Доклад на тему теория вероятности в программировании

Обновлено: 30.06.2024

Людей всегда интересовало будущее. Человечество всё время было в поисках способа его предугадать, или спланировать, в разное время разными методами. В наше время есть теория, которую наука признает и пользуется для планирования и прогнозирования будущего. Речь идет о теории вероятностей.

Цель : познакомится с историей возникновения теории вероятности определить ее значение в современном мире.

1. собрать и изучить материал о теории вероятностей, воспользовавшись различными источниками информации;

2.Познакомиться с основной формулой теории вероятности;

3. Научиться решать задачи на определение классической вероятности

Актуальность:

Вероятность — одно из основных понятий не только в математической статистике, но и в жизни любого человека. Так каждому из нас каждый день приходится принимать множество решений в условиях неопределенности.

вероятностей в повседневном быту, хотя может и не знать математические формулы и распределения кривой вероятности, и это не обязательно. Жизненный опыт, логика и интуиция всегда подсказывают человеку его шансы на удачу, будь то поступление на работу, карьера, личная жизнь, решение проблем, возможность выигрыша и т.п.

С помощью теории вероятностей можно с большой степенью уверенности предсказать события, происходящие в нашей жизни.

Теория вероятностей

Теория вероятностей — это раздел математики, который занимается анализом случайных событий. С её помощью можно вычислить вероятность события — оно показывает насколько вероятно, что какое-то событие произойдёт. Это число всегда находится в интервале между 0 и 1, где 0 — означает невозможность, а 1 — оно точно произойдёт (достоверное событие). Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины.

История возникновения теории вероятностей

Французский дворянин, неизвестный господин де Мере, был азартным игроком в кости и всем сердцем хотел разбогатеть. Он потерял много времени, чтобы открыть загадку игры в кости. Он придумывал различные версии игры, полагая, что таким образом получит крупное состояние. Так, например, он предлагал бросать одну кость по очереди 4 раза и убеждал партнера, что по крайней мере один раз выпадет при этом шестерка. Если за 4 броска шестерка не выходила, то выигрывал соперник.

В тот период еще не существовала отрасль математики, которую на сегодняшний день мы называем теорией вероятностей, а поэтому, чтобы убедиться, верны ли его предположения, господин Мере обратился к своему знакомому, известному математику и философу Б. Паскалю с просьбой, чтобы он рассмотрел два знаменитых вопроса, первый из которых он попытался решить сам. Вопросы были такие:

Сколько раз надо бросать две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний?

Как справедливо разделить поставленные на кон двумя игроками деньги, если они по каким-то причинам прекратили игру преждевременно?

Паскаль не только сам проявил интерес, но и написал письмо известному математику П. Ферма, чем подтолкнул его заняться общими законами игры в кости и вероятностью выигрыша.

Основная формула теории вероятностей

При изучении явлений, мы проводим эксперименты, в ходе которых происходят различные события, среди которых различают: случайные, достоверные, равновероятные, невозможные.

Равновероятные события – это события, которые при данных условиях имеют одинаковые шансы для наступления.

Невозможным событием называется событие, которое не может произойти в результате эксперимента.

Наряду с понятием равновозможности в общем случае для классического определения необходимо также понятие элементарного события (исхода), благоприятствующего или нет изучаемому событию A. Речь идёт об исходах,

наступление которых исключает возможность наступления иных исходов. Это несовместимые элементарные события. К примеру при бросании игральной кости выпадение конкретного числа исключает выпадение остальных чисел.

Классическое определение вероятности можно сформулировать следующим образом:

Вероятностью события А называется отношение числа m благоприятных для этого события исходов к n числу всех равновозможных исходов. Вероятность выражают в процентах.

Вероятность события обозначается большой латинской буквой Р (от французского слова probabilite, что означает – возможность, вероятность)

m – число элементарных исходов, благоприятствующих событию

n – число всех равновозможных несовместных элементарных исходов, образующих полную группу.

Классическое определение вероятности используется для выявления

благоприятных исходов теоретическим путем.

Свойство 1. Вероятность достоверно события А равна единице. Р(А)=1

Свойство 2. Вероятность невозможного события В равна нулю. Р(В)=0

Свойство 3. Вероятность случайного события С – это положительное

число, заключенное между нулем и единицей.

Классификация событий

Событие – это исход наблюдения или эксперимента.

Случайные и неслучайные события

События бывают двух видов – случайные и неслучайные. Случайным событием называется то событие, которое может, как произойти, так и не произойти. Неслучайное событие – это то событие, которое может либо произойти обязательно, либо в данных условиях не происходящее.

Неслучайные события делятся на две группы.

Случайные события делятся больше чем на две группы. О видах случайных и неслучайных событий ниже.

Достоверные и невозможные события

Неслучайные события делятся на две группы – достоверные события и невозможные события. Достоверным событием называют то событие, которое обязательно произойдет. Такое событие обозначается буквой E. Невозможным событием называют то событие, которое в данных условиях произойти не может. Такое событие обозначается буквой U.

Вероятность достоверного события всегда равна 1. Вероятность невозможного события всегда равна 0. Например, если из урны только с черными шарами вытащить шар, то достоверным событием будет то, что вытащенный шар окажется, черным. А невозможным событием будет то, что вытащенный шар окажется белым.

Совместные, несовместные и противоположные события

Случайные события тоже делятся на несколько групп. В этом подпункте поговорим о совместных, несовместных и противоположных событиях. Совместным событием называются два события, которые могут произойти в

Зависимые и независимые события

Существуют еще две группы случайных событий – зависимые и независимые события. Независимыми событиями называют события если, условная вероятность каждого из них равна безусловной вероятности, то есть если P(AB) = P(A). Где P- вероятность события, A – одно событие, B – другое событие. - обозначает условную вероятность.

Зависимыми событиями называют события, если, условная вероятность

каждого из них не равна безусловной вероятности, то есть если P(AB)≠P(A). К примеру, из урны с тремя белыми и семью черными шарами последовательно извлекают два шара. Если первый вынутый шар не возвращается в урну, то события B и B1 зависимые; в случае возвращения в урну первого вынутого шара события B и B1 будут независимыми. Смысл независимости случайных событий заключается в том, что вероятность появления одного события не зависит от того, произошло или не произошло другое событие. Независимые события являются результатом не связанных между собой испытаний. А для зависимых событий вероятность появления одного события зависит от того, произошло или не произошло другое событие.

Задачи на определение классической вероятности

Задача 1. На семинар приехали 6 учёных из Норвегии, 5 из России и 9 из Испании. Каждый учёный подготовил один доклад. Порядок докладов определяется случайным образом. Найдите вероятность того, что восьмым окажется доклад учёного из России.

Решение. Число благоприятных исходов –это и есть число участников семинара из России. Их пятеро. Общее число исходов 6+5+9=20, -это количество учёных, участвующих в семинаре. Итак, искомая вероятность равна 5/ 20=0, 25

Замечание: решительно всё равно, каким по счёту, восьмым, как в условии

задачи, или первым, вторым, третьим, …, двадцатым будет выступать

российский докладчик. Искомая вероятность зависит только от количества российских учёных и общего количества участников.

Задача 3. На борту самолёта 26 мест рядом с запасными выходами и 10 мест за перегородками, разделяющими салоны. Остальные места неудобны дляпассажира высокого роста. Пассажир Д. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Д. достанется удобное место, если всего в самолёте 300 мест.

Решение: Удобных для пассажира Д. мест 26+10=36. Общее число мест для пассажиров -300. Значит, искомая вероятность равна

Задача 4. На экзамене будет 50 билетов, Оскар не выучил 7 из них. Найдите вероятность того, что ему попадётся выученный билет.

Решение: Невелик у Оскара шанс получить выученный билет:.7/ 50=0, 14

Задача 5. Научная конференция проводится в 3 дня. Всего запланировано 50 докладов: в первый день—18 докладов, остальные распределены поровну между вторым и третьим днями. На конференции планируется доклад профессора М.

Порядок докладов определяется случайным образом. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: Последний день конференции – третий. Количество докладов,

запланированных во второй, а также и в третий день конференции: 50-18/ 2=16. Это и есть число благоприятных для профессора М. исходов. Вычисляем вероятность выступления докладчика в третий день:.16/50=0,32

В результате проделанной мной работы, я добилась реализации поставленных перед собой задач:

Во-первых, собрала и изучила материал о теории вероятностей, воспользовавшись различными источниками информации;

Во-вторых, п ознакомилась с основной формулой теории вероятности;

В-третьих, научилась решать задачи на определение классической вероятности.

Следовательно выдвинутая мной гипотеза подтвердилась, с помощью теории вероятностей я доказала, что п роисходящие в нашей жизни события можно предсказать.

Мы познакомились с определением теории вероятностей. Изучили историю возникновения. Узнали, что теория вероятностей изучает закономерности, возникающие в случайных экспериментах. Случайным называют эксперимент, результат которого нельзя предсказать заранее. Невозможность предсказать результат отличает случайное явление от определяемого. Практическое применение теории вероятностей велико. Ч еловек часто применяет теорию вероятностей в повседневном быту, хотя может и не знать математические формулы. С помощью формул и примеров научились решать задачи на определение классической вероятности.

Таким образом, рассмотрев теорию вероятности, ее положения и возможности, можно утверждать, что возникновение данной теории не было случайным явлением в науке, а было вызвано необходимостью дальнейшего развития технологии.

Некоторые программисты после работы в области разработки обычных коммерческих приложений задумываются о том, чтобы освоить машинное обучение и стать аналитиком данных. Часто они не понимают, почему те или иные методы работают, и большинство методов машинного обучения кажутся магией. На самом деле, машинное обучение базируется на математической статистике, а та, в свою очередь, основана на теории вероятностей. Поэтому в этой статье мы уделим внимание базовым понятиям теории вероятностей: затронем определения вероятности, распределения и разберем несколько простых примеров.

Возможно, вам известно, что теория вероятностей условно делится на 2 части. Дискретная теория вероятностей изучает явления, которые можно описать распределением с конечным (или счетным) количеством возможных вариантов поведения (бросания игральных костей, монеток). Непрерывная теория вероятностей изучает явления, распределенные на каком-то плотном множестве, например на отрезке или в круге.

Можно рассмотреть предмет теории вероятностей на простом примере. Представьте себя разработчиком шутера. Неотъемлемой частью разработки игр этого жанра является механика стрельбы. Ясно, что шутер в котором всё оружие стреляет абсолютно точно, будет малоинтересен игрокам. Поэтому, обязательно нужно добавлять оружию разброс. Но простая рандомизация точек попадания оружия не позволит сделать его тонкую настройку, поэтому, корректировка игрового баланса будет сложна. В то же время, используя случайные величины и их распределения можно проанализировать то, как будет работать оружие с заданным разбросом, и поможет внести необходимые корректировки.

Пространство элементарных исходов

Допустим, из некоторого случайного эксперимента, который мы можем многократно повторять (например, бросание монеты), мы можем извлечь некоторую формализуемую информацию (выпал орел или решка). Эта информация называется элементарным исходом, при этом целесообразно рассматривать множество всех элементарных исходов, часто обозначаемое буквой Ω (Омега).

Структура этого пространства целиком зависит от природы эксперимента. Например, если рассматривать стрельбу по достаточно большой круговой мишени, — пространством элементарных исходов будет круг, для удобства размещенный с центром в нуле, а исходом — точка в этом круге.

Мера и вероятность

Вероятность — это способ делать выводы о поведении очень сложных объектов, не вникая в принцип их работы. Таким образом, вероятность определяется как функция от события (из того самого хорошего семейства множеств), которая возвращает число — некоторую характеристику того, насколько часто может происходить такое событие в реальности. Для определённости математики условились, что это число должно лежать между нулем и единицей. Кроме того, к этой функции предъявляются требования: вероятность невозможного события нулевая, вероятность всего множества исходов единичная, и вероятность объединения двух независимых событий (непересекающихся множеств) равна сумме вероятностей. Другое название вероятности — вероятностная мера. Чаще всего используется Лебегова мера, обобщающая понятия длина, площадь, объём на любые размерности ( n -мерный объем), и таким образом она применима для широкого класса множеств.

Вместе совокупность множества элементарных исходов, семейства множеств и вероятностной меры называется вероятностным пространством. Рассмотрим, каким образом можно построить вероятностное пространство для примера со стрельбой в мишень.

Рассмотрим стрельбу в большую круглую мишень радиуса R , в которую невозможно промахнуться. Множеством элементарных событий положим круг с центром в начале координат радиуса R . Поскольку мы собираемся использовать площадь (меру Лебега для двумерных множеств) для описания вероятности события, то будем использовать семейство измеримых (для которых эта мера существует) множеств.

Как уже сказано выше, вероятность всего пространства элементарных исходов должна равняться единице. Площадь (двумерная мера Лебега, которую мы обозначим λ2 (A) , где А — событие) круга по хорошо известной со школы формуле равна π *R 2 . Тогда мы можем ввести вероятность P(A) = λ2 (A) / (π *R 2 ) , и эта величина уже будет лежать между 0 и 1 для любого события А .

Если предположить, что попадание в любую точку мишени равновероятно, поиск вероятности попадания стрелком в какую-то то область мишени сводится к поиску площади этого множества (отсюда можно сделать вывод, что вероятность попадания в конкретную точку нулевая, ведь площадь точки равна нулю).

Случайные величины

Случайная величина — функция, переводящая элементарные исходы в вещественные числа. К примеру, в рассмотренной задаче мы можем ввести случайную величину ρ(ω) — расстояние от точки попадания до центра мишени. Простота нашей модели позволяет явно задать пространство элементарных исходов: Ω = . Тогда случайная величина ρ(ω) = ρ(x,y) = x 2 +y 2 .

Средства абстракции от вероятностного пространства. Функция распределения и плотность

Хорошо, когда структура пространства хорошо известна, но на самом деле так бывает далеко не всегда. Даже если структура пространства известна, она может быть сложна. Для описания случайных величин, если их выражение неизвестно, существует понятие функции распределения, которую обозначают Fξ(x) = P(ξ (нижний индекс ξ здесь означает случайную величину). Т.е. это вероятность множества всех таких элементарных исходов, для которых значение случайной величины ξ на этом событии меньше, чем заданный параметр x .

Функция распределения обладает несколькими свойствами:

  1. Во-первых, она находится между 0 и 1 .
  2. Во-вторых, она не убывает, когда ее аргумент x растёт.
  3. В третьих, когда число -x очень велико, функция распределения близка к 0 , а когда само х большое, функция распределения близка к 1 .

Вероятно, смысл этой конструкции при первом чтении не слишком понятен. Одно из полезных свойств — функция распределения позволяет искать вероятность того, что величина принимает значение из интервала. Итак, P (случайная величина ξ принимает значения из интервала [a;b]) = Fξ(b)-Fξ(a) . Исходя из этого равенства, можем исследовать, как изменяется эта величина, если границы a и b интервала близки.

Пусть d = b-a , тогда b = a+d . А следовательно, Fξ(b)-Fξ(a) = Fξ(a+d) - Fξ(a) . При малых значениях d , указанная выше разность так же мала (если распределение непрерывное). Имеет смысл рассматривать отношение pξ(a,d)= (Fξ(a+d) - Fξ(a))/d . Если при достаточно малых значениях d это отношение мало отличается от некоторой константы pξ(a) , не зависящей от d, то в этой точке случайная величина имеет плотность, равную pξ(a) .

Теперь смысл функции распределения можно определить так: её производная (плотность pξ , которую мы определили выше) в точке а описывает, насколько часто случайная величина будет попадать в небольшой интервал с центром в точке а (окрестность точки а ) по сравнению с окрестностями других точек. Другими словами, чем быстрее растёт функция распределения, тем более вероятно появление такого значения при случайном эксперименте.

Вернемся к примеру. Мы можем вычислить функцию распределения для случайной величины, ρ(ω) = ρ(x,y) = x 2 +y 2 , которая обозначает расстояние от центра до точки случайного попадания в мишень. По определению Fρ(t) = P(ρ(x,y) . т.е. множество

Мы можем найти плотность pρ этой случайной величины. Сразу заметим, что вне интервала [0,R] она нулевая, т.к. функция распределения на этом промежутке неизменна. На концах этого интервала плотность не определена. Внутри интервала её можно найти, используя таблицу производных (например из [PDF] на сайте Mathprofi) и элементарные правила дифференцирования. Производная от t 2 /R 2 равна 2t/R 2 . Значит, плотность мы нашли на всей оси вещественных чисел.

Ещё одно полезное свойство плотности — вероятность того, что функция принимает значение из промежутка, вычисляется при помощи интеграла от плотности по этому промежутку (ознакомиться с тем, что это такое, можно в статьях о собственном, несобственном, неопределенном интегралах на сайте Mathprofi).

При первом чтении, интеграл по промежутку [a; b] от функции f(x) можно представлять себе как площадь криволинейной трапеции. Ее сторонами являются фрагмент оси Ох, промежуток [a,b] (горизонтальной оси координат), вертикальные отрезки, соединяющие точки (a,f(a)), (b,f(b)) на кривой с точками (a,0), (b,0) на оси Ох . Последней стороной является фрагмент графика функции f от (a,f(a)) до (b,f(b)) . Можно говорить об интеграле по промежутку (-∞; b] , когда для достаточно больших отрицательных значений, a значение интеграла по промежутку [a;b] будет меняться пренебрежимо мало по сравнению с изменением числа a. Аналогичным образом определяется и интеграл по промежуткам [a;+∞), (-∞,∞) .

Следующее важное свойство плотности — интеграл от плотности любой случайной величины равен единице. Трактовка этого свойства такова: вероятность того, что функция принимает любое значение равна единице. Кроме того, при вычислении интегралов от плотностей случайных величин, значения которых лежат в ограниченном промежутке, нужно брать интеграл только по этому промежутку.

Итак, мы разобрались с несколькими важными понятиями: со строгим построением вероятностного пространства и построением случайных величин на нём. Кроме того, мы научились абстрагироваться от конкретного вероятностного пространства при помощи функции распределения и плотности.

Эта публикация является первой частью краткого вступления с иллюстрациями в вероятностное программирование, которое является одним из современных прикладных направлений машинного обучения и искусственного интеллекта. Во время написания этой публикации я с радостью обнаружил, что на Хабрахабре совсем недавно уже была статья о вероятностном программировании с рассмотрением прикладных примеров из области теории познания, хотя, к сожалению, в русскоговоряющем Интернете пока мало материалов на эту тему.

Я, автор, Юра Перов, занимаюсь вероятностным программированием в течение уже двух лет в рамках своей основной учебно-научной деятельности. Продуктивное знакомство с вероятностным программированием у меня сложилось, когда будучи студентом Института математики и фундаментальной информатики Сибирского федерального университета, я проходил стажировку в Лаборатории компьютерных наук и искусственного интеллекта в Массачусетском технологическом институте под руководством профессора Джошуа Тененбаума и доктора Викаша Мансингхи, а затем продолжилось на Факультете технических наук Оксфордского университета, где на данный момент я являюсь студентом-магистром под руководством профессора Френка Вуда.


Например, если у нас есть мальчик Вася, и мы знаем где он находится, куда он бросает мяч и каковы внешние условия (например, сила ветра), мы узнаем, какое окно он, к сожалению, разобьет в здании школы. Для этого достаточно симулировать простые законы школьной физики, которые легко можно записать в виде алгоритма.


А теперь вероятностное программирование

Однако часто мы знаем только результат, исход, и мы заинтересованы в том, чтобы узнать то, какие неизвестные значения привели именно к этому результату? Чтобы ответить на этот вопрос с помощью теории математического моделирования создается вероятностная модель, часть параметров которой не определены точно.

Например, в случае с мальчиком Васей, зная то, какое окно он разбил, и имея априорные знания о том, около какого окна он и его друзья обычно играют в футбол, и зная прогноз погоды на этот день, мы хотим узнать апостериорные распределение местоположения мальчика Васи: откуда же он бросал мяч?


Итак, зная выходные данные, мы заинтересованы в том, чтобы узнать наиболее вероятные значения скрытых, неизвестных параметров.

В рамках машинного обучения рассматриваются в том числе порождающие вероятностные модели. В рамках порождающих вероятностных моделей модель описывается как алгоритм, но вместо точных однозначных значений скрытых параметров и некоторых входных параметров мы используем вероятностные распределениях на них.

Пример Байесовской линейной регрессии

Рассмотрим задание простой вероятностной модели Байесовской линейной регрессии на языке вероятностного программирования Venture/Anglican в виде вероятностной программы:


Скрытые искомые параметры — значения коэффициентов t1 и t2 линейной функции x = t1 + t2 * time. У нас есть априорные предположения о данных коэффициентах, а именно мы предполагаем, что они распределены по закону нормального распределения Normal(0, 1) со средним 0 и стандартным отклонением 1. Таким образом, мы определили в первых двух строках вероятностной программы априорную вероятность на скрытые переменные, P(T). Инструкцию [ASSUME name expression] можно рассматривать как определение случайной величины с именем name, принимающей значение вычисляемого выражение (программного кода) expression, которое содержит в себе неопределенность.

Вероятностные языки программирования (имеются в виду конкретно Church, Venture, Anglican), как и Lisp/Scheme, являются функциональными языками программирования, и используют польскую нотацию при записи выражений для вычисления. Это означает, что в выражении вызова функции сначала располагается оператор, а уже только потом аргументы: (+ 1 2), и вызов функции обрамляется круглыми скобками. На других языках программирования, таких как C++ или Python, это будет эквивалентно коду 1 + 2.

  • Вызов детерминированных процедур (primitive-procedure arg1… argN), которые при одних и тех же аргументах всегда возвращают одно и то же значение. К таким процедурам, например, относятся арифметические операции.
  • Вызов вероятностных (стохастических) процедур (stochastic-procedure arg1… argN), которые при каждом вызове генерируют случайным образом элемент из соответствующего распределения. Такой вызов определяет новую случайную величину. Например, вызов вероятностной процедуры (normal 1 10) определяет случайную величину, распределенную по закону нормального распределения Normal(1, sqrt(10)), и результатом выполнения каждый раз будет какое-то вещественное число.
  • Вызов составных процедур (compound-procedure arg1… argN), где compound-procedure — введенная пользователем процедура с помощью специального выражения lambda: (lambda (arg1… argN) body), где body — тело процедуры, состоящее из выражений. В общем случае составная процедура является стохастической (недетерминированной) составной процедурой, так как ее тело может содержать вызовы вероятностных процедур.

Перед вводом непосредственно самих наблюдений с помощью выражения [OBSERVE . ] мы определяем общий закон для наблюдаемых переменных xi в рамках нашей модели, а именно мы предполагаем, что данные наблюдаемые случайные величины при заданных t1, t2 и заданном уровне шума noise распределены по закону нормального распределения Normal(t1 + t2 * time, sqrt(noise)) со средним t1 + t2 * time и стандартным отклонением noise. Данная условная вероятность определена на строках 3 и 4 данной вероятностной программы. noisy_x определена как функция, принимающая параметр time и возвращающая случайное значение, определенное с помощью вычисления выражение (normal (+ t1 (* t2 time)) noise) и обусловленное значениями случайных величин t1 и t2 и переменной noise. Отметим, что выражение (normal (+ t1 (* t2 time)) noise) содержит в себе неопределенность, поэтому каждый раз при его вычислении мы будем получать в общем случае разное значение.

На строках 5—7 мы непосредственно вводим известные значения x1 = 10.3, x2 = 11.1, x3 = 11.9. Инструкция вида [OBSERVE expression value] фиксирует наблюдение о том, что случайная величина, принимающая значение согласно выполнению выражения expression, приняла значение value.

Повторим на данном этапе всё, что мы сделали. На строках 1—4 с помощью инструкций вида [ASSUME . ] мы задали непосредственно саму вероятностную модель: P(T) и P(X | T). На строках 5—7 мы непосредственно задали известные нам значения наблюдаемых случайных величин X с помощью инструкций вида [OBSERVE . ].

На строках 8—9 мы запрашиваем у системы вероятностного программирования апостериорное распределение P(T | X) скрытых случайных величин t1 и t2. Как уже было сказано, при большом объеме данных и достаточно сложных моделях получить точное аналитическое представление невозможно, поэтому инструкции вида [PREDICT . ] генерируют выборку значений случайных величин из апостериорного распределения P(T | X) или его приближения. Инструкция вида [PREDICT expression] в общем случае генерирует один элемент выборки из значений случайной величины, принимающей значение согласно выполнению выражения expression. Если перед инструкциями вида [PREDICT . ] расположены инструкции вида [OBSERVE . ], то выборка будет из апостериорного распределения (говоря точнее, конечно, из приближения апостериорного распределения), обусловленного перечисленными ранее введенными наблюдениями.

Отметим, что в завершении мы можем также предсказать значение функции x(time) в другой точке, например, при time = 4.0. Под предсказанием в данном случае понимается генерация выборки из апостериорного распределения новой случайной величины при значениях скрытых случайных величин t1, t2 и параметре time = 4.0.

Для генерации выборки из апостериорного распределения P(T | X) в языке программирования Venture в качестве основного используется алгоритм Метрополиса-Гастингса, который относится к методам Монте-Карло по схеме Марковских цепей. Под обобщенным выводом в данном случае понимается то, что алгоритм может быть применен к любым вероятностным программам, написанным на данном вероятностном языке программирования.

В видео, прикрепленном ниже, можно посмотреть на происходящий статистический вывод в данной модели.

(На видео показан пример, основанный на языке вероятностного программирования Venture.)

В самом начале у нас нет данных, поэтому мы видим априорное распределение прямых. Добавляя точку за точкой (таким образом, элементы данных), мы видим элементы выборки из апостериорного распределения.

На этом мы закончим первую часть данного вступления в вероятностное программирование.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МАОУ лицей ИГУ, liguirk.ru Докладчик: Лавлинский Максим Викторович, учитель и.

Описание презентации по отдельным слайдам:

МАОУ лицей ИГУ, liguirk.ru Докладчик: Лавлинский Максим Викторович, учитель и.

План доклада: Актуальность применения ИТ при изучении ТВ и МС Применение MS E.

План доклада: Актуальность применения ИТ при изучении ТВ и МС Применение MS Excel Применение Pascal Выводы

Актуальность применения ИТ при изучении ТВ и МС Использование компьютерных те.

Актуальность применения ИТ при изучении ТВ и МС Использование компьютерных технологий позволяет раскрыть статистическую природу практически всех предусмотренных программой понятий и фактов теории вероятностей Посредством компьютерного моделирования можно многие факты теории вероятностей сделать наглядными С помощью компьютерных статистических экспериментов можно моделировать описываемые в задачах ситуации и сравнивать получаемые в эксперименте результаты с теоретическими расчетами

2. Применение MS Excel

2. Применение MS Excel

Моделирование случайных процессов в Excel Задача 1. Кубики Двое игроков броса.

Моделирование случайных процессов в Excel Задача 1. Кубики Двое игроков бросают игральный кубик. Определить результат игры. Математическая модель: Исходные данные: x, y – очки, выпавшие у 1-го и 2-го игрока Выходные данные: результат – кто победил Связь: х>у  победил 1-ый; х=у  ничья; x B5;СЦЕПИТЬ(B2;" победил"); ЕСЛИ(B3

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов


Курс повышения квалификации

Охрана труда


Курс профессиональной переподготовки

Охрана труда


Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 606 939 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 14.12.2018 592
  • PPTX 1.7 мбайт
  • 1 скачивание
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Лавлинский Максим Викторович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Минтруд предложил упростить направление маткапитала на образование

Время чтения: 1 минута

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Читайте также: