Доклад на тему терморезисторы и фоторезисторы

Обновлено: 01.06.2024

У полупроводниковых материалов есть много интересных свойств. Одно из них – изменение сопротивления под действием света. Электрическое сопротивление полупроводниковых элементов используется в приборах под названием фоторезистор. Управление внутренним сопротивлением полупроводниковых приборов с помощью световых потоков широко применялось в устаревших конструкциях, реже в современной электротехнике.

Полупроводниковый резистор может изменять параметры электрического тока в зависимости от интенсивности освещения. Это свойство часто используют на практике для создания устройств, управляемых потоком излучения.Сегодня промышленность поставляет на рынок фоторезисторы с различными характеристиками, а это значит, что они еще находят применение в современных электротехнических устройствах.

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Устройство фоторезисторов

Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Конструкция фоторезистора

Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Рис. 3. Датчик на основе фоторезистора Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Конструкция пленочного фоторезистора

Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Принцип работы

В неактивном состоянии полупроводник проявляет свойства диэлектрика. Для того, чтобы он проводил ток, необходимо воздействие на вещество внешнего стимулятора. Таким стимулятором может быть термическое воздействие или световое.

Под действием фотонов света полупроводник насыщается электронами, в результате чего он становится способным проводить электрический ток. Чем больше электронов образуется, тем меньшее сопротивление току оказывает полупроводниковый материал. Зависимость силы тока от освещения иллюстрирует график на рис. 6.

График зависимости силы тока от освещения

Рис. 6. График зависимости силы тока от освещения

На этом принципе базируется работа фоторезисторов. Образованию электронов способствует как видимый спектр света так и не видимый. Причем фоторезистор более чувствителен к инфракрасным лучам, имеющим большую энергию. Низкую чувствительность к видимому свету проявляют чистые материалы.

Для повышения чувствительности фоторезистивного слоя его легируют разными добавками, которые образуют обновленную внешнюю зону, расположенную поверх валентной зоны полупроводника. Такое внешнее насыщение электронами потребует меньше энергии для перехода в состояние насыщения фототоком проводимости. Возникает внешний фотоэффект, стимулированный видимым спектром излучения.

Путем подбора легирующих добавок можно создавать фоторезисторы для работы в разных спектральных диапазонах. Фоторезистор имеет спектральную чувствительность. Если длина световых волн находится вне зоны проводимости, то прибор перестает реагировать на такие лучи. Освещенность в таких случаях, уже не может оказывать влияния на токопроводимость изделия.

Выбор спектральных характеристик зависит от условий эксплуатации изделия и решаемых задач. Если интенсивностей излучения не достаточно для стабильной работы устройства, его эффективность можно повысить путем подбора чувствительных элементов, с соответствующим полупроводниковым слоем.

Важно помнить, что инерционность фоторезисторов заметно выше чем у фотодиодов и фототранзисторов. Инерционность прибора имеет место потому, что для насыщения полупроводникового слоя требуется некоторое время. Поэтому датчик всегда подает сигнал с некоторым опозданием.

Обозначение на схеме

Отличить фоторезистор на схеме от обычного резистора достаточно просто. На значке фоторезистора присутствуют две стрелки, направленные в сторону прямоугольника. Эти стрелки символизируют поток света (см. рис. 7). На некоторых схемах символ резистора помещают внутри окружности, а на других обозначают прямоугольником без окружности. Но главное отличие – наличие стрелок.

Фоторезистор на схеме

Рис. 7. Фоторезистор на схеме

Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Технические характеристики

Какие критерии применять при выборе фоторезистора?

Первым делом обращайте внимание на спектральные характеристики. Если этот параметр вы неправильно выберете, то с большой долей вероятности устройство работать не будет или его функционирование будет нестабильным. Например, фоторезисторы с внутренним эффектом не будут реагировать на дневной свет. Если в качестве облучателя не планируется использовать ИК излучатель, то остановите свой выбор на втором типе приборов.

Другие важные характеристики:

  • интегральная чувствительность;
  • энергетическая характеристика (порог чувствительности);
  • инерционность.

Вольт-амперная характеристика показывает зависимость величины тока от приложенного напряжения. Графически такая характеристика изображается в виде гиперболы. Но если выполняется условие стабильности интенсивности освещения, то ест световой поток Ф = const, то зависимость силы тока от напряжения будет линейной, а график – прямой линией. (см. рис. 8 а).

Энергетическая характеристика показывает, как зависит сила тока от величины светового потока, при постоянном напряжении (см. рис. 8 б). На графике видно как изменяется энергетическая кривая: сначала она устремляется вверх, а при достижении какого-то предела плавно изменяет направление и почти параллельна оси светового потока. Объясняется это тем, что после насыщения полупроводникового элемента его сопротивление минимально и в дальнейшем не зависит от интенсивности света.

Характеристики фоторезистора

Рисунок 8. Характеристики фоторезистора

Что касается инерционности, то она в разной степени присутствует у всех типах датчиков. Если вам нужна молниеносная реакция на свет, то лучше используйте фотодиод.

Преимущества и недостатки

Сильными сторонами фоторезисторов оказывается их высокая надежность и низкая цена. Иногда полезным свойством бывает его вольтамперная характеристика, когда ток возрастает не молниеносно, а постепенно. Достоинством является низкий порог чувствительности.

К недостаткам можно отнести инерционность датчиков. Запаздывание сигнала понижает быстродействие устройств на базе терморезисторов, что часто бывает неприемлемым.

Применение

Благодаря низкому порогу чувствительности фоторезисторы часто используются для регистрации слабых потоков световых волн.

Это качество используется:

  • в сортировальных машинах;
  • в полиграфической промышленности для регистрации факта обрыва бумажной ленты;
  • в сельскохозяйственных машинах для контроля густоты высевания зерновых;
  • в световых реле для включения/отключения освещения, в фотоэкспонометрах и т. п.

В промышленной электронике фоторезисторы применяются для учета изделий, движущихся на ленте транспортера или падающих в емкость для хранения.

Сам по себе датчик не может производить расчёты, но его сигналы используются и обрабатываются микроконтроллерами, с последующими вычислениями. Сигналы фоторезистора воспринимаются как аналоговыми, так и цифровыми логическими схемами. Задержка сигнала на доли секунды в большинстве случаев не является препятствием для использования фоторезисторов.

На базе фоторезисторов производятся оптроны – приборы с собственным источником света, которым можно управлять. Пример схемы такого устройства показан на рис. 9.

Схема оптрона

Рис. 9. Схема оптрона

Несмотря на некоторые недостатки приборов, эра фоторезисторов видимо еще не закончилась.

Электрическое сопротивление полупроводников в значительной степени зависит от температуры. Это свойство используют для измерения температуры по силе тока в цепи с полупроводником. Такие приборы называют терморезисторами или термисторами. Полупроводниковое вещество помещается в металлический защитный чехол, в котором имеются изолированные выводы для включения терморезистора в электрическую цепь. Некоторые терморезисторы не имеют специальной защитной оболочки, полупроводниковый материал в них лишь покрыт слоем лака.

Изменение сопротивления терморезисторов при нагревании или охлаждении позволяет использовать их в приборах для измерения температуры, для поддержания постоянной температуры в автоматических устройствах — в закрытых камерах-термостатах, для обеспечения противопожарной сигнализации и т.д.

Термисторы — одни из самых простых полупроводниковых приборов. Выпускаются термисторы в виде стержней, трубок, дисков, шайб и бусинок размером от нескольких микрометров до нескольких сантиметров. Диапазон измеряемых температур большинства термисторов лежит в интервале от 170 до 570 К. Но существуют термисторы для измерения как очень высоких (Т ≈ 1300 К), так и очень низких (Т ≈ 4 - 80 К) температур.

Электрическая проводимость полупроводников повышается не только при нагревании, но и при освещении.

В этом можно убедиться с помощью установки, схема которой изображена на рисунке 1. Можно заметить, что при освещении полупроводника (рис. 1, б) ток в цепи заметно возрастает. Это указывает на увеличение проводимости (уменьшение сопротивления) полупроводников под действием света. Данный эффект не связан с нагреванием, так как может наблюдаться и при неизменной температуре.


Электрическая проводимость возрастает вследствие разрыва связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник. Это явление называют внутренним фотоэлектрическим эффектом.

Приборы, в которых используют внутренний фотоэлектрический эффект в полупроводниках, называют фоторезисторами или фотосопротивлениями. Фоторезисторы изготавливаются в виде тонких слоев полупроводникового вещества, нанесенных на подложку изолятора. Материалами для изготовления фоторезисторов служат соединения типа CdS, CdSe, PbS и ряд других.

Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их в самых различных областях науки и техники для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т.д.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 304-305.

Помимо диодов и транзисторов существуют и другие полупроводниковые приборы. Например, термисторы и фоторезисторы. Данные приборы имеют более легкую конструкцию, чем транзисторы и диоды. Чаще всего они представляют собой небольшие кристаллы полупроводника с контактами.

Термисторы

Мы уже знаем, что сопротивление полупроводника зависит от температуры. Причем для многих веществ эти зависимости уже исследованы. Следовательно, зная значения сопротивления, мы можем говорить о окружающей температуре.

  • Термисторы, или терморезисторы - это полупроводниковые приборы, которые по изменению сопротивления позволяют судить о температуре.

Формы и размеры выпускаемых термисторов колеблются в широких диапазонах: в виде трубок, стержней, дисков, бусинок, шайб и т.д.; от нескольких микрометров до нескольких сантиметров. Термисторы используют для регулирования температуры в диапазоне от 1 до 1800 К .

Термисторы также широко применяются в противопожарных сигнализациях, для контроля температурных режимов различных механизмов. Еще одним способом применения терморезисторов являются бесконтактные переменные резисторы, реле, потенциометры, предохранители и т.д.

Фоторезисторы

Проводимость полупроводников повышается при освещении их. Именно поэтому диоды помещают в специальные герметичные корпуса. За счет энергии светового пучка, падающего на полупроводник, происходит разрыв ковалентных связей, и образуются свободные электроны и дырки. Они становятся носителями заряда, вследствие чего появляется электрический ток. Это явление получило название внутреннего фотоэлектрического эффекта.

  • Фоторезистор – полупроводниковый прибор, сопротивление которого меняется под действием света.

Формы, материалы и размеры выпускаемых фоторезисторов колеблются в широких диапазонах. Чаще всего фоторезисторы используются для регистрации слабых световых сигналов.Помимо обычных фоторезисторов, имеются фоторезисторы, которые способны реагировать на инфракрасное излучение, невидимое человеческому глазу.

Широкое распространение получили фоторезисторы в системах автоматической охраны территорий и помещений. Устройство этих систем очень простое. Световой луч проходит через территорию помещения и попадает на фоторезистор.

Если какое-либо тело появится на пути луча, то свет на фоторезистор не попадет, и на вход другой системы подается импульс – срабатывает сигнал тревоги. Обычно именно здесь используют фоторезисторы, реагирующие на инфракрасные лучи, дабы обеспечить скрытность охранной системы. Свойство изменения сопротивления фоторезистора при пересечении подсвечивающего его светового потока широко используется в различных счетчиках, например, на конвейерах или в частотомерах.

Вывод

Таким образом, подведем краткий итог. Терморезисторы предназначены для измерения температуры. Фоторезисторы для регистрации и измерения слабых световых потоков.

Полупроводниковые приборы, о которых пойдет речь в этом параграфе, имеют значительно более простую конструкцию, чем диоды и транзисторы. Они представляют собой всего-навсего небольшие кристаллики полупроводника с контактами.

Однако, благодаря замечательным свойствам полупроводников, даже эти простейшие приборы способны решать множество трудных, важных и интересных задач в самых разных областях науки и техники. Мы ограничимся рассмотрением лишь двух приборов: термистора и фоторезистора.

Термисторы

Электрическое сопротивление полупроводников зависит от температуры (см. § 3.15). Если эта зависимость для того или иного полупроводника известна (экспериментально исследована), то по изменению сопротивления полупроводника можно судить об изменении температуры.

Такие полупроводниковые приборы и называют терморезисторами или сокращенно термисторами.

Выпускаются термисторы в виде стержней, трубок, дисков, шайб и бусинок размером от нескольких микрометров до нескольких сантиметров.

Рассмотрим более подробно использование термистора в качестве бесконтактного переменного резистора.

В обычном переменном резисторе, применяемом в радиоприемниках, телевизорах и другой радиотехнической аппаратуре, металлический контакт перемещается по токопроводящему слою и постепенно стирает его. Резистор выходит из строя. А ведь в телевизоре, радиоприемнике мы поворачиваем ручку переменного резистора всего лишь несколько раз в день.

Между тем существуют схемы (например, схемы автоматического регулирования), в которых необходимо изменять сопротивление несколько раз в минуту. Обычный переменный резистор с этой задачей не справится.

Незаменимыми в таких случаях оказываются так называемые термисторы с косвенным подогревом. Такой прибор представляет собой термистор, вблизи которого располагается миниатюрная подогревная обмотка. При пропускании по этой обмотке тока она нагревается, нагревает термистор, поэтому его сопротивление изменяется.

Сопротивление обмотки подогревателя составляет обычно несколько десятков ом, сила тока подогрева — 20—40 мА. Так что мощность, необходимая для управления сопротивлением термистора, невелика — порядка десятых или даже сотых долей ватта. Миниатюрные размеры термистора и подогревной обмотки позволяют сконструировать термисторы с косвенным подогревом, обладающие малой тепловой инерцией: при изменении силы тока в обмотке подогревателя новое значение сопротивления устанавливается уже через 5—20 с.

Важным преимуществом термисторов с косвенным подогревом перед обычными потенциометрами является возможность очень легко регулировать сопротивление дистанционно, на любом расстоянии от управляемого объекта или схемы.

Очень эффективным оказывается использование термисторов с косвенным подогревом для измерения скорости движения жидкостей или газов. Принцип измерения основан на том, что при неизменной силе тока в подогревной обмотке температура термистора будет тем меньше (а сопротивление, соответственно, тем больше), чем быстрее обтекается термистор потоком воздуха или жидкости, в которую термистор погружен. Такими приборами можно измерить и очень малые скорости потоков жидкостей и газов, вплоть до 1 мм/с.

Болометры

Интересной и важной разновидностью термисторов являются болометры*, предназначенные для измерения энергии очень слабого теплового излучения. Источником такого излучения может быть свет звезд или Солнца, прошедший через спектрометр и разложенный на тысячи спектральных линий, энергия в каждой из которых очень мала.

Рабочий элемент болометра представляет собой очень тонкую, от долей микрометра до нескольких микрометров, пленку полупроводникового материала, нанесенную на стеклянную или кварцевую подложку.

С помощью современных электронных схем оказывается возможным зарегистрировать изменение температуры болометра на десятимиллионные доли кельвина. Благодаря этому полупроводниковые болометры позволяют обнаружить излучение, мощность которого составляет 10 -7 Вт.

Фоторезисторы

Электрическая проводимость полупроводников повышается не только при нагревании, но и при освещениив этом можно убедиться с помощью установки, схема которой изображена на рисунке 3.62, а. Можно заметить, что при освещении полупроводника (рис. 3.62, б) сила тока в цепи заметно возрастает. Это указывает на увеличение проводимости полупроводника под действием света. Данный эффект не связан с нагреванием, так как может наблюдаться и при неизменной температуре.


Электрическая проводимость полупроводника возрастает вследствие разрыва ковалентных связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник. Это явление называется внутренним фотоэлектрическим эффектом.

Полупроводниковые резисторы, сопротивление которых меняется под действием света, называются фоторезисторами или фотосопротивлениями. Они отличаются друг от друга формой, размерами, материалом, назначением. Миниатюрность и высокая чувствительность фоторезисторов позволяет использовать их в самых различных областях науки и техники для регистрации и измерения слабых световых потоков.

Имеются фоторезисторы, которые способны реагировать не только на видимое излучение, но и невидимое инфракрасное (тепловое) излучение.

Способность фоторезисторов реагировать на тепловое излучение позволяет использовать их для измерения температуры расплавленной стали и чугуна в металлургической промышленности, раскаленной массы материала в керамической, цементной и многих других отраслях промышленности. Приборы, служащие для измерения температуры нагретых тел по интенсивности и спектральному составу теплового излучения, называются пирометрами. Пирометры, в которых использованы фоторезисторы, по сравнению с обычными оптическими приборами, способны измерять температуры, приблизительно в 10 раз более низкие.

Фоторезисторы широко используются в системах автоматической охраны территорий и помещений. Световой луч, проходящий по периметру охраняемой территории, падает на фоторезистор. При пересечении луча сопротивление фоторезистора резко возрастает, и на вход исполнительной системы поступает импульс, вырабатывающий сигнал тревоги. Чтобы обеспечить скрытность охранной системы, применяется инфракрасное излучение. На этом же принципе работает автоматический сторож в метро.

Изменение сопротивления фоторезисторов при пересечении подсвечивающего светового потока используется в многочисленных счетчиках изделий на конвейерах, в частотомерах, в защитных устройствах, ограждающих травмоопасные зоны станков и механизмов, в устройствах чтения перфокарт в электронных вычислительных машинах.

распределение электрической энергии между це пями и элементами схем.

На практике, кроме линейных резисторов, иногда встречаются

термозависимые (терморезисторы) и нелинейные (варисторы) резисторы.

Нелинейные свойства подобных ре зисторов позволяют применять и х в

стабилизаторах и ограничителях напряжения, для формирования импульсов, для

измерения температуры. В связи с тем, что многим современным электрическим

приборам требуется параметрическая термостабилизация, защита от импульсных

воздействий напряжения, наиболее удобными (из–за размеров, количества


Терморезистор – резистор, в котором используется зависимость

Терморезисторы выполняют или из металла, сопротивле ние которого

линейно меняется п ри изменении температуры (медь, платина), или на основ е

полупроводников. Наиболее подходящим и распространенным материалом для

изготовления терморезисторов являются полупроводники, обладающие более

Различают два типа терморезисторов: термистор, сопрот ивление которого

падает с ростом температуры, и позистор, у которого сопротивление с повышением

В термисторах прямого подогрева сопротивлен ие изменяется или под

влиянием теплоты, выделяющейся в них при прохождении электрического тока,

или в результате изменения температуры термистора вследствие изменения его

теплового облучения (например, при измене нии температуры окружающей среды).


Термисторы же косвенного подогрева имеют дополнительный источник

теплоты - подогреватель. Конс труктивное исполнение может быть р азличным.

Часто подогреватель делают в вид е обмотки на изоляционной трубке , внутри

которой расположен термистор. В других случаях сам термистор сделан в виде

трубки, внутри которой проходит нить подогрева. Нужно отме тить, что общим для

термисторов косвенного подогрева всех возможных конструкций является то, что у

них есть две электрически изол ированные друг от друга цепи: управляющая и

Нужно отметить, что термисторы изготовляются как из монокристаллов

ковалентных полупроводников, так и методом керамического обжига заготовок

Позистор – это терморезистор с положительным температурным

коэффициентом сопротивления. В ма ссовом произ водстве позисторы делают на

У те рмисторов уменьшение сопротивления полупроводника с увеличением

температуры (отрицательный температурный коэффициент со противления) может

быть вызвано различными пр ичинами – увеличением концентраци и носителей

заряда, увеличением интенсив ности обме на электронами между ионами с

переменной валентностью или фазовыми превращениями полупроводникового

В диапазонах температур, где полу проводники обладают отрицательным

коэффициентом сопротивления, зависимость сопротивления от температуры

где B – коэффи циент т емпературной чувствительности (опр еделяет

размеров терм истора. Д ля позис торов действует т а же формула . Различают

терморезисторы низкотемпературные (рассчитанные на работу при температурах

ниже 170 К), среднетемпературные (170—510 К) и высокотемпературные (выше

570 К ). Кроме того, существуют терморезисторы, предназначенные для ра боты при

4.2 К и ниже и п ри 900—1300 К. Наиболее, широко и спользуются


среднетемпературные терморезисторы с ТКС от — 2,4 до —8,4 V% К

Основная часть терморезисторов, выпускаемых промышленностью,

изготовлена из оксидных полупроводников – оксидов металлов переходной группы

таблицы Д.И. Менделеева (от титана до цинка). Терморезистор изготовляют в виде

стержней, трубок, дисков, шайб, бусинок и тонких пластинок.

Принцип действия терморезисторов, в зависимости от на значения,

Температурная характеристика те рмистора – совпадает с температурной

зависимостью сопротивления полупроводника, из которого изготовлен

терморезистор. Пример температурной х арактеристики приведен на рис.3.

Номинальное сопротивление термистора – это его сопротивление при

допустимым отклонением от номинального сопротивления

Номинальное сопротивление различных типов термисторов имеют значения от

Коэффициент температурной чувствительности – коэффициент в

показателе экспоненты температурной характеристики термистора (1.1).Значение

для данного термистора, зависящее от свойств материала, практически постоянно в


рабочем диапазоне температур и лежит в пределах от 700 до 15000 К . Он может

быть найден экспериментально, путем измерения сопротивлений термистора при

определяемая отношением отн осительного изменения сопротивления к изменению

Коэффициент рассеяния термистора H численно ра вен мощности, которую

надо выделить в термисторе, чтобы нагреть его на 1 К.

Статическая вольт – амперная характеристика – это зависи мость падения

напряжения на термисторе от проходящего через него тока в условиях теплового

равновесия между термистором и окружающей средой (рис. 4).

Рис.4. Статические вольт – амперные характер истики термисторов прямого

подогрева (сплошные линии) и гиперболы равной мощност и

Она имеет ярко выраженный нелинейный характер, т.к. при протекании тока

выделяется определенная мощность, что изменяет температуру термистора и,

следовательно, его сопротивление. Для к аждой точки статической вольт –

амперной ха рактеристики мож но записать уравнение энергетического баланса:

распространение теплоты от рабочего тела в окружающую сре ду за счет


и окружающей среды. Если учесть уравнение (1.1), то из уравнения

энергетического баланса можно получить уравнения ВАХ в параметрическом виде:

Вид статической ВАХ термистора определяется коэффициентом рассеяния

H, коэффициентом температурной чувствительности B, номинальным

сопротивлением термистора и температурой окружающей с реды. При уменьшении

коэффициента рассеяния H (например, при уменьшении давления, окружающего

термистор) происходит более интенсивный разогрев те рмистора и, следовательно,

те же темпер атуры достигаются при ме ньших мощностях тока, т.е. статическая

ВАХ смещается вниз. При увеличении температуры окружающей среды

уменьшается сопротивление термистора, снижается максимум статической В АХ и

уменьшается ее крутизна. Такую зависимость и спользуют в системах

автоматического контроля и регулирования температуры. Увеличение

коэффициента температурной чувствительности B приводит к смещению

максимума статической ВАХ в сторону меньших мощностей, а крутизна

Максимально допустимая температура термистора – температура, при

которой еще не происходит необратимых изменений па раметров и характеристик

термистора. Она определяется конструктивными особенностями и свойствами

Максимально допустимая мощность рассеяния – это мощность, при которой

прохождении тока до максимально допустимой температуры.

Коэффициент энергетич еской чувствительности G численно равен

мощности, которую необходимо подвести к термистору для уменьшения его

сопротивления на 1%.. Он связан с температурным коэффициентом сопротивления

и коэффициентом ра ссеяния термистора соотноше нием


температура термистора уменьшится на 63% (в e раз) по отношению к разности

термистора и окружающей среды. Тепловая инерционность, характеризуемая

постоянной времени, определяется конс трукцией и размерами термистора и

зависит от теплопроводности с реды, в которой находится термистор.

При ознакомлении с термисторами косвенного подогрева, кроме

номинального сопротивления и температурной чувствительности, существуют и

Статические вольт – амперные характеристики термисторов косвенного

подогрева приводят для различных токов через подогреватель (рис.5).

Подогревная характеристика – зависимость сопротивления те рмистора от

мощности, выделяемой в спирали подогревной обмотки (рис.6) .

Рис.6. Подогревная характеристика термистора косвенного подогрева

Для получения наибольшей чувствительности термистора косвенного

подогрева (наибольшего изменения сопротивления) его следует использов ать в


режимах, при которых мощностью, выделяемой н а с амом термочувствительном

элементе проходящим через него током, можно было бы пренебречь.

для разогрева термочувствительного элемента до некоторой температуры при

Постоянные времени . Тепловая инерционность термисторов косвенного

подогрева характеризуется двумя постоянными времен и. За первую постоянную

времени принимают время, в те чение которого температура термочувствительного

элемента изменяется в е раз п о отношению к установившемуся значению при

мгновенном изменении мощности в цепи подогревателя (тепловая инерционность

всей конструкции термистора косвенного подогрева). Вторая постоянная времени

характеризует задержку в изменении те мпературы термочувствительного элемента

по отношению к изменению те мпературы подогревателя (тепловая инерционность

По а налогии с термисторами, можно оценивать свойства позисторов теми же

Температурная характеристика . Зависимость сопротивления позисторов от

температуры показана на рис.7. При относительно алых и больших температурах у

Читайте также: