Доклад понятие о неуравновешенных силах инерции и их влияние на работу машин

Обновлено: 18.05.2024

Во время работы двигателя возникающие в нем силы делят на уравновешенные и неуравновешенные.

Уравновешенные силы при суммировании не дают свободного момента, а равнодействующая их равна 0. К уравновешенным силам относятся силы от давления газов и силы трения.

К неуравновешенным относятся все силы, которые передаются на опоры: масса двигателя (вес), силы инерции возвратно-поступательно движущихся масс, силы инерции вращающихся масс, реакции газов и жидкостей.

Двигатель считается уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению.

У всех автотракторных двигателей возникает реактивный момент, противоположный крутящему моменту двигателя. Этот момент не уравновешивается; он всегда передается на подмоторную раму или фундамент. При установившемся режиме

Неуравновешенные силы, переменные по величине, приводят к вибрациям, которые не ограничиваются только двигателем, но и распространяются на раму и другие элементы машины.

Для устранения вибраций двигатель как основной источник неуравновешенных сил должен быть уравновешен. Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие сил и их моменты постоянны по величине, направлению или равны 0.

Уравновешивание двигателей осуществляется: выбором соответствующего числа цилиндров и расположением их, такой формой коленчатого вала,

[image]

Рис. 15. Уравновешивание одноцилиндрового двигателя с помощью противовесов, размещенных на коленчатом валу

которая позволила бы переменные силы инерции и моменты этих сил взаимно уравновесить вводом дополнительных масс, которые создают новые силы в любой момент времени, равные и противоположно направленные уравновешиваемым силам (противовесы).

В современных двигателях для более полного его уравновешивания используют несколько способов одновременно. В целях получения в конструктивном отношении более простых двигателей и, следовательно, более дешевых вопросы уравновешивания решаются не только по соображениям технической, но и экономической целесообразности.

[image]

Условия уравновешенности двигателя определяются следующими равенствами:

Силы инерции первого порядка и моменты этих сил уравновешивают преимущественно за счет числа цилиндров и формы коленчатого вала. Для одноцилиндровых двигателей уравновесить силы инерции первого порядка можно помещением на двух специальных валах масс (противовесов), вращающихся в

 противоположные стороны с такой же частотой, как и коленчатый вал. Силы инерции второго порядка также можно уравновесить установкой двух дополнительных валов с массами, противодействующими силам инерции второго порядка. Эти валы также должны вращаться в противоположные стороны с частотой, в два раза большей частоты коленчатого вала. Такая система уравновешивания приводит к значительному усложнению двигателя и поэтому встречается сравнительно редко. У одноцилиндровых мотоциклетных двигателей силы инерции первого порядка частично уравновешивают массой противовесов, помещенных на коленчатом валу, которые, несколько уменьшая действие силы инерции первого порядка в вертикальной плоскости, одновременно дают составляющую в горизонтальной плоскости, которая остается неуравновешенной (рис. 15).

Для выяснения неуравновешенности кривошипного механизма его подвергают статической и динамической балансировке.

В таблице приложения V приведены некоторые часто встречающиеся схемы кривошипных механизмов и данные по их уравновешенности.

Причиной колебаний фундамента могут быть: неуравновешенные силы инерции первого порядка ( меняются один раз за оборот), неуравновешенные силы инерции второго порядка ( меняются дважды за оборот), опрокидывающие моменты ( также первого и второго порядка), реакции передаваемого крутящего момента, который несколько изменяется во время рабочего хода, действие массы вспомогательных механизмов ( насосы, компрессоры), резонансные явления коленчатого вала. [17]

Основными механическими источниками вибрации в ГЦН являются неуравновешенные силы инерции движущихся масс и возмущения в подшипниках, возмущения, связанные с передаточными механизмами ( муфтами) и приводом электродвигателя из-за возможных задеваний уплотнительных ножей или шумовых экранов о маховики, несовпадения магнитных осей статора и ротора, ослабления крепежа крепления у маховика, нарушения цельности его посадочных поверхностей из-за смятия шпонки и паза. [18]

Неуравновешенные центробежные силы вращающихся частей, а также неуравновешенные силы инерции возвратно-поступательно движущихся частей коленчатого вала, воздействуя на его опоры, вызывают дополнительную нагрузку и вибрацию двигателя. [19]

В плоском четырехколенном вале с расположением колен под углом 180 получаются неуравновешенные силы инерции второго порядка , равнодействующая которых в вертикальном двигателе с углом развала цилиндров f 90 приложена к средней шейке вала и направлена горизонтально. [20]

При вращении кривошипа с постоянной угловой скоростью на фундамент двигателя будут действовать неуравновешенные силы инерции вращающихся и поступательно движущихся масс, а также опрокидывающий момент. [21]

Расчет прочности и устойчивости элементов конструкции фундамента производится по общим правилам механики, причем неуравновешенные силы инерции машин , будучи помноженными на коэффициенты динамичности и перегрузки, в необходимых случаях вводятся в расчет как временные статические нагрузки, а расчетные сопротивления материалов назначаются по действующим нормам, в необходимых случаях - с учетом выносливости. [23]

Динамическими нагрузками, возникающими при работе таких машин и вызывающими колебания их фундаментов, являются неуравновешенные силы инерции движущихся частей кривошипно-шатунных механизмов . [24]

Крупные компрессоры, за исключением машин небольшой производительности, устанавливают на фундаменты, воспринимающие их вес, неуравновешенные силы инерции возвратно-движущихся масс и центробежные силы неуравновешенных вращающихся масс. Небольшие холодильные агрегаты и вспомогательные аппараты располагают на специальных основаниях, закрепляемых к полу, потолку, стенам или колоннам. [25]

Причиной колебаний фундамента могут быть: неуравновешенные силы инерции первого порядка ( меняются один раз за оборот), неуравновешенные силы инерции второго порядка ( меняются дважды за оборот), опрокидывающие моменты ( также первого и второго порядка), реакции передаваемого крутящего момента, который несколько изменяется во время рабочего хода, действие массы вспомогательных механизмов ( насосы, компрессоры), резонансные явления коленчатого вала. [26]

Короткие болты находят применение там, где нагрузки не очень велики, носят спокойный характер и в работе оборудования отсутствуют неуравновешенные силы инерции . Такие болты, часто применяемые при установке различного электрооборудования, станков, сборочных стендов, имеют длину от 150 до 450 мм. [27]

В случае, когда ротор осесимметричен, возмущающими силами, происхождение которых связано с конструкцией и вращением самого ротора, могут быть только неуравновешенные силы инерции . При наличии на диске одного неуравновешенного грузика, создающего статический и динамический небалансы ( см. гл. [28]

При ремонте деталей или при их изготовлении центр тяжести вращающихся деталей иногда смещается относительно оси вращения, в результате чего при работе агрегата в его деталях появляются неуравновешенные силы инерции . Действуя на валы и опоры, эти силы инерции нередко приводят к вибрациям и другим неполадкам. [29]

Периодические возмущающие силы могут быть разделены на две основные категории: силы давления газов при сгорании топлива в цилиндрах и силы, сопровождающие рабочие процессы, - удары и трение в подвижных сочленениях, неуравновешенные силы инерции . [30]


При работе двигателя возникает два вида сил: уравновешенные и неуравновешенные. К уравновешенным силам относятся силы давления газов и силы трения. К неуравновешенным силам относятся силы, которые передаются на опоры двигателя: вес двигателя, центробежные силы инерции вращающихся масс, силы инерции возвратно-поступательно движущихся масс двигателя, касательные силы инерции вращающихся масс, возникающие при неравномерной угловой скорости вращения коленчатого вала.

Неуравновешенные силы инерции приводят к появлению вибраций, ухудшению комфортабельности, поломке деталей топливо- и маслопроводов, кронштейнов, выходу из ст роя генераторов, стартеров и др. Повышение номинальной частоты вращения коленчатого вала поршневых двигателей, ужесточение требований к комфортабельности автомобилей, их надежности определяет необходимость создания двигателей с улучшенными показателями по уравновешенности и равномерности хода. При движении поршня в результате возникающих ускорений деталей кривошипно-шатунного механизма и вращении коленчатого вала создаются силы инерции от возвратно-поступательно движущихся частей (ВПДЧ) и вращающихся масс. Кроме тою, повышается уровень шума, ухудшается комфортабельность.

У одноцилиндровых двигателей при вращении коленчатого вала и движении поршня и шатуна возникают центробежные сшил и силы инерции первого и второго порядка. Силы инерции первого порядка (Рл) приблизительно пропорциональны массе ВПДЧ, радиусу кривошипа, квадрату угловой скорости коленчатого вала и косинусу его угла поворота. Массу ВПДЧ условно принимают равной массе поршня с кольцами и пальцем плюс масса верхней части шатуна (обычно примерно 30% от его полной массы). В зоне НМТ эта сила достигает максимума и направлена вниз (к коленчатому валу). В зоне ВМТ достигает наибольшей отрицательной величины и наоборот, как бы стремится оторвать поршень от коленчатого вала. При углах поворота 90 и 270 градусов эти силы равны нулю. Силы инерции второго порядка пропорциональны массе ВПДЧ, квадратам угловой скорости и радиуса кривошипа, косинусу удвоенного угла поворота коленчатого вала и обратно пропорциональны расстоянию между осями верхней и нижней головок шатуна (длине шатуна). Таким образом, по мере увеличения длины шатуна, силы инерции второго порядка стремятся к нулю. Но длина шатуна определяет высоту блока цилиндров. а следовательно, массу и габариты всего двигателя, поэтому длину шатуна стремятся делать минимальной, несмотря на увеличение сил инерции второго порядка. У большинства современных автомобильных двигателей отношение радиуса кривошипа к длине шатуна находится в пределах от 1: 3,0 до 1: 3,8.

Силы инерции вращающихся масс пропорциональны сумме масс неуравновешенных частей колена вала и нижней части шатуна (обычно примерно 70% его полной массы) умноженной на радиус кривошипа и квадрат угловой скорости вращения коленчатого вала. Центробежные силы практически при любых схемах коленчатых валов удастся уравновесить противовесами на коленчатом валу.

Для уравновешивания сил инерции первого порядка одноцилиндровых и двухцилиндровых четырехтактных двигателей с рядным расположением цилиндров и шатунными шейками на одной оси необходимо применение двух валов с противовесами, вращающимися в разные стороны с таким же числом оборотов, что и коленчатый вал.

Значительно лучше уравновешены двухцилиндровые двигатели с оппозитным расположением цилиндров, у которых сил инерции нет, центробежные силы уравновешиваются противовесами и остаются только неуравновешенными моменты от сил инерции первого и второго порядка

В трех цилиндровых рядных двигателях с расположением кривошипов под углом 120 градусов силы инерции первого и второго порядков уравновешены. Неуравновешенными остаются только моменты от сил инерции первого и второго порядков.

У четырехцилиндровых рядных двигателей не уравновешены силы инерции второго порядка. Как правило, эти двигатели с рабочим объемом до 2,3 л не имеют уравновешивающих валов, т.к. абсолютные величины неуравновешенных сил инерции невелики. При большом рабочем объеме приходится устанавливать уравновешивающие валы.

Хорошей уравновешенности для четырехтактных четырехцилиндровых двигателей удастся добиться при оппозитном расположении цилиндров (автомобили Subaru, Porsche, Volkswagen с воздушным охлаждением). Правда, при этом остаются неуравновешенными моменты от сил инерции второго порядка.

У пяти цилиндровых рядных двигателей с расположением шатунных шеек коленчатого вала под углом 144 градуса положения коленчатого вала силы инерции первого и второго порядков уравновешены. Неуравновешенными остаются моменты от сил инерции первого и второго порядков.

Кроме уравновешенности важным требованием к двигателю является равномерное протекание пиковых значений крутящего момент а, т.е. в 2-х цилиндровом двигателе рабочий ход должен быть через 360 градусов, в 3-х цилиндровом — через 240 градусов, в 4-х цилиндровом — через 180 градусов и. т. д. В двухцилиндровых двигателях с рядным расположением цилиндров и коленчатым валом с шатунными шейками под углом 180 градусов неуравновешенными остаются только силы инерции второго порядка и момент от сил инерции первого порядка. Но в данном варианте вступает в действие другое наиболее важное требование: равномерное чередование сил от давления газов. Поэт ому двигатели с таким расположением шатунных шеек применяются только на двухтактных двигателях. В шестицилиндровых двигателях с V-образным расположением цилиндров под углом 60 градусов и шестью кривошипами под углом 60 градусов при равномерном чередовании вспышек через 120 градусов равнодействующие силы инерции первого и вт орою порядков и центробежных сил равны нулю. Уравновешивание моментов сил инерции первого порядка осуществляется с помощью противовесов, устанавливаемых на продолжении двух крайних щек коленчатого вала. Для уравновешивания моментов от сил инерции второго порядка требуется установка двух валов с противовесами, вращающимися с удвоенной скоростью по отношению к коленчатому валу. При угле развала между цилиндрами 90 градусов и угле между шейками кривошипа 120 градусов углы между вспышками неравномерные (90 и 150 градусов). Остаются и моменты от сил инерции первого и второго порядков.(С)

Во время работы двигателя возникающие в нем силы делят на уравновешенные и неуравновешенные.

Уравновешенные силы при суммировании не дают свободного момента, а равнодействующая их равна 0. К уравновешенным силам относятся силы от давления газов и силы трения.

К неуравновешенным относятся все силы, которые передаются на опоры: масса двигателя (вес), силы инерции возвратно-поступательно движущихся масс, силы инерции вращающихся масс, реакции газов и жидкостей.

Двигатель считается уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению.

У всех автотракторных двигателей возникает реактивный момент, противоположный крутящему моменту двигателя. Этот момент не уравновешивается; он всегда передается на подмоторную раму или фундамент. При установившемся режиме

Неуравновешенные силы, переменные по величине, приводят к вибрациям, которые не ограничиваются только двигателем, но и распространяются на раму и другие элементы машины.

Для устранения вибраций двигатель как основной источник неуравновешенных сил должен быть уравновешен. Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие сил и их моменты постоянны по величине, направлению или равны 0.

Уравновешивание двигателей осуществляется: выбором соответствующего числа цилиндров и расположением их, такой формой коленчатого вала,

Рис. 15. Уравновешивание одноцилиндрового двигателя с помощью противовесов, размещенных на коленчатом валу

которая позволила бы переменные силы инерции и моменты этих сил взаимно уравновесить вводом дополнительных масс, которые создают новые силы в любой момент времени, равные и противоположно направленные уравновешиваемым силам (противовесы).

В современных двигателях для более полного его уравновешивания используют несколько способов одновременно. В целях получения в конструктивном отношении более простых двигателей и, следовательно, более дешевых вопросы уравновешивания решаются не только по соображениям технической, но и экономической целесообразности.

Условия уравновешенности двигателя определяются следующими равенствами:

Силы инерции первого порядка и моменты этих сил уравновешивают преимущественно за счет числа цилиндров и формы коленчатого вала. Для одноцилиндровых двигателей уравновесить силы инерции первого порядка можно помещением на двух специальных валах масс (противовесов), вращающихся в

противоположные стороны с такой же частотой, как и коленчатый вал. Силы инерции второго порядка также можно уравновесить установкой двух дополнительных валов с массами, противодействующими силам инерции второго порядка. Эти валы также должны вращаться в противоположные стороны с частотой, в два раза большей частоты коленчатого вала. Такая система уравновешивания приводит к значительному усложнению двигателя и поэтому встречается сравнительно редко. У одноцилиндровых мотоциклетных двигателей силы инерции первого порядка частично уравновешивают массой противовесов, помещенных на коленчатом валу, которые, несколько уменьшая действие силы инерции первого порядка в вертикальной плоскости, одновременно дают составляющую в горизонтальной плоскости, которая остается неуравновешенной (рис. 15).

Для выяснения неуравновешенности кривошипного механизма его подвергают статической и динамической балансировке.

В таблице приложения V приведены некоторые часто встречающиеся схемы кривошипных механизмов и данные по их уравновешенности.

Читайте также: