Доклад на тему протезы

Обновлено: 14.05.2024

История сохранила интереснейшие факты, находки и открытия, иллюстрирующие, какой долгий путь эволюции прошло протезирование от древности до наших дней, чтобы сегодня в распоряжении врачей-стоматологов — к счастью для их пациентов — были современнейшие материалы и технологии.

Проблема вселенского масштаба

Дерево твердых пород, палочки бамбука, раковины мидий, зубы и кости животных, минералы и полудрагоценные камни — с использования этих материалов и началось развитие протезирования, которое широко практиковалось уже древними египтянами, финикийцами, этрусками, китайцами, индейцами, римлянами, греками и арабами. Надо отдать должное большой изобретательности врачевателей тех далеких эпох, которые пытались найти не только оригинальные, но и практичные и по-своему красивые решения, чтобы помочь своим страдающим пациентам. Так, в Гондурасе была найдена челюсть человека, жившего в VI в. до н. э., с зубными протезами, сделанными из раковин морских мидий. А в Египте в одном из древних захоронений археологи обнаружили череп с искусственным зубом из твердой древесины. Эта находка, интересная сама по себе, примечательна тем, что дерево как материал для изготовления искусственных зубов использовалось довольно редко. Как определили археологи, возраст захоронения составляет 4,5 тыс. лет, то есть деревянный зуб был сделан в ту пору, когда стоматология в Древнем Египте уже была развита на достаточно высоком уровне. Но квалифицированная помощь, разумеется, была доступна только высшему сословию. Известно даже имя древнейшего дантиста фараонов — звали его Хеси-Ре, и жил он как раз 4500 лет назад, так что, возможно, тот самый зуб — его творение.

Для фиксации протезов (и для укрепления подвижных зубов), как правило, применялась золотая проволока. Этот способ, который можно считать прототипом современного мостовидного протеза и шинирующих конструкций, практиковали еще финикийцы в III—IV вв. до н. э. Этруски позднее его усовершенствовали и использовали для изготовления полных съемных протезов. Это были прочные, добротно сделанные конструкции, с помощью которых можно было пережевывать грубую пищу. Для восстановления жевательной функции использовались мосты и коронки.

Знания и опыт этрусков в стоматологии и, в частности, протезировании переняли греческие и римские врачеватели, которые также широко использовали золотую проволоку. Более того, эта методика была прописана в Законах 12 таблиц (451—450 гг. до н. э.) — первом письменном источнике права Древнего Рима.

Для изготовления протезов применялись также дерево, бычья, слоновая кость или кость гиппопотама и человеческие зубы. Интересно, что протезированием занимались не только врачи, но и цирюльники, массажисты, банщики и ремесленники — резчики по металлу, ювелиры и кузнецы, достигшие в этом значительного мастерства и даже превосходившие консервативных зубоврачевателей.

Протезы как приданое

В эпоху Возрождения зубное протезирование активно развивается во многом благодаря одному из величайших хирургов XVI века Амбруазу Паре. Он продолжил практику использования в протезах искусственных зубов, вырезанных из бычьей или слоновой кости, укрепленных золотой проволокой. Кроме того, Паре был первым, кто начал вырезать искусственные зубы в виде блоков из одного куска кости, а также применять обтураторы при дефектах нёба: они представляли собой золотые пластины, соединенные с куском губки.

Индейцы Южной Америки не использовали человеческие зубы при изготовлении протезов. Это подтверждает находка, датированная IX в. н. э.: череп инка, все тридцать два зуба которого были искусственными и сделанными из аметиста и кварца. А в Древнем Китае для изготовления полных съемных протезов использовались кусочки бамбука, которые соединялись между собой с помощью креплений и прочной нити.

Развенчание мифа

Протез верхней челюсти, выточенный из кости гиппопотама. 1800-е гг. Источник: ameritech.ed

Развитию медицины и стоматологии в Xвеке способствовал арабский врачеватель Абулькасис, придворный лекарь халифа Кордовы Аль-Хакама II, живший в Андалусии. Будучи хирургом,Абулькасис уделял большое внимание зубоврачеванию. Он утверждал, что протезирование — это медицинская наука, призванная исправлять дефекты, восстанавливать зубы и тем самым помогать пациентам улучшить качество жизни. До него лекари не занимались протезированием, считая это занятие делом не из области медицины. Абулькасис— автор подробной методики, описывающей наложение золотой или серебряной лигатуры для шинирования подвижных зубов.

Но Фошар не только виртуозно удалял собственные зубы пациентов, но и вставлял искусственные. Ему принадлежит идея применения фиксирующих протезных пружин из утолщенной золотой проволоки или спирали. По сути, это был прообраз современного зубного протеза. Именно Фошар изобрел штифтовые зубы и придумал укреплять на одном или двух штифтах несколько соединенных зубов, что стало прототипом современных мостов.

Для изготовления самих протезов дантист использовал слоновую кость, клыки моржа и гиппопотама, зубы обезьян, собственные выпавшие зубы пациентов. Он учитывал и эстетическую сторону, подбирая цвет вставного зуба, чтобы тот смотрелся естественно. Зубы из слоновой кости Фошар покрывал колпачками из золота, на которые был нанесен слой обожженной фарфоровой эмали различных оттенков. Эта инновация стала первой попыткой применения облицовочных материалов в протезировании и положила начало изготовлению протезов из керамики.

У Фошара, разумеется, не было недостатка в состоятельной клиентуре, готовой платить большие деньги за красивые улыбки. И это навело его на мысль об открытии собственного зубопротезного цеха. Учеников Фошар набирал из ювелирных мастеров средней руки, но, прежде чем обучать их профессии зубных техников, он заставлял их штудировать учебники по медицине и анатомические атласы и сдавать экзамены. В год мастерская изготавливала до 1000 искусственных зубов. Но особо важным клиентам Фошар делал протезы сам. Например, для мадам Помпадур он изготовил по специальной технологии несколько штифтовых зубов из драгоценных материалов. Каждый зуб стоил 100 луидоров — примерно столько стоило по тем временам дорогое кольцо с бриллиантами.

Каждой гениальной идее — свое время

Съемные протезы оставались самой распространенной конструкцией вплоть до середины XIX века. Они изготавливались либо из дорогих сплавов, для фиксации которых требовались пружины, либо из слоновой кости и зубов гиппопотама, которые, в свою очередь, были тяжелыми, а у протезов из них была плохая посадка. Верхняя часть протеза, как и нижняя, делалась в форме подковы, без нёбных частей: это позволяло оставить больше пространства для языка, удешевить изготовление протеза и сделать саму конструкцию легче. Но такие протезы мало того что были неудобны, но и искажали черты лица. Наглядным тому примером может служить портрет президента Джорджа Вашингтона, написанный в 1796 году. К тому времени, когда Вашингтон стал президентом, у него сохранился один-единственный собственный зуб. За свою жизнь он поменял не меньше четырех протезов, и новый протез, изготовленный дантистом Джоном Гринвудом, был установлен незадолго до того, как президент позировал художнику Гилберту Стюарту. Цилиндрические пружины нижнего протеза сильно давили на челюсть, из-за чего нижняя губа Вашингтона сильно выдавалась вперед, а верхняя, наоборот, казалась запавшей. Чтобы сгладить этот дефект, художник подложил под верхнюю губу президента хлопковый валик. Результат мы можем видеть на долларовой купюре со знаменитым портретом Джорджа Вашингтона.

Протез Джорджа Вашингтона. Источник: gwpapers.virginia.edu

И теперь самое время рассказать о дантисте Джеймсе Гардетте, который внес свою лепту в развитие протезирования. Это уже эпоха конца XVIII — начала XIX вв. Гардетт тоже изготавливал протезы на пружинах, но обнаружил, что можно использовать вместо них присоски. Для этого нужно изменить форму верхнего протеза, чтобы он выдавался вглубь рта и надежно фиксировался на нёбе. Это была многообещающая и перспективная идея, но, чтобы наладить массовое производство новых протезов, в качестве основы для протезов требовались более дешевые материалы, которых у дантистов в ту пору не было, поэтому они продолжали использовать фиксирующие пружины. Но в 1851 году была открыта вулканитовая смесь. И всего за несколько лет вулканизированный каучук вытеснил дорогие материалы, которые использовались в стоматологии с древних времен, — серебро, золото и кости животных. Если комплект протезов из золота стоил 150 долларов, из серебра — 75 долларов, то комплект из вулканита — 30 долларов. Можно было купить его еще дешевле — за 8—10 долларов — у тех, кто не занимался стоматологией профессионально. Впервые за всю историю протезирования искусственные зубы перестали быть привилегией состоятельных людей.

Вулканит использовался в протезировании вплоть до 1930-х годов, пока его, в свою очередь, не вытеснили акриловые пластмассы. Применение полимеров стало очередным прорывом в развитии протезирования, как и последующие изобретения, открывшие стоматологам новые технологии и материалы.

Искусственные зубы вырезались из костей животных, использовались также и зубы самих животных (телят, свиней, собак, обезьян, бегемотов, лошадей) и настоящие человеческие зубы, что было очень распространенным явлением в Европе вплоть до конца XVIII века. Этическая сторона вопроса, видимо, не столь заботила врачей и пациентов, как возможность заработать для одних и решить насущную проблему — для других.

Протезирование - замена утраченных, необратимо поврежденных частей тела искусственными заменителями - протезами. Bionic Ear – ухо, напечатанное на 3D-принтере. Вставная челюсть. Замена утерянному зрению. Bionic Hand – протез руки с тактильными ощущениями.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 16.04.2017
Размер файла 385,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ШАКИРОВА АЛИНА РАМАЗАНОВНА

Казань-2017

Введение

Реферат посвящен характеристике устранения проблемы при потере конечностей человека и их замене. В реферате говорится о современных протезах, протезирования конечностей. Чтобы проникнуть в суть данной темы необходимо понять что такое протезирование.

Протезирование -- замена утраченных или необратимо повреждённых частей тела искусственными заменителями -- протезами. Протезирование представляет собой важный этап процесса социально-трудовой реабилитации человека, утратившего конечности, или страдающего заболеваниями опорно-двигательного аппарата.

Эволюция протезирования представляет собой длительную и легендарную историю: от примитивных истоков до сложных современных конструкций. Как и в развитии любой другой области, некоторые идеи и изобретения работали и успешно развивались, в то время как другие остались на обочине истории и устарели.

Длинный и извилистый путь к компьютеризированным протезам начался около 1500 г. до н.э. Чтобы оценить, как далеко человечество зашло в области протезирования, для начала нам стоит посмотреть на опыт древних египтян.

Основная цель, которую пытаются достичь ученые и инженеры всего мира - воплотить в искусственном изделии все функции живой руки или ноги.

Впрочем, все бионические устройства разных фирм, институтов и центров пока что не сильно похожи на свои естественные прототипы. Помимо прочих сложностей, основной элемент, которого не хватает всем разработкам - это похожая на настоящую кожа для наружного покрытия. Впрочем, вполне вероятно, что в скором времени эта проблема будет решена путем изготовления полноценной искусственной кожи - сейчас уже проводятся эксперименты по соединению в единое работающее целое нервной ткани и электронных устройств.

Устройство оборудования

протезирование ухо зрение принтер

Искусственные ноги изготавливают из лёгких и высокопрочных материалов по типу стали, титана и карбона. Современные модульные системы оснащены надёжными подвижными узлами и изготавливаются с учётом всех современных требований. Они состоят из нескольких элементов, количество которых зависит от модели:

Протез стопы включает в себя два элемента - это приемная гильза и муляж стопы. Такая конструкция изготовляется около трех, а при изготовлении протеза бедра- около четырех недель. Протез с модульным механизмом состоит из приемной гильзы, которая крепится к уцелевшей части конечности, вкладыша, шарнирного механизма, несущего механизма и стопы. Стандартная приемная гильза сделана из акриловой смолы.

Анатомическая гильза сделана из акриловой смолы с добавлением углеволокна, на ней мягкий полиэтиленовый вкладыш, который используется при протезировании бедра. К культе современные протезы крепят при помощи эластичного бандажа или чехла. Если гильза вакуумная, то из нее выкачивают воздух, после чего прикрепляют к культе. Важно, чтобы крепление было выполнено из прочных натуральных материалов.

Модульные, или шарнирные - еще один признак, по которому квалифицируются конструкции, заменяющие нижние конечности. Шарнир - это механизм, который выполняет функцию сустава во время движения. Существует несколько типов модулей с различными системами, которые создают амортизацию.

Простые шарнирные конструкции состоят из пружин, с помощью которых происходит амортизация и ограничение движения. Современные модели модульных протезов имеют тяги на основе гидравлических систем с электронным управлением. За счет гидравлических шарниров протезированная конечность двигается максимально плавно и легко.

Принцип действия оборудования

Одна из последних разработок в данной области - это так называемые биоэлектрические протезы верхних конечностей, которые приводятся в действие с помощью электродов, считывающих электрический ток, вырабатываемый мышцами культи в момент их сокращения. Затем информация передаётся на микропроцессор, и в результате протез приходит в действие. Благодаря новейшим технологиям искусственные руки позволяют осуществлять вращательные движения в кисти, захватывать и удерживать предметы.

i-Limb - протез руки под управлением смартфона.

Протез руки под управлением смартфона.

Это протез человеческой кисти. Как и многими другими подобными устройствами, им можно управлять при помощи мышц предплечья. Но куда большую функциональность ему придает мобильный телефон. Смартфон позволяет i-Limb выполнять одно из нескольких десятков запрограммированных действий, к примеру, завязывать шнурки, брать и отпускать предметы, набирать текст на клавиатуре и даже писать при помощи ручки или карандаша.

Замена утерянному зрению

Специалисты разработали инновационную технологию, позволяющую слепому человеку видеть изображение окружающей его действительности. На данный момент, технология эта строится на создании очков со встроенной в них камерой. Изображение с этого устройства преобразуется в электрические сигналы и импульсы, которые мозг способен интерпретировать.

Трехмерная печать с каждым днем открывает для себя все новые горизонты возможностей. Используют соответствующие технологии и медики для создания протезов сложных форм, которые очень трудно, а иногда вообще невозможно произвести другими способами. Разработка трехмерной модели и печать заняла всего два часа, в то время как использующиеся ранее методы потребовали бы в десять раз больше времени.

Bionic Ear - ухо, напечатанное на 3D-принтере

Это еще один удачный пример использования трехмерной печати в протезировании. Речь идет об ухе, которое не только может заменить потерянный орган, то также вернуть человеку слух. При создании этой искусственной части тела использовались гидрогель, наночастицы серебра, несколько проводов и живые клетки теленка. Последние при взаимодействии с человеческим телом превратились в натуральный хрящ, соединяющий череп человека с новым органом. А для того, чтобы вернуть человеку слух, в искусственное ухо был встроен слуховой аппарат.

Bionic Hand - протез руки с тактильными ощущениями

Bionic Hand может дать человеку информацию о размерах и форме объекта, к которому он прикасается, а также представление об его текстуре. Происходит это благодаря подключению электродов данного устройства к нервной системе носителя. Пока что данная технология находится лишь в зачаточном состоянии. Но это уже успех. И в дальнейшем он будет развиваться все сильнее.

Протез из конструктора, управляемый силой мысли

На Западе среди обладателей iPhone относительно популярен набор MindWave Mobile, представляющий собой конструктор для создания примитивных устройств под управлением смартфона или специального шлема, считывающего активность человеческого мозга. Вот из этого простого набора семнадцатилетний школьник Шива Натан и создал протез человеческой руки. Шива Натан дополнил набор несколькими сторонними деталями и создал вполне функциональную искусственную руку, управлять которой можно при помощи силы мысли. Правда, для этого нужно быть полностью сосредоточенным - стоит только подумать о чем-то другом, и электронная конечность безжизненно обвисает.

Заключение

Я могу сказать с уверенностью, что при наличии протезов описанного технологического уровня, можно практически забыть о своих недостатках; о том, чего уже нет… Более того, во многих случаях, используя протезы нового поколения, человек сможет получить даже более обширные возможности, нежели от своей естественной руки или ноги. Минус только в том, что приобрести их (как минимум на раннем этапе внедрения) могут только избранные, ведь далеко не каждый смертный может так просто оплатить подобное устройство. Скажем, с ценой в $10000 за стопу еще можно смириться, а вот протез руки со стоимостью, начинающейся от $100000, заставит задуматься о том, где найти на него средства, не только жителей развивающихся стран.

Проанализировав новые разработки в сфере производства протезов и узнав о том, какие буквально чудо-протезы уже создали ученые и инженеры из разных стран, можно сделать заключение, что человек уже не так и далек от киборгов из научной фантастики: недостает “деталей” в организме - достроим, а если еще “вставить в мозги электроды” - то будет даже лучше прежнего.

Протез (франц. prothèse, от греч. prosthesis присоединение, прикрепление) -аппарат или приспособление, служащее для восполнения или замещения отсутствующей части тела или органа.
Протезирование — система медицинских, технических и организационных мероприятий, направленных на восстановление утраченных форм или функций отдельных органов или самих органов. Условно различают протезирование анатомическое, функциональное и лечебное.

Содержание работы
Файлы: 1 файл

PROTEZIROVANIE.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

Кафедра медицинской биофизики, кибернетических и биотехнических систем.

РЕФЕРАТ НА ТЕМУ:

Выполнила студентка гр. Б7101 Ермакова Д. А.

Проверил: заведующий кафедрой приборостроения

с оценкой _____________________

подпись И.О. Фамилия

  1. Введение………………………………………………………… …………………………3
  2. История протезирования………………………………………… ……………….4
  3. Современное протезирование………………………………………… ………7
  4. Виды протезирования………………………………………… ……………………9
  5. Схемы протезов………………………………………………………… ……………13
  6. Заключение…………………………………………………… ……………………….14
  7. Список литературы…………………………………………………… ……………15

Протез (франц. prothèse, от греч. prosthesis присоединение, прикрепление) -аппарат или приспособление, служащее для восполнения или замещения отсутствующей части тела или органа.

Протезирование — система медицинских, технических и организационных мероприятий, направленных на восстановление утраченных форм или функций отдельных органов или самих органов. Условно различают протезирование анатомическое, функциональное и лечебное.

Под анатомическим протезированием понимают восстановление главным образом формы утраченного органа и частично функции (без посторонних источников энергии), например, протезы рук и ног, глаз, зубов, ушных раковин и носа, молочных желез и др.

Функциональное протезирование предполагает применение посторонних источников энергии для обеспечения функций конечности или органа, например, протезы руки с биоэлектрическим управлением, слуховые аппараты и др.

Лечебное протезирование направлено обычно на временное ограничение функции органов, например, применение корсетов при сколиозах, ортопедических аппаратов, ортопедической обуви.

Различают протезы нижних и верхних конечностей. К протезам нижних конечностей относятся протезы стопы, голени, бедра и на вылущенное бедро (при полном отсутствии ноги).

Протезы верхних конечностей в зависимости от назначения разделяются на косметические, воспроизводящие внешнюю форму руки, активные, воспроизводящие некоторые движения и рабочие функции. Кроме того, протезы различают по сегментам конечности: кисти, предплечья, плеча и вылущенного плеча.

Протезирование — замена утраченных или необратимо повреждённых частей тела искусственными заменителями — протезами.

Протезирование представляет собой важный этап процесса социально-трудовой реабилитации человека, утратившего конечности, или страдающего заболеваниями опорно-двигательного аппарата.

Первое упоминание о протезировании в истории — побег из плена грека Фемистокла. Посаженный на цепь, он был вынужден отпилить себе ногу, а затем попросить знакомого плотника создать для него протез. С этого момента протезирование практически не развивалось, знаменитые пиратские крюки и деревянные ноги — протезы примерно того же уровня.

Протезы были изобретены уже в глубокой древности. Прототип искусственных ног — простая деревяшка, подставка вместо утерянной нижней конечности, сохранилась до настоящего времени. С течением времени она подверглась многим изменениям.

Нироп (Nyrop, Копенгаген) придумал приспособление — на нижней части деревяшки, которая при помощи полушария сделана вертящейся, чтобы избегать возможности застревания деревяшки между камнями. Для предупреждения трения культи на последнюю до вставления её в тонкую сумку из липового дерева надевается кожаный мешок, мягко набитый. Американцы в XIX в. употребляли для искусственных ног, в особенности для стопы, дерево Гикори (белая волжская орешина) ввиду его большей крепости и все же значительной легкости.

Изготовляемые в XIX в. металлические гильзы (из листового железа, нового серебра или алюминиевой бронзы) были очень легки и в то же время весьма прочны. Подбивку никогда не укрепляли внутри гильзы, а только на культе, которую предварительно обертывали фланелевыми бинтами (сверху — вниз), затем надевали кожаную воронку, длинную и толсто набитую, после чего конец культи вставляют в гильзу таким образом, чтобы он свободно висел внутри, не подвергаясь никакому давлению. Только при этом условии можно было избежать раны на культе от трения.

Гильзы из твердого каучука были ломки. На принципе деревяшки были основаны все усовершенствования искусственных ног, имеющие целью устранение главного недостатка деревяшки (идущий на ней при своем движении вперед должен был постоянно описывать дугу кнаружи) и сохранение формы ноги. Последнего достигнуть было легко; первое же стоило многих усилий. Американец доктор Бли (Bly) первый старался при устройстве искусственного ступневого сустава подражать природе; движения в нём совершались при посредстве шара из полированного стекла, лежащего в полости из вулканизированного каучука. Ступня соединялась с голенью четырьмя кишечными струнами, которые были прикреплены к кружку, идущему поперечно через верхнюю половину аппарата. Такие усовершенствованные суставы все же не вытеснили из употребления простые суставы на шарнирах, более безопасные и дешевые. В Берлине вкладываются в ступневые суставы пружины из каучука цилиндрической формы; движения совершаются при посредстве крепких шарниров. К пятке прикрепляется ещё каблучок.

При помощи этого механизма походка становится эластичной, бесшумной и менее утомительной, нежели при других аппаратах. Сами каучуковые пружины сохраняют годами свою эластичность без изменения. Для того, чтобы пальцы стопы при повороте не приставали к полу, пальцевая часть аппарата сделана подвижной посредством спиральной пружины и простого шарнира на подошве. Прикрепление искусственной ноги к культе или к туловищу производится при помощи поясов и ремней через плечо, смотря по привычке и упражнению, то порознь, то вместе.

В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причём один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком. Если желают при вытянутом плече сохранить пальцы сжатыми, то это ушко вешают на пуговку, имеющуюся на верхнем плече. При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом.

В СССР работы по созданию протезов верхних конечностей, управляемых биоэлектрическими сигналами от культи, были начаты в 1956 году. Промышленный выпуск протезов предплечья с биоэлектрическим управлением в СССР был начат в 1961 году.

Протезирование нижних конечностей.

Впервые протез C-Leg был показан Otto Bock Orthopedic Industry на всемирном конференции по ортопедии в Нюрнберге в 1997 году.

C-Leg использует гидроцилиндры для управления сгибанием колена. Датчики отправляют сигналы на микропроцессор, который анализирует их и сообщает, что сопротивление должно питать цилиндры. C-Leg является аббревиатурой от 3C100, номера модели оригинального протеза, но по-прежнему применяется ко всем Otto Bock протезам коленного сустава с микропроцессорным управлением. Функции C-Leg благодаря различным технологическим устройствам объединены в компоненты протеза. C-Leg использует датчик угла колена для измерения углового положения и угловой скорости сгибания сустава. Измерения производятся до пятидесяти раз в секунду. Датчик угла колена располагается прямо на оси вращения колена.

Датчики момента расположены в трубке наконечника основания C-Leg. Эти датчики момента используют несколько тензодатчиков для определения, откуда была приложена сила к колену, с ноги, и величину этой силы.

C-Leg контролирует сопротивление вращению и расширению колена с помощью гидравлического цилиндра.

После развития механики, ближе к современности, стали появляться более совершенные виды протезов, которые хорошо имитировали потерянную часть тела или даже протезы, способные двигаться за счёт специальных встроенных механизмов.

Но это были лишь протезы внешних частей тела, протезы внутренних органов (например, AbioCor) появились уже в век электроники, а современная медицина, возможно, вообще исключит протезирование благодаря новейшим технологиям стволовых клеток, но на данный момент они до конца еще не разработаны.

AbioCor — аппарат искусственного сердца, предназначенный для лечения тяжёлой сердечной недостаточности.

AbioCor разработан массачусетской компанией Abiomed. Он располагается полностью в организме пациента, имеет внутренний аккумулятор, который подзаряжается от внешнего источника питания прямо через кожу, то есть не нуждается в подключении к проводам. Это снижает риск осложнений, связанных с инфекциями.

AbioCor может вживляться только при соответствии пациента определённым требованиям по росту и массе тела, из-за чего на этапе клинических испытаний пациентов отбирали только среди мужчин. Срок службы аппарата определён в 18 месяцев. В США аппарат получил одобрение.

Внутренняя батарея искусственного сердца позволяет пациенту свободно двигаться в течение одного часа, при установленном внешнем источнике питания, этот срок продлевается до двух часов. Возможна подзарядка аккумуляторов от обычной электрической сети.

По состоянию на сентябрь 2004 года, AbioCor был имплантирован 14 пациентам. Испытания показали безопасность аппарата, доказав, что он может помочь тем пациентам с тяжёлой сердечной недостаточностью, смерть которых неминуема, а альтернативные методы лечения невозможны. В некоторых случаях жизнь пациента удавалось продлить на несколько месяцев, давая ему возможность продолжать общаться с близкими. В двух случаях продолжительность жизни после операции была более значительной: 10 и 17 месяцев.

В настоящее время разработан AbioCor II. Ожидается, что продолжительность службы аппарата будет достигать пяти лет. Новый вариант искусственного сердца также меньше предыдущего на 35 процентов, что позволяет имплантировать его женщинам. Предприняты меры, которые должны снизить вероятность развития инсульта, что было одним из замечаний контролирующих инстанций к первой модели AbioCor.

Бионический протез руки

Примером современного бионического протеза руки, разработанного в США в 2014 году, является DEKA Arm — 3. Протез состоит из электрического аккумулятора или батареи, десяти электрических приводов, обеспечивающих сгибание и повороты в плечевом, локтевом суставах и запястье, а также захваты (привод есть в каждом пальце), встроенного компьютера для обработки сигналов с датчиков и согласования работы электроприводов, датчиков для обратной связи, миоэлектрических датчиков, крепящихся к культе пациента и передающих сигналы на встроенный компьютер, управляющий электрическими приводами.

image

Эволюция протезирования представляет собой длительную и легендарную историю: от примитивных истоков до сложных современных конструкций. Как и в развитии любой другой области, некоторые идеи и изобретения работали и успешно развивались, в то время как другие остались на обочине истории и устарели.

Длинный и извилистый путь к компьютеризированным протезам начался около 1500 г. до н.э. Чтобы оценить, как далеко человечество зашло в области протезирования, для начала нам стоит посмотреть на опыт древних египтян.

image

Сложно переоценить значение пальцев в жизни человека, но примечателен тот факт, что первый реальный пример протезирования относится именно к ним, а не к тем частям тела или конечностям, которые могут казаться более важными – например, рукам или ногам. Существует предположение, что на создание такого протеза египтян вынудила важность традиционных египетских сандалий в гардеробе знатной женщины, которые невозможно было носить, не имея большого пальца.

Это внимание к эстетической привлекательности протезов является довольно распространенным явлением среди древних устройств и даже может быть более важным, чем их функциональность.

424 г. до н.э. – 1 г. до н.э.

image

В результате раскопок в 1858 году в итальянском городе Капуя была найдена первая искусственная нога, которую сделали приблизительно в 300 г. до н.э. Она сделана из бронзы и железа, с деревянным сердечником, которую, по-видимому, носили ниже колена. Существует точная копия этого протеза, которую можно увидеть в Музее науки в Лондоне.

Самый известный случай в древнеримской истории протезирования описан римским ученым Плинием Старшим, и связан с генералом Марком Сергием, который считается первым документально подтвержденным носителем искусственной конечности. Во второй Пунической войне Сергий потерял правую руку и получил протез, сделанный из железа, чтобы тот мог держать свой щит и продолжать битву.

В истории Древней Греции также сохранились сведения об успешном протезировании. В 424 году до н.э. древнегреческий историк Геродот писал о персидском провидце, который был приговорен к смерти, но ампутировал себе ногу и сделал деревянный протез, чтобы пройти почти 50 километров пути до следующего города и таким образом скрыться от преследования.

Темные века (476-1000 гг.)

В этот период человечество продвинулось в протезировании и создавало более сложные устройства, чем ручной крюк или деревянная нога. Большинство протезов в то время выполняли больше эстетическую функцию и были сделаны для того, чтобы скрыть уродства или травмы, полученные в бою. У рыцарей были протезы для рук, которые позволяли держать щит и для ног, чтобы можно было закрепить ее в стремени, с небольшим вниманием к функциональности. В то время носить протезы вне битвы могли себе позволить только очень богатые люди.

Проектированием и созданием искусственных конечностей в темные века в основном занимались торговцы и оружейники. Но кроме них развитию протезирования способствовали и люди других профессий. Так, например, часовщики были особенно полезны для добавления сложных внутренних функций с помощью пружин и зубчатых колес.

Эпоха ренессанса (1400-1800 гг.)

image

Эпоха возрождения открыла новые перспективы для искусства, философии, науки и медицины. В это время произошло возрождение в истории протезирования зубов: их изготавливали преимущественно из железа, стали, меди и дерева.

История протезирования всегда переплетается с историей войн и жизнью солдат, которые ведут борьбу. Примеры из Средневековья показывают, насколько медленно развивалась эта область – железные руки, которые изготавливали для рыцарей, были не более продвинутыми, чем те, что использовал генерал Сергий тысячу лет назад.

image

В 1508 году у немецкого наемника Гетца фон Берлихингена была пара технологически продвинутых железных рук, сделанных после того, как он потерял правую руку в битве при Ландсхуте. Ими можно было управлять с помощью пружин, подвешенных на кожаных ремешках.

image

Около 1512 года итальянский хирург, путешествуя по Азии, обратил внимание на человека с двусторонней ампутацией рук, который мог снять шляпу, открыть свой кошелек и поставить свою подпись с помощью протеза. Еще одна история того времени связана с серебряной рукой, которая была сделана для турецкого адмирала Хайреддина Барбароссы, воевавшего с испанцами в Бужи.

Французский армейский цирюльник Амбруаз Паре, по мнению многих ученых, является отцом современной хирургии ампутации и ортопедических конструкций. В 1529 году он ввел современные процедуры ампутации в медицинском сообществе, а в 1536 году сделал навесные протезы для верхних и нижних конечностей. Он также модифицировал искусственную ногу ниже колена, добавив к ней регулируемые ремни безопасности, управление блокировкой колена и другие технические особенности, которые используются в современных устройствах.

image

Его работа продемонстрировала первое истинное понимание того, как должен работать протез. Коллега Паре – Лоррен, французский слесарь, сделал один из самых важных вкладов в этой области, используя в изготовлении протеза кожу, бумагу и клей вместо тяжелого железа.

Большая часть работы Паре отменила многие из широко распространенных медицинских верований того времени, часть из которых приносила больше вреда, чем пользы. Например, Паре установил, что если наносить масло к месту огнестрельного ранения или любой другой раны, то оно не приводит к исцелению, как считалось ранее, а на самом деле оказывает негативное воздействие. То же касается и прижигания – еще одного распространенного метода, который казался Паре неэффективным. Вместо этого Паре пользовался перевязкой артерий, и стал, возможно, первым врачом, который проводил эту операцию.

В 1696 году Питер Вердайн разработал первый протез ноги ниже колена без дополнительной фиксации, который позже станет основой для современного протезирования суставов и корсетных устройств.

image

В 1843 году сэр Джеймс Сайм открыл новый метод ампутации лодыжки, не приводящий к ампутации до бедра. Этот подход приветствовался в сообществе инвалидов-ампутантов, поскольку это означало, что появилась возможность ходить не с протезом, заменяющим всю ногу, а только лишь с искусственной ступней.

Позже Густав Герман предложил использовать алюминий вместо стали, чтобы сделать протезы легче и функциональнее. Такое легкое устройство пришлось ждать до 1912 года, когда Марсель Дезуттер, известный английский летчик, потерявший ногу в авиакатастрофе, не сделал первый алюминиевый протез при помощи своего брата-инженера Чарльза.

Прогресс, которого достигли в своем развитии технологии протезирования за 300 лет, оказался незначительным. Однако достижения в хирургии и ампутации в середине XIX века позволили врачам сформировать культю таким образом, чтобы она была более восприимчива к присоединению протеза. Протезы не сильно улучшились, но жизнь становилась все более удобной для тех, кто носил их.

Переход к современности

По мере того, как продолжалась гражданская война в США, количество ампутаций росло катастрофически быстро, что заставляло американцев усиленно развиваться в области протезирования. Джеймс Хангер, один из первых ампутантов гражданской войны, разработал то, что он позже запатентовал как Hanger Limb – протез, изготовленный из бочарных клепок и металла, который имел шарнирные суставы в области колена и лодыжки. Hanger Limb оказалась на тот момент самой передовой технологией в истории протезирования, и основанная Хангером компания продолжает оставаться лидером в этой области.

image

В отличие от гражданской войны, Первая мировая не способствовала особенному прогрессу в этой области. Несмотря на отсутствие технических достижений хирурги и военные осознавали важность обсуждения технологии и разработки протезов. В конечном итоге это привело к формированию американской ассоциации протезирования и применения ортопедических изделий (AOPA).

image

После Второй мировой войны ветераны были недовольны отсутствием технологичных решений и требовали улучшения. Тогда правительство США заключило сделку с военными компаниями для улучшения протезов, а не оружия. Это соглашение открыло путь к разработке и производству современных протезов. Новые устройства намного легче – изготавливаются из пластика, алюминия и композитных материалов, чтобы обеспечить пациентов наиболее функциональными устройствами.

image

В 1970-х годах изобретатель Исидро М. Мартинес оказал огромное влияние на индустрию протезирования, когда разработал протез нижней конечности, который, вместо того, чтобы попытаться повторить движения природной конечности, был ориентирован на улучшение походки и уменьшение трения. Снижая давление и делая ходьбу более комфортной, Мартинес, который сам был инвалидом, улучшил жизнь многих будущих пациентов.

Наиболее резкое различие между современными искусственными конечностями и теми, что были сделаны в прошлом, находится на границе между протезом и той частью тела, к которой он будет крепиться. В прошлом система подвески для протезов конечностей была сделана из кожаных или тканных ремней, а паз был деревянным или металлическим, облицованным тканью. Большинство современных протезов сочетают в себе пластиковое гнездо и присоски. Они тщательно утепляются и предотвращают повреждение той части конечности, к которой крепится.

image

Современные разъемы также облегчают надевание и снимание протеза. Это особенно полезно, когда человек носит несколько протезов. Например, спортсмены могут иметь несколько протезов для бега, катания на лыжах, езды на велосипеде и другой физической деятельности. Чаще всего, они не похожи визуально на человеческие конечности. Это тщательно продуманная конструкция из пластика, резины и углеродного волокна, которые пропорционально приспособлены к телу. Они тщательно контролируются и проверяются во время соревнований, чтобы гарантировать, что не используются никакие дополнительные преимущества, например, более длинная конечность.


В дополнение к более легким устройствам появление микропроцессоров, компьютерных чипов и робототехники в современных приборах предназначено для возвращения пациентов к жизни, вместо того, чтобы просто обеспечить базовую функциональность или более привлекательный вид. Современные протезы способны имитировать функцию утраченной конечности точнее, чем когда-либо прежде.

Рассказывают российские специалисты в сфере протезирования и работники факультета по подготовке мастеров протезно-ортопедической техники.

Человек начал заменять потерянные части тела искусственными приспособлениями на заре цивилизации и на протяжении истории продолжал совершенствовать протезы и технику протезирования. Сегодня протезирование находится на стыке технологий, медицины, программирования и искусства, и вдохновляет на новые исследования многих учёных и специалистов.

image_image

Первые известные исторической науке функциональные протезы появились около 5 тыс. лет назад в Древнем Египте.

В каирском музее хранятся остатки протеза правой руки, изготовленного для некого высокопоставленного египтянина в эпоху династии фараона Джосера в конце XXVII века до н.э. Его обнаружили в 2001 году на раскопках в Саккаре — древнейшем некрополе африканского государства.

Учёные пришли к выводу, что устройство крепилось к телу системой кожаных ремней, причём некоторые из них управляли функциями протеза. Например, поворотами туловища в разные стороны можно было открывать и закрывать кисть, а сгиб левого колена вызывал сгиб локтя.

Другим примером мастерства древнеегипетских протезистов считается деревянный палец ноги, крепившийся к стопе широкой кожаной муфтой. Изготовленный около 3 тыс. лет назад протез помогал древнему египтянину сохранять устойчивость при ходьбе. Современные учёные доказали это на добровольцах с похожими травмами — египетский протез помогал распределять вес тела при шаге.

image_image

Протезы упоминаются в трудах античных авторов. Историк Плиний писал о римском полководце, потерявшим руку на Пунической войне (II век до н.э.). Военачальнику изготовили металлическую руку, в которой он мог нести щит.

Железная рука другого воина долгое время считалась вершиной мастерства в изготовлении искусственных конечностей. Неизвестный кузнец-оружейник в 1509 году сделал протез кисти и предплечья для немецкого рыцаря Геца фон Берлихигена.

Он имел вид латной перчатки, каждый палец которой можно было согнуть и зафиксировать в произвольном положении с помощью пружин и храповиков. Таким образом рыцарь мог надежно удерживать не только меч или поводья, но и перо.

Стальной кулак разжимался нажатием кнопки, которая освобождала все пальцы. Рука сохранилась и хранится в замке-музее города Ягстхаузен — родины Берлихигена.

image_image

Тем не менее, в отдельную область медицинской науки протезирование оформилось только к началу XIX века. Во многом это произошло благодаря открытию и внедрению антисептиков в медицинскую практику, поскольку раньше потеря руки или ноги обычно кончалась гибелью от кровопотери и заражения.

На протяжении XIX века европейские врачи экспериментировали с различными системами механических протезов. В 1860 году граф Бофор представил Парижской академии наук механическую руку упрощенной конструкции. Она была настолько дешёвой и легкой в изготовлении, что протез смогли выдавать нуждающимся на средства публичного фонда пособий бедным.

Так замена утраченных конечностей постепенно переставала быть привилегией знатных и состоятельных людей.

left_image

left_image

В России первый механический протез в 1791 году изготовил знаменитый изобретатель Иван Кулибин. Он создал искусственную ногу для поручика артиллерии Сергея Непейцына, лишившегося конечности выше колена при штурме крепости Очаков в ходе Русско-турецкой войны.

Протезирование как отрасль появилась и начала активно развиваться в России только в конце XIX века. В 1883 году в Санкт-Петербурге открылся Мариинский приют для ампутированных и увечных воинов, где инвалиды начали получать протезы рук с рабочими приспособлениями. Впоследствии при нём возникла школа-мастерская, где инвалиды обучались протезному делу.

В 1916 году филиалы Мариинского приюта и протезные мастерские открылись в Москве, Киеве, Саратове, Воронеже и других крупных городах.

После революции 1917 года разработка протезов продолжилось. Снабжение протезно-ортопедическими изделиями было бесплатным для всех категорий инвалидов.

В 1919 году на основе Мариинского приюта открылся Петроградский институт протезирования, главой которого стал профессор Герман Альбрехт — основоположник российского протезирования и изобретатель первых в отечественной практике активных протезов верхних конечностей для тех, кто потерял обе руки по плечи.

В 1923 году в Петрограде организован техникум по подготовке мастеров протезно-ортопедического производства. Он стал первым и долгое время оставался единственным учебным заведением в России, где учили данной профессии. Во время Великой Отечественной войны и ленинградской блокады техникум продолжал работу, поставляя протезы для фронта и тыла.

В 1944 году техникум поставил 1000 готовых изделий в Волховский район Ленобласти, где продолжались бои за полное освобождение города от немецкой блокады.

В послевоенные годы техникум и научные институты продолжили разработку протезов, используя новые материалы и данные научных исследований. Тяжелые деревянные выточки начали менять на более легкие конструкции из дюралевых трубок, полиэтилена и слоистых пластиков.

image_image

Ремизов Алексей Иванович, техник московского протезно-ортопедического предприятия, за работой по созданию биоэлектрического протеза верхней конечности.

После Второй мировой войны СССР и Германия стали передовыми странами в области разработки протезов конечностей. В настоящее время наша страна в силу технологического отставания и других факторов уступила пальму первенства западным научным центрам.

Несмотря на отставание, развитие протезно-ортопедической отрасли в России не остановилось и сегодня продолжается на той же научно-образовательной базе, что и ранее, вбирая международный инновационный опыт, который привносят молодые инженеры-энтузиасты.

image_image

Напечатанный на 3D-принтере протез левой руки. Предназначен для детей, родившихся без верхней конечности.

Это область деятельности крайне востребована. По данным статистики, сегодня в России около 40 тыс. человек нуждаются в протезах верхних конечностей, и в 10 раз больше — в протезах ног. Нижние конечности чаще страдают в различных инцидентах — чаще всего это автоаварии и травмы, полученные в экстремальных видах спорта.

С осени этого года в Санкт-Петербурге студенты начнут изучать производство протезов с использованием трехмерной печати, программирования и других высоких технологий.

Не только для изготовителей протезов в России, но и для всех, кто работает в этой отрасли, важно стремиться дать пациенту функциональные изделие, которое заменит и даже превзойдёт по функциональности травмированную конечность.

image_image

В протезе человек должен комфортно себя чувствовать, а управление должно работать на интуитивном уровне. Только такое изделие будет восприниматься как продолжение собственного тела и настоящий помощник.

Протезы рук, которые доступны на рынке сейчас, ещё очень далеки до функциональности человеческой руки. С их помощью можно выполнять лишь простые бытовые операции.

Повышения функциональности можно добиться, если внедрить в протез мелкую моторику с сотнями различных вариаций движений. С механической точки зрения это даже возможно, но появляется пока что непреодолимый барьер с системой управления.

Сейчас в большинстве биоэлектрических протезов используется система управления, которая работает с помощью электродов (ЭМГ-датчики), считывающих электрический потенциал, вырабатываемый мышцами культи в момент их сокращения. Информация с датчиков передаётся на микропроцессор кисти, через компьютерные алгоритмы преобразуется в двигательные команды. В результате протез выполняет сжатие или разжате пальцев.

Такая система ограничена каналами считывания сигнала. Обычно для удобства пользователя используют два канала, то есть располагают по датчику на двух мышцах. С такой системой можно выполнять два действия в зависимости от активной в данный момент мышцы. Путём переключения режимов можно добавить функциональность в такую систему. Режим переключается при задействовании сразу двух каналов (другими словами, напряжения сразу двух мышц, на которых расположены датчики). После этого система переключается на другие два действия.

Обучить человека использовать двухканальную систему на основе электродов без потерь времени на обдумывание предстоящего действия можно. Сделать это для системы, которая оперировала бы сотнями и тысячами действий, невозможно. Даже если мы увеличим число электродов и сделаем 4, 8, 16 каналов, у человека будет уходить минуты на попытки задействовать нужные группы мышц для выполнения определенного схвата.

Решение может быть в нейроинтерфейсах и получении управляющего сигнала прямо из мозга, но такие варианты находятся в зачаточном состоянии. Строить управление протезом на нейроинтерфейсе пока рано из-за сложности получить стабильный сигнал и необходимости постоянно концентрироваться. Стандартом в управлении протезом это может стать в перспективе 10 лет.

image_image

Также улучшить ситуацию может связка системы управления на основе электродов и искусственного интеллекта.

Такой протез должен угадывать и выполнять требуемый жест на основе прошлого опыта его использования, данных с датчиков гироскопа и системы компьютерного зрения, которое распознает предметы.

image_image

Нам видится, что в будущем у искусственных рук будет развиваться другая функциональностть из-за смены парадигмы взаимодействия с внешним миром. Уже сейчас внедряются голосовые помощники, которые могут распознать и набрать текст, делать заказы в магазине и многое другое, для чего сейчас мы используем руки. Возможно, проще будет внедрить в протез портативный компьютер, который сможет осуществлять эти и многие другие действия.

Также диктовать направление развития протезов будут новые устройства и интерфейсы взаимодействия с ними, новые виды деятельности человека и даже успехи в освоении космоса. Скорее всего потребуется выпуск специфических рабочих протезов и создание полноценных киборгов, которые смогут решать неизвестные нам сегодня задачи.

Читайте также: