время ее работы.

Интересно знать! Никакой двигатель не может преобразовывать энергию без потерь – ее часть всегда уходит в тепло.

Коллекторные машины постоянного тока

Помимо этого конструкция имеет центральный вал вращения, который почему-то на схеме не отмечен, и иногда лапы – петли, через которые агрегат можно закрепить к столу, например.

Устройство и принцип действия машин постоянного тока - статор

  • Итак, основными рабочими частями машин постоянного тока являются ротор, который тут чаще называют якорем, и статор. Данную часть конструкции называют внутренней электрической. Существует также и внешняя электрическая часть, с помощью которой осуществляется управление двигателем, а также подключаются внешние электрические сети.

Устройство машины постоянного тока – якорь располагается на валу

Остальные элементы относятся к механической части.

  • Станина машины постоянного тока делается из прочного металла – обычно это конструкционная сталь.
  • К внутренней части станины крепятся главные и добавочные полюса статора. Сердечники главных полюсов набираются из стальных пластин. Для добавочных полюсов они идут в основном массивные.
  • Обмотка возбуждения находится на главных полюсах – их МДС формируют рабочий поток. Обмотки добавочных полюсов обеспечивают нормальную коммутацию.

Коммутация тока в машинах постоянного тока

  • Роторный магнитопровод шихтуется из специальной электромагнитной стали.

Сам якорь имеет следующее строение:

Устройство и принцип действия машины постоянного тока: якорь в разрезе

  • Якорь имеет сердечник. Который, как уже было сказано, набирается из стальных пластин толщиной 0,35-0,5 мм. Пластины изолированы друг от друга тонким слоем лака или оксидной пленки, чтобы потери от вихревых токов были минимальными.
  • Снаружи сердечник имеет пазы, показанные в увеличенном виде на схеме выше. В эти пазы укладывается обмотка якоря, сделанная из специальной медной обмоточной проволоки, покрытой слоем изолирующего лака.
  • Проволока может быть круглого или прямоугольного сечения.
  • Обмотка внутри паза надежно крепится при помощи бандажей или клиньев из стальной проволоки.
  • Лобовая обмотка, выступающая за торцы сердечника, якоря крепится только бандажами.
  • Вся обмотка разбита на отдельные, изолированные друг от друга секции. Каждая из них соединяется в определенной последовательности с медными пластинами коллектора, к которым, так мы помним, за счет пружин прижимаются щетки.

Интересно знать! Контакт коллектора и щеток устроен таким образом, чтобы концы одной обмотки никогда не могли коротко замкнуться.

На этом фото хорошо видно, как к пластинам коллектора подходят концы проводов обмотки

  • Вообще коллектор довольно простая, но многофункциональная деталь таких машин, предназначенная для выпрямления тока.
  • Состоит он из коллекторных пластин, называемых также ламелями.
  • Пластины изолированы друг от друга и элементов крепления манжетами и специальными прокладками.
  • С торцов пластины стягивают нажимные фланцы.
  • Коллектор должен иметь строго цилиндрическую форму, поэтому тщательно обтачивается на специальном оборудовании – таким же образом они могут восстанавливаться после коротких замыканий.

Идем дальше – на очереди щеточный аппарат:

Щетки в отличном состоянии

  • Состоит он из щеточной траверсы и щеткодержателей со щетками.
  • Щеткодержатель имеет обойму, в которой и находится сама щетка. Под щеткой находится пружина, которая выталкивает ее наружу и тем самым прижимает к коллекторным пластинам.
  • От щеток отходят сборные шины, которые соединяют их с контактами машины.

При вращении ротора, между щетками и коллектором возникает искрение. Если оно будет слишком сильным, то возможно даже образование дугового разряда, что приведет к короткому замыканию и выходу агрегата из строя. Чтобы этого не произошло, и применяются дополнительные полюса обмотки.

На корпусе машины располагаются клеммы для подключения внешних цепей, а также паспортные данные.

Классификация машин постоянного тока

Какими могут быть генераторы постоянного тока

Способы возбуждения машин постоянного тока и включения главных полюсов делят машины на разные типы.

Выделяют следующие варианты:

  • Агрегаты с независимым возбуждением – Электрическая цепь, которую формирует обмотка возбуждения, никак не связана с силовой цепью ротора. Этот вариант практически единственный для генераторов постоянного тока.
  • Машины с параллельным возбуждением – цепь якоря и обмотка возбуждения включаются параллельно.
  • Варианты с последовательным возбуждением – не сложно сообразить, что обмотки соединяются последовательно – метод применяется на практике очень редко.
  • Машины со смешанным возбуждением – агрегаты имеют две обмотки возбуждения, одна из которых подключена к цепи ротора последовательно, а другая – параллельно.

Принцип работы на примере двигателя постоянного тока

Принцип действия машины постоянного тока

Давайте посмотрим, как работает двигатель постоянного тока с параллельным возбуждением.

  • Итак, к цепи обмотки возбуждения подается напряжение (U) – источник выдает постоянный ток.
  • Напряжение вызывает движение тока (Iв), который создает постоянную силу намагничивания (IвWв), которая в свою очередь приводит в состояние возбуждения магнитный поток (Ф), являющийся основным. Его направление зависит от направления тока в обмотке.
  • В это же время в якорной цепи проходит ток (Iя), создающий свое магнитное поле.
  • Прижимающиеся к коллектору щетки делят обмотку якоря на параллельные ветви.
  • Обмотка в якорь укладывается таким образом, чтобы ее проводники, находящиеся в состоянии активности, находились у противоположных поясов. При этом направление токов будет одинаковым, что и не удивительно.
  • В этот момент начинается взаимодействие электромагнитных сил, в результате которого электромагнитный момент начинает вращать якорь.

Изменение ЭДС во времени при вращении якоря

  • При вращении якоря проводники в его обмотке пересекают основной магнитный поток, в результате чего в них образуется ЭДС, согласно закону электромагнитной индукции. Направление ЭДС определяется правилом правой руки, знакомого нам еще со школьной скамьи: расположите правую руку так, чтобы в ладонь входили магнитные линии, тогда большой палец покажет, куда двигается проводник, а остальные 4 – направление ЭДС.
  • Известно, что наибольшее значение ЭДС получает тогда, когда активная обмотка проходит непосредственно возле магнитных полюсов. Дальше она убывает, а потом ток меняет свое направление, при условии, что цепь размыкаться не будет.
  • Если предположить, что обмотка якоря устроена таким образом, то работала бы такая машина крайне неэффективно. Именно поэтому в якорях машин постоянного тока реализован принцип смены активных секций обмотки, что происходит при вращении. В любой момент времени задействованы те секции, в которых значение ЭДС самое высокое.
  • ЭДС создает свое магнитное поле, называемое поперечным, так как оно перпендикулярно основному. При взаимодействии полей результирующий поток искажается.
  • Разность потоков устанавливает рабочие параметры машины.

Рабочие моменты

Давайте разберем некоторые характеристики и особенности машин постоянного тока.

Пуск и режим реверса

К электрическому двигателю подключен регулятор оборотов

В момент, когда двигатель запускается, якорь имеет неподвижное положение, а значит, ЭДС в нем равна нулю. Из-за того, что сопротивление якорной обмотки очень маленькое, пусковой тока якоря намного превышает номинальный. Если представить себе такой пуск двигателя, то он однозначно бы вышел из строя.

  • Чтобы такого не происходило, пусковой ток в двигателях постоянного тока с параллельным возбуждением ограничивается за счет включенного в цепь пускового реостата.
  • Пуск при этом необходимо производить при номинальном значении магнитного потока, благодаря чему увеличивается пусковой момент и быстро растет ЭДС в обмотке якоря. В результате двигатель разгоняется быстрее, а время, когда проходит большой пусковой ток по обмотке сокращается.
  • Когда разгон двигателя завершается, реостат выводится из цепи – делается это либо плавно, либо ступенчато.
  • Для того чтобы остановить двигатель, достаточно отключить подачу питания к нему.
  • Для любого электрического двигателя доступен режим вращения в обратном направлении – реверс. Для этого нужно всего лишь изменить направление тока либо в обмотке якоря, либо в обмотке статора.

Интересно знать! Одновременное изменение направления токов ни к чему не приведет, двигатель продолжит вращаться в том же направлении.

Потери мощности и КПД

Даже самый технически совершенный двигатель постоянного тока не может работать без потерь мощности

Любой двигатель или генератор постоянного тока работает с потерями мощности. Их делят на два типа: основные и добавочные.

  • К первым относят магнитные, электрические и механические.
  • Магнитные потери, происходящие в стали обозначают ΔРс. Происходят они из-за того, что во время вращения сердечник на якоре постоянно перемагничивается, поэтому возникают потери на гистерезис и вихревые токи.
  • Электрические потери (ΔРэл) происходят из-за активного сопротивления обмоток, а также сопротивления щеточного контакта, то есть данное значение представляется в виде суммы указанных потерь.
  • Механические (ΔРмех) включают потери на трение подшипников, трение щеток о коллектор, трение вращающегося якоря о воздух (и такое есть) и вентиляционные потери.
  • Все остальные потери называются добавочными и связаны они в основном с взаимодействием различных частей агрегата с магнитным полем.

Потери незначительны при отсутствующей нагрузке

Интересно знать! Потери мощности при работе в холостом режиме, то есть без нагрузки, крайне малы.

Для расчета каждого типа потерь применяются специальные формулы. Мы не будем так глубоко вдаваться в суть, а скажем лишь, что КПД машины постоянного тока определяется отношением отдаваемой мощности, к потребляемой. Выражают данное значение обычно в процентах.

Современные машины постоянного тока стали очень эффективными. КПД у них обычно варьируется в пределах 75-90%.

Рабочие характеристики

Рабочие характеристики ДПТ

Рабочие характеристики представляют собой следующие зависимости:

  • Скорости вращения, потребляемого тока и мощности двигателя;
  • КПД от полезной мощности при условии, что напряжение питания неизменно.
  • Тока обмотки возбуждения и отсутствия добавочного сопротивления в цепи якоря.

Все эти параметры позволяют говорить о свойствах двигателей в режиме эксплуатации, а также находить оптимальные и экономичные режимы их работы.

Регулировка скорости вращения двигателя

Принципиальная схема регулятора оборотов вращения

Регулировать скорость вращения машины постоянного тока можно тремя способами: изменение напряжения сети, реостатное регулирование, изменение магнитного потока. Давайте обо всем по порядку.

  • Изменение напряжения осуществляется за счет устройств, которые могут, собственно, менять величину напряжения.
  • Реостатное регулирование, как мы уже упоминали по ходу статьи, нуждается во введении в цепь якоря дополнительных резисторов активного типа, то есть меняющих свои характеристики при определенных условиях.
  • Регулирование магнитного потока происходит за счет уменьшения тока возбуждения.

Конечно, мы назвали не все характеристики машин постоянного тока, а лишь основные, но для ознакомления с этими агрегатами этого вполне достаточно.

Устройство машины постоянного тока

Электрическая машина постоянного тока - машина, в которой при установившемся режиме ее работы электрическая энергия, участвующая в ее энергопреобразовательном процессе, является энергией практически постоянного тока.

Любая электрическая машина состоит, как правило, из двух составных частей: неподвижной части — статора, располагаемой обычно снаружи, и вращающейся внутренней части — ротора. Ротор современной машины постоянного тока малой и средней мощности состоит из вала и насаженных на него якоря, коллектора и вентилятора для охлаждения машины.

В тихоходных больших машинах постоянного тока охлаждение достигается независимым вентилятором, в больших быстроходных машинах постоянного тока открытого исполнения достаточное охлаждение достигается вентилирующим действием вращения якоря. При закрытом исполнении машин применяют наружную вентиляцию.

Не практике термин ротор в применении к машинам постоянного тока не используется. Всю вышеперечисленную совокупность вращающихся деталей называют по имени главной из них якорем. Таким образом, на практике термин якорь имеет двоякое значение: во-первых, совокупность вращающихся частей машины постоянного тока, во-вторых, собственно якорь.

Статор современной машины постоянного тока состоит из: ярма, главных, или основных, магнитных полюсов с намагничивающими их катушками из изолированного или голого медного провода круглого или прямоугольного сечения и из добавочных, или коммутационных, магнитных полюсов с намагничивающими их катушками из изолированного или из голого (с изоляционными прокладками) медного провода круглого или прямоугольного сечения.

Термин статор в применении к машинам постоянного тока на практике не используется, вместо него пользуются термином магнитная система или индуктор. Термин ярмо также заменяют на практике термином машины постоянного тока, так как в качестве конструктивной части машины ярмо выполняет эту роль.

Коллекторный скользящий контакт

Электромашинный коллектор, являющийся вращающейся частью коллекторного скользящего электрического контакта, состоит из токопроводящих медных сегментообразных пластин, собранных на валу в цилиндр и изолированных друг от друга и от вала, на котором они укрепляются неподвижно. Каждая коллекторная пластина соединяется электрически неравномерно распределенными по обмотке точками. Неподвижная часть коллекторного контакта состоит из таких же неподвижных электромашинных щеток. Число щеток берется по числу нужных ответвлений от обмотки.

Особенности машин постоянного тока

Являясь одноякорной электрической машиной, коллекторная машина постоянного тока может быть с параллельным, с последовательным, а также с последовательно-параллельным, или смешанным, возбуждением.

В машине со смешанным возбуждением на индукторе имеется либо основная индукторная обмотка, соединяемая параллельно с якорной обмоткой, и вспомогательная возбуждающая обмотка, соединяемая последовательно с якорной обмоткой, либо основная индукторная обмотка, соединяемая с якорной обмоткой последовательно, и вспомогательная возбуждающая обмотка, соединенная параллельно с якорной обмоткой.

Возможно также устройство машины постоянного тока с независимым возбуждением. Она получается если в ней индукторную, возбуждающую обмотку отсоединить от якоря и присоединить к независимому источнику постоянного тока неизменного напряжения.

Генераторы постоянного тока делают или с независимым возбуждением или с самовозбуждением. При независимом возбуждении цепь возбуждающей обмотки питается от независимого источника постоянного тока, т. е. либо от сети постоянного тока, питаемой другим генератором постоянного тока, либо от аккумуляторной батареи, либо от генератора постоянного тока, специально предназначенного для питания возбуждающей обмотки данного генератора.

Мощность такого вспомогательного генератора, называемого возбудителем, составляет всего несколько процентов от мощности того генератора, обмотку возбуждения которого он питает. Если возбудитель жестко соединяется с возбуждаемым генератором, то его называют пристроенным возбудителем.

Если цепь возбуждающей обмотки присоединена к зажимам генератора, то имеем генератор с параллельным возбуждением (или генератор параллельного возбуждения), или параллельный генератор. Обычно его называют шунтовым генератором постоянного тока.

Если цепь возбуждающей обмотки соединяется с цепью якоря последовательно, то имеем генератор с последовательным возбуждением (или генератор последовательного возбуждения), или последовательный генератор. Иногда его называют сериесным генератором постоянного тока.

Главные детали машины

Собственно якорь представляет собой цилиндрической формы, состоящее из большого числа дисков специальной тонкой листовой электротехнической стали, плотно спрессованных.

По наружной окружности якоря равномерно располагаются полученные путем штамповки пазы или впадины, в которых укладывается и укрепляется составленная по определенным правилам электрическая цепь из изолированного медного провода круглого или прямоугольного сечения, называемая обмоткой якоря. Обмотка якоря является той частью машины постоянного тока, в которой индуктируется электродвижущая сила и протекает ток.

Коллектор имеет цилиндрическую форму и состоит из медных пластин, изолированных друг от друга и от крепящих их частей. Пластины коллектора электрически соединяются с определенными точками якорной обмотки равномерно распределенными по окружности якоря.

Главные, или основные, магнитные полюсы состоят из сердечников полюсов и уширенной в сторону якоря торцевой части полюса, называемой полюсным наконечником, или полюсным башмаком.

Сердечник и башмак штампуют совместно из листовой электротехнической стали в виде пластин соответствующей формы, которые затем спрессовывают и скрепляют в монолитное тело. Главные магнитные полюсы создают основной магнитный поток машины, от перерезывания которого вращающейся якорной обмоткой в ней индуктируется э д. с. машины.

Добавочные магнитные полюса, имеющие узкую форму и располагаемые в промежутках между главными магнитными полюсами, делают из катаной стали, иногда их штампуют из тонких листов электротехнической стали, как и главные полюсы. С торца, обращенного к якорю, их снабжают иногда полюсным башмаком прямоугольной формы, со скосами или без них. Добавочные магнитные полюса служат для обеспечения безискровой работы коллектора.

В больших машинах постоянного тока, предназначаемых для тяжелых условий работы, в полюсных башмаках главных магнитных полюсов, которым в этом случае придают особо развитую форму, проштамповывают ряд пазов для укладки в них компенсационной обмотки. Она предназначается для воспрепятствования искажению формы распределения индукции основного магнитного потока в пространстве, отделяющем полюсный башмак от якоря. Это пространство называется междужелезным пространством, или главным электромашинным зазором.

Компенсационная обмотка выполняется, как и прочие обмотки машины, из меди и изолируется. Обмотки добавочных полюсов и компенсационная обмотка соединяются с обмоткой якоря последовательно.

На коллектор опираются щетки, как правило, угольные, имеющие прямоугольную форму сечения. Их устанавливают по образующим цилиндрической поверхности коллектора, называемым коммутационными зонами. Обычно число коммутационных зон равно числу полюсов машины.

Щетки вставляют в обоймы щеткодержателей с пружинами, прижимающими щетки к поверхности коллектора. Щетки одного и того же зонного комплекта электрически соединяют друг с другом, а зонные комплекты одной и той же полярности (т. е. через зону) соединяют электрически друг с другом и присоединяют к соответствующему внешнему зажиму машины.

Внешние зажимы машины укрепляют на доске зажимов, которую скрепляют к ярму машины и прикрывают предохранительной крышкой с отверстием внизу для соединения к зажимам проводов от электрической сети. Зажимы с крышкой образуют так называемую коробку зажимов.

Часто вместо "зонный комплект щеток" обычно говорят "щетка", подразумевая под этим совокупность всех щеток одной коммутационной зоны. Совокупность всех зонных комплектов щеток данной машины образует ее полный комплект щеток, который обычно называют сокращенно комплектом щеток.

Щетки, щеткодержатели, пальцы (или бракеты) и траверса (или суппорт) составляют так называемый токособирательный аппарат машины постоянного тока. В него входят также соединения между собой зонных комплектов щеток одной и той же полярности.

Концы вала якоря машины, называемые шейками вала, вставляют в подшипники. В небольших и средних машинах подшипники укрепляют в подшипниковых щитах, которые в то же время выполняют роль защиты машины от внешних воздействий, а также служат для полного закрытия машины, если она выполняется закрытой.

Малые машины постоянного тока с подшипниковыми щитами не имеют, как правило, фундаментной плиты, их устанавливают на болтах, которые крепят к бетонному или кирпичному фундаменту, или к полу, или на особых балочках, называемых салазками.

Иногда генераторы, а также двигатели, имеют всего один подшипник. Другой конец вала имеет фланец или обрабатывается под насадку полумуфты для соединений со свободным концом вала приводного двигателя (в случае генератора) или механизма (в случае двигателя).

Читайте также: