Доклад на тему бесконечность вселенной

Обновлено: 02.07.2024

В космологии вопрос о конечности или бесконечности Вселенной имеет большое значение:

если Вселенная конечна, то, как показал Фридман, она не может находиться в стационарном состоянии и должна либо расширяться, либо сжиматься;

если же Вселенная бесконечна, то всякие предположения о ее сжатии или расширении теряют какой бы то ни было смысл.

Известно, что так называемые космологические парадоксы были выдвинуты как возражения против возможности существования бесконечной Вселенной, бесконечной в том смысле, что ни ее размеры, ни время существования, ни масса заключенного в ней вещества не могут быть выражены никакими, сколь угодно большими числами. Посмотрим же, насколько обоснованными оказываются эти возражения.

Космологические парадоксы – суть и исследование

Известно, что основные возражения против возможности существования бесконечной во времени и пространстве Вселенной заключаются в следующем.

Как объясняет, например, И.Д.Новиков в [3], суть гравитационного парадокса заключается в следующем. «Пусть Вселенная в среднем равномерно заполнена небесными телами, так что средняя плотность вещества в очень больших объемах пространства одинакова. Попытаемся рассчитать в соответствии с законом Ньютона, какая гравитационная сила, вызванная всем бесконечным веществом Вселенной, действует на тело (например, галактику), помещенную в произвольную точку пространства. Предположим сначала, что Вселенная пуста. Поместим в произвольную точку пространства пробное тело A. Окружим это тело веществом плотности, заполняющим шар радиуса R, чтобы тело A было в центре шара. Ясно без всяких расчетов, что в силу симметрии тяготение всех частичек вещества шара в его центре уравновешивает друг друга, и результирующая сила равна нулю, т.е. на тело A не действует никакая сила. Будем теперь добавлять к шару новые и новые сферические слои вещества той же плотности. сферические слои вещества не создают сил тяготения во внутренней полости и добавление этих слоев ничего не меняет, т.е. по-прежнему равнодействующая сила тяготения для A равна нулю. Продолжая процесс дополнения слоев, мы приходим в пределе к бесконечной Вселенной, равномерно заполненной материей, в которой результирующая гравитационная сила, действующая на A, равна нулю.

Однако рассуждения можно проводить и иначе. Возьмем снова однородный шар радиуса R в пустой Вселенной. Поместим наше тело не в центр этого шара с той же плотностью вещества, что и раньше, а на краю его. Теперь сила тяготения, которая действует на тело A, будет равна согласно закону Ньютона

где M – масса шара; m – масса пробного тела A.

Будем теперь добавлять сферические слои вещества к шару. После того, как к этому шару добавлена сферическая оболочка, она не добавит гравитационных сил внутри себя. Следовательно, сила тяготения, действующая на тело A, не изменится и по-прежнему равна F.

Противоречия, однако, сразу же исчезают, если мы вспомним, что бесконечная Вселенная – это не то же самое, что очень большая:

в бесконечной Вселенной сколько слоев вещества мы бы не прибавляли к шару, за его пределами остается еще бесконечно большое количество вещества;

в бесконечной Вселенной шар любого, сколь угодно большого радиуса с пробным телом на его поверхности, всегда можно окружить сферой еще большего радиуса таким образом, что и шар, и пробное тело на его поверхности, окажутся внутри этой новой сферы, заполненной веществом той же плотности, что и внутри шара; в этом случае величина сил тяготения, действующих на пробное тело со стороны шара, окажется равной нулю.

Таким образом, сколько бы мы не увеличивали радиус шара и сколько бы слоев вещества не прибавляли, в бесконечной Вселенной, равномерно заполненной веществом, величина сил тяготения, действующих на пробное тело, всегда будет равна нулю. Другими словами, величина сил тяготения, создаваемых всем веществом Вселенной, в любой ее точке равна нулю. Однако если за пределами шара, на поверхности которого лежит пробное тело, нет вещества, т.е. если все вещество Вселенной сосредоточено внутри этого шара, тогда на пробное тело, лежащее на поверхности этого тела, действует сила тяготения, пропорциональная массе заключенного в шаре вещества. Под действием этой силы пробное тело, и вообще все внешние слои вещества шара, будет притягиваться к его центру – шар конечных размеров, однородно заполненный веществом, неизбежно будет сжиматься под действие сил тяготения. Этот вывод следует как из закона всемирного тяготения Ньютона, так и из общей теории относительности Эйнштейна: Вселенная конечных размеров не может существовать, так как под действием сил тяготения ее вещество должно непрерывно сжиматься к центру Вселенной.

Анализ так называемых космологических парадоксов позволяет заключить следующее.

1. Мировое пространство не является пустым, но заполнено некоторой средой, назовем ли мы эту среду эфиром или физическим вакуумом. При движении в этой среде фотоны теряют энергию пропорционально пройденному им и расстоянию, вследствие чего излучение фотонов смещается в красную часть спектра. В результате взаимодействия с фотонами температура вакуума или эфира повышается на несколько градусов выше абсолютного нуля, вследствие чего вакуум становится источником вторичного излучения, соответствующего его абсолютной температуре, что и наблюдается в действительности. На частоте этого излучения, которое действительно является фоновым излучением вакуума, все небо оказывается одинаково ярким, как это и предполагал Ж.Ф.Шезо.

3. В бесконечной Вселенной, размеры которой не могут быть выражены никаким, сколь угодно большим числом, равномерно заполненной веществом при ненулевой его плотности, величина сил тяготения, действующих в любой точке Вселенной, равна нулю – это и есть истинный гравитационный парадокс бесконечной Вселенной. Равенство нулю сил тяготения в любой точке бесконечной Вселенной, равномерно заполненной веществом, означает, что пространство в такой Вселенной всюду является Эвклидовым.

Этими словами мы и закончим наше краткое исследование.

Список литературы

Климишин И.А. Релятивистская астрономия. М.: Наука, 1983.

Хокинг С. От большого взрыва до черных дыр. М.: Мир, 1990.

Новиков И.Д. Эволюция Вселенной. М.: Наука, 1983.

Гинзбург В.Л. О физике и астрофизике. Статьи и выступления. М.: Наука, 1985.

Современная космология возникла в XX веке с развитием Общей Теории Относительности Альберта Эйнштейна. Именно эта наука изучает эволюцию Вселенной в целом. Многие парадоксы классической космологии вызывают интерес: фотометрический парадокс (почему ночью темно?), термодинамический парадокс (почему не наступило тепловое равновесие?), гравитационный парадокс (закон всемирного тяготения не объясняет гравитационное поле, создаваемое бесконечной системой масс).

Но один из главных вопросов, волнующий учёных, звучит так: бесконечна ли Вселенная? Бесконечна ли вселенная с точки зрения математики, физики, философии? Как представить бесконечность космоса? Ответы на эти вопросы помогут взглянуть на будущее человечества под другим углом.

Бесконечность Вселенной

В статье постараемся научно ответить, бесконечна ли Вселенная

Как доказать бесконечность Вселенной?

Космология Джордано Бруно

  1. Первое доказательство: принцип полноты. Если бог, сотворивший Вселенную, всемогущ и бесконечен, то и Вселенная бесконечна.
  2. Второе доказательство: принцип отсутствия основания. Если бог сотворил мир в одной точке пространства, то сотворил его в и в другой.
  3. Третье доказательство: вне Вселенной ничего нет, поэтому ничто не может её ограничить.

Эти выводы Бруно приводил с точки зрения философии и теологии, поэтому они имеют не научное, а культурное и историческое значение. Современная же наука хочет ответить на вопрос: бесконечна ли Вселенная с точки зрения математики и философии.

Памятник Джордано Бруно в Италии

Памятник Джордано Бруно в Италии

Современная космология. Расширяющаяся Вселенная

На данный момент учёные доказали, что правильная модель Вселенной — расширяющаяся Вселенная, а не стационарная, как считалось столетиями до XX века. Это открытие совершил Эдвин Хаббл на основании эффекта Доплера (красное смещение).

Чтобы наглядно представить эффект Доплера, прислушайтесь к проезжающему мимо вас автомобилю. Когда он приближается, звук его двигателя кажется громче, что соответствует более высокой частоте звуковых волн; когда удаляется, звук двигателя кажется более низким, что соответствует более низкой частоте звуковых волн. Аналогичное происходит со световыми волнами.

Величина красного смещения пропорциональна расстоянию — чем дальше галактика, тем быстрее она удаляется от нас. Все галактики имеют красное смещение. Это означает, что все они удаляются от нас. Следовательно, Вселенная расширяется.

Бесконечность Вселенной: как понять и осознать космос

Красное смещение: принцип действия

Однако долгое время считалось, что Вселенная стационарна. Главная теория, на которой строится современная космология, — Общая Теория Относительности, — предполагает, что Вселенная стационарна.

Теоретически доказать обратное смог Александр Фридман, что после экспериментально подтвердил своим открытием Эдвин Хаббл.

Модели Фридмана

На основе ОТО Альберта Эйнштейна Александр Фридман сделал два предположения:

  • Вселенная выглядит одинаково при наблюдении в любом направлении;
  • Это справедливо при наблюдении из любой точки пространства;

Благодаря этим предположениям были созданы модели Вселенной, которые можно разделить на два типа:

  1. Если средняя плотность вещества меньше или равна определённому критическому значению, то идея бесконечности Вселенной подтвердится. В этом случае её сегодняшнее расширение будет продолжаться вечно.
  2. Если средняя плотность больше критической, то создаваемое веществом гравитационное поле заставит Вселенную замкнуть саму себя. Она будет конечной, но неограниченной, как сферическая поверхность. Затем гравитационные поля остановят расширение Вселенной и заставят её перейти в состояние сингулярности.

Критическая плотность пропорциональна квадрату параметра Хаббла. Если взять значение 15 км/с на миллион световых лет, получится критическая плотность, равная 5×10^30 грамм на кубический сантиметр, или три атома водорода на тысячу литров космического пространства.

Бесконечность Вселенной: как понять и осознать космос

Современные модели Вселенной (космологические теории)

Ускорение расширяющейся Вселенной

Вселенная не просто расширяется — она расширяется с ускорением. Это открытие было сделано в конце 1990-х Солом Перлмуттером, Брайаном П. Шмидтом и Адамом Риссом при наблюдении сверхновых типа Ia. Яркость взрыва этих звёзд практически неизменна, поэтому по яркости света с Земли можно определить расстояние, на котором взрыв произошёл.

Другой способ определения расстояния — эффект Доплера (красное смещение). Результаты должны быть одинаковы, однако расстояние, вычисленное при помощи сверхновых Ia, превышало значение, определённое по методу красного смещения. Единственным объяснением было то, что Вселенная расширяется с ускорением.

На данный момент исследования в области космологии продолжаются. Одни учёные защищают бесконечность времени и пространства вселенной, другие — конечность. Но каким образом можно доказать истинность той или иной точки зрения?

Бесконечность Вселенной: как понять и осознать космос

Наиболее популярная модель нашей Вселенной, включающая темную энергию. Первые 6-7 млрд. лет галактики двигались с замедлением, далее вышли на равномерное, а затем ускоренное движение.

Можно ли доказать бесконечность Вселенной?

Первая попытка: космическое путешествие

Самый простой для понимания и сложный для исполнения способ — космическое путешествие. Для его представления следует сделать ряд допущений:

  • Космический корабль должен двигаться со сверхсветовой скоростью (299 792 458 м/с) и иметь бесконечный запас топлива;
  • Путешественник должен быть бессмертен и не иметь потребностей.

Если Вселенная бесконечна, то путешественник будет вечно двигаться на космическом корабле по бесконечному пространству. Он никогда не сможет понять, действительно ли бесконечен космос. Даже пройдя огромные расстояния, путешественник не сможет утверждать, что Вселенная не имеет края, ведь он попросту не осознает это. Проблема состоит в понимании бесконечности: трудно представить её теоретически и невозможно на практике — у неё нет аналога.

Вторая попытка: изучение Большого взрыва

Большой взрыв является общепринятой космологической моделью рождения Вселенной. Его исследование помогает открывать свойства современного космоса и, возможно, поможет найти ответ на интересующий нас вопрос. Однако доподлинно неизвестно, почему произошёл Большой взрыв — учёные не пришли к окончательному выводу.

Третья попытка: измерение плотности вещества

Как было сказано, если плотность вещества меньше или равна некоторому критическому значению, то Вселенная бесконечна. Если больше критического значения, то конечна. По сегодняшним данным наиболее вероятно, что плотность вещества меньше или равна критическому значению, следовательно, Вселенная плоская и бесконечна.

Однако существуют другие формы материи: тёмная материя и и экзотические формы материи, которые мы не можем наблюдать и исследовать. Они могут нарушить баланс, и значение плотности станет выше критического.

Сейчас учёные исследуют Вселенную, чтобы дать ответ на вопрос о её бесконечности. Возможно, этот ответ появится в ближайшее десятилетие, а пока что важно изучать имеющиеся данные.

Что почитать?

Что посмотреть?

Бесконечность Вселенной — FAQ

Это была информация о бесконечности Вселенной, известная на данный момент. Однако осталось несколько интересных вопросов:

Сейчас наиболее вероятно, что Вселенная бесконечна. Это подтверждают недавние исследования. Учёные с точностью до 1% смогли измерить дистанции между галактиками на расстоянии более 6 миллиардов световых лет от Земли, что позволило сделать вывод о модели Вселенной. Астрономы говорят, что их результаты согласуются и подтверждают теорию о плоской бесконечной Вселенной.

Пример с бессмертным космическим путешественником подтверждает, что участнику событий представить бесконечность невозможно, но наблюдатель сможет это сделать. Представьте отрезок, на одном конце которого ноль, а на другом единица, и попробуйте отметить ещё одно число в интервале между нулём и единицей. 0,5? Есть числа меньше. 0, 25? Ещё меньше. Это только рациональные числа. А если постепенно помещать на числовую прямую в этот интервал действительные числа — рациональные и иррациональные? Вы будете перебирать их вечно. Это и есть наглядная демонстрация бесконечности. Аналогичное происходит с бесконечной Вселенной.

Такая модель будет конечной, но неограниченной, как сферическая поверхность. Не будет условной стены или края: Вселенная будет замыкать саму себя. Если мы будем двигаться из определённой точки пространства в определённом направлении, рано или поздно мы вернёмся в эту точку.

Учёные считают, что ускорение расширяющейся Вселенной связано с воздействием на неё тёмной энергии.

Тёмная энергия — особый вид энергии, который невозможно обнаружить с помощью стандартных методов наблюдения. Считается, что тёмная энергия управляет процессами, происходящими во Вселенной. Однако сейчас она мало изучена, поэтому выводы делать рано.

Вселенная расширяется достаточно медленно, вследствие чего гравитационное притяжение между галактиками замедляет его, а затем останавливает. После галактики начинают сближаться друг с другом, и Вселенная сжимается. Расстояние между двумя соседними галактиками сначала равно нулю, затем увеличивается до критического значения, а после снова равно нулю.

Вселенная расширяется настолько быстро, что гравитационное притяжение не может остановить его, лишь немного замедляет. Расстояние между двумя соседними галактиками сначала равно нулю, но в конечном счёте они разлетаются с постоянной скоростью.

Вселенная расширяется, и этой скорости достаточно для того, чтобы предотвратить сжатие. Расстояние между двумя соседними галактиками сначала равно нулю, оно постоянно растёт. В таком случае скорость разлёта галактик уменьшается, но никогда не будет равняться нулю.

Вы можете изучить и скачать доклад-презентацию на тему Конечность и бесконечность вселенной – парадоксы классической космологии. Презентация на заданную тему содержит 15 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Конечность и бесконечность вселенной – парадоксы классической космологии Работу выполнила Ученица 11 А класса ГБОУ школа №335 Медведева Анастасия

Цель урока получить представление об уникальном объекте — Вселенной в целом, узнать, как решается вопрос о конечности или бесконечности Вселенной, о парадоксах, связанных с этим, о теоретических положениях общей теории относительности, лежащих в основе построения космологических моделей Вселенной.

Вселенная – это бесконечная, безграничная материя, приобретающая самые всевозможные формы своего существования Космология (космос + логос) — раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика и астрономия.

Во времена Античности и в Средние века Во времена Античности и в Средние века многие учёные полагали, что Вселенная конечна и ограничена сферой неподвижных звёзд. Этой точки зрения придерживались даже Н. Коперник и Т. Браге. Кроме этого, Вселенная представлялась статичной, т. е. не меняющейся со временем — звёзды застыли на своих местах, наблюдались только периодические движения в Солнечной системе.

С развитием науки, всё полнее раскрывающей физические процессы, происходящие в окружающем нас мире, большинство учёных постепенно перешли к материалистическим представлениям о бесконечности Вселенной. Огромное значение имело открытие И. Ньютоном закона всемирного тяготения. С развитием науки, всё полнее раскрывающей физические процессы, происходящие в окружающем нас мире, большинство учёных постепенно перешли к материалистическим представлениям о бесконечности Вселенной. Огромное значение имело открытие И. Ньютоном закона всемирного тяготения.

Почему ночью небо темное? Фотометрический парадокс Конечно, в рамках механики Ньютона и теории гравитации возникали проблемы при предположении о бесконечности Вселенной. Одна из таких проблем получила название фотометрического парадокса. Иногда этот парадокс формулируют в виде вопроса: почему ночью небо тёмное? Казалось бы, имеется тривиальный ответ: ночью темно, так как Солнце находится под горизонтом. Но это не так.

В бесконечной статичной Вселенной имеется бесконечное число звёзд. Если смотреть в каком-то направлении, то луч зрения наткнётся на звезду.. В бесконечной статичной Вселенной имеется бесконечное число звёзд. Если смотреть в каком-то направлении, то луч зрения наткнётся на звезду.. Если предположить, что все звёзды похожи на Солнце, то любой участок неба должен быть таким же ярким, как Солнце. Но этого нет. Ночью темно. Если бы Вселенная была конечной, то в ней было бы конечное число звёзд и небо не было столь ярким. Но предположение о конечности Вселенной противоречило бы наблюдаемому равномерному распределению звёзд в ней. Ведь согласно теории тяготения Ньютона все звёзды в ограниченной Вселенной должны были бы собраться в одно место.

Гравитационный парадокс Позже немецкий астроном Хуго Зелигер сформулировал другой космологический парадокс – гравитационный. Он заключается в том, что, согласно ньютоновской теории тяготения, в бесконечной Вселенной, однородно заполненной веществом, сила тяготения не имеет определенной конечной величины.

Есть только две бесконечные вещи: Вселенная и глупость. Хотя насчет Вселенной я не уверен. Альберт Эйнштейн Большое значение для развития современных представлений о строении и развитии Вселенной имеет общая теория относительности, созданная А. Эйнштейном. Она обобщает теорию тяготения Ньютона для массивных тел и скоростей движения вещества, сравнимых со скоростью света.

Общая теория относительности, в частности, утверждает, что распределение и движение материи изменяют геометрические свойства пространства-времени, и наоборот, распределение и движение материи сами зависят от геометрии пространства-времени. Тяготение же согласно общей теории относительности есть результат изменений, вносимых присутствием материи в свойства пространства-времени, и передаётся с наибольшей скоростью, с которой возможна передача взаимодействия, — со скоростью света. И лишь в достаточно слабых и статических гравитационных полях при небольших скоростях движения, значительно меньших скорости света, закон тяготения Эйнштейна переходит в закон тяготения Ньютона. Качественно уравнения, полученные Эйнштейном (аналог законов механики Ньютона),выглядят так: Общая теория относительности, в частности, утверждает, что распределение и движение материи изменяют геометрические свойства пространства-времени, и наоборот, распределение и движение материи сами зависят от геометрии пространства-времени. Тяготение же согласно общей теории относительности есть результат изменений, вносимых присутствием материи в свойства пространства-времени, и передаётся с наибольшей скоростью, с которой возможна передача взаимодействия, — со скоростью света. И лишь в достаточно слабых и статических гравитационных полях при небольших скоростях движения, значительно меньших скорости света, закон тяготения Эйнштейна переходит в закон тяготения Ньютона. Качественно уравнения, полученные Эйнштейном (аналог законов механики Ньютона),выглядят так:

В галактиках сосредоточена колоссальная масса вещества, а скорости далёких галактик и квазаров сравнимы со скоростью света. В галактиках сосредоточена колоссальная масса вещества, а скорости далёких галактик и квазаров сравнимы со скоростью света. Согласно общей теории относительности гравитационное взаимодействие передаётся с конечной скоростью, равной скорости света. (По теории Ньютона гравитационное взаимодействие передаётся мгновенно.) Общая теория относительности накладывает определённые ограничения на геометрические свойства пространства, которое уже нельзя считать евклидовым. Согласно этой теории время не имеет абсолютного характера, а движение и распределение материи в пространстве нельзя рассматривать в отрыве от геометрических свойств пространства и времени. Гравитационное поле представляет собой искривление пространства- времени, создаваемое массивными телами.

Проверь себя! Что такое Вселенная? Как называется наука о ее изучении? Опишите вселенную, как ее видели в Античность и в Средние века. Как открытие Ньютоном закона всемирного тяготения изменило представления о Вселенной? Почему ночью небо темное? В чем заключается гравитационный парадокс? Какое значение имеет общая теория относительности для астрономии?

ВЫВОДЫ: Вселенная – это бесконечная, безграничная материя, приобретающая самые всевозможные формы своего существования, космология – наука, изучающая свойства и эволюцию Вселенной в целом. Во времена Античности и в Средние века многие учёные полагали, что Вселенная конечна и ограничена сферой неподвижных звёзд. Одним из важных следствий закона Тяготения явилось утверждение, что в конечной Вселенной всё её вещество за ограниченный промежуток времени должно стянуться в единую тесную систему. Фотометрический парадокс состоит в том, что если в бесконечном пространстве Вселенной равномерно рассеяны излучающие звезды, то в любом направлении на луче нашего зрения обязательно должна оказаться какая-то звезда, а значит, вся поверхность неба должна представляться нам ослепительно яркой, подобной поверхности Солнца; в действительности же ночное небо темное. Гравитационный парадокс заключается в том, что, согласно ньютоновской теории тяготения, в бесконечной Вселенной, однородно заполненной веществом, сила тяготения не имеет определенной конечной величины. Согласно общей теории относительности гравитационное взаимодействие передаётся с конечной скоростью, равной скорости света. (По теории Ньютона гравитационное взаимодействие передаётся мгновенно.) Общая теория относительности накладывает определённые ограничения на геометрические свойства пространства, которое уже нельзя считать евклидовым.


Ученые пытались найти доказательства того, что особенности на одном конце неба связаны с особенностями на другом, вроде того, как края обертки на бутылке соединяются друг с другом. До сих пор не найдено никаких доказательств, что края неба могут быть связаны.

Если говорить по-человечески, это означает, что на протяжении 13,8 миллиарда световых лет во всех направлениях Вселенная не повторяется. Свет проходит туда-сюда-обратно через все 13,8 миллиарда световых лет и только потом покидает Вселенную. Расширение Вселенной отодвинуло границы покидания светом вселенной на 47,5 миллиарда лет. Можно сказать, наша Вселенная 93 миллиарда световых лет в поперечнике. И это минимум. Возможно, это число 100 миллиардов световых лет или даже триллион. Мы не знаем. Возможно, и не узнаем. Также Вселенная вполне может быть бесконечной.

Планк движется в L2


Если Вселенная действительно бесконечна, то мы получим крайне интересный результат, который заставит вас серьезно поломать голову.

Итак, представьте себе. В одном кубометре космоса (просто расставьте руки пошире) есть конечное число частиц, которое может существовать в этом регионе, и у этих частиц может быть конечное число конфигураций с учетом их спина, заряда, положения, скорости и т. д.

Тони Падилья из Numberphile подсчитал, что это число должно быть десять в десятой в семидесятой степени. Это настолько большое число, что его нельзя записать всеми карандашами во Вселенной. Если предположить, конечно, что другие формы жизни не изобрели вечные карандаши или не существует дополнительного измерения, заполненного сплошь карандашами. И все равно, наверное, карандашей не хватит.

В наблюдаемой Вселенной есть только 10^80 частиц. И этого намного меньше, чем возможных конфигураций материи в одном кубометре. Если Вселенная действительно бесконечна, то удаляясь от Земли вы в конце концов найдете место с точным дубликатом нашего кубометра космоса. И чем дальше, тем больше дубликатов.

Подумаешь, скажете вы. Одно облако водорода выглядит так же, как и другое. Но вы должны знать, что проходя по местам, которые будут выглядеть знакомыми все больше и больше, вы в конечном итоге дойдете до места, где найдете себя. А найти копию себя — это, пожалуй, самое странное, что может произойти в бесконечной Вселенной.



Продолжая, вы будете обнаруживать целые дубликаты наблюдаемой Вселенной с точными и неточными копиями вас. Что дальше? Возможно, бесконечное число дубликатов наблюдаемых Вселенной. Даже не придется приплетать мультивселенную, чтобы найти их. Это повторяющиеся Вселенные внутри нашей собственной бесконечной Вселенной.

Читайте также: