В каких случаях справедливо правило независимого наследования признаков кратко

Обновлено: 10.05.2024

Третий закон Менделя — это закон независимого распределения признаков. Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары.

Например, если организм гетерозиготен по двум исследуемым генам ( AaBb ), то он образует следующие типы гамет: AB , Ab , aB , ab . То есть, например, ген A может оказаться в одной гамете как с геном B , так и b . Это же касается и других генов (их произвольного сочетания с неаллельными генами).

Третий закон Менделя проявляется уже при дигибридном скрещивании (тем более при тригибридном и полигибридном), когда чистые линии различаются по двум исследуемым признакам. Мендель скрестил сорт гороха с желтыми гладкими семена с сортом, у которого были зеленые морщинистые семена, и получил исключительно желтые гладкие семена F1.

Далее он вырастил из семян растения F1, позволил им самоопыляться и получил семена F2. И здесь он наблюдал расщепление: появились растения как с зелеными, так и морщинистыми семенами. Самое удивительное было то, что среди гибридов второго поколения оказались не только растения с желтыми гладкими и зелеными морщинистыми семенами. Также были желтые морщинистые и зеленые гладкие семена, т. е. произошла рекомбинация признаков, и получились такие комбинации, которые не встречались у исходных родительских форм.

Анализируя количественное соотношение разных семян F2, Мендель обнаружил следующее:

Если рассматривать каждый признак по отдельности, то он расщеплялся в отношении 3:1, как при моногибридном скрещивании. То есть на каждые три желтых семени приходилось одно зеленое, а на каждые 3 гладких — 1 морщинистое.

Появились растения с новыми комбинациями признаков.

Соотношение фенотипов было 9 : 3 : 3 : 1, где на девять желтых гладких семян гороха приходилось три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое.

Третий закон Менделя хорошо иллюстрирует решетка Пеннета. Здесь в заголовках строк и столбцов пишутся возможные гаметы родителей (в данном случае гибридов первого поколения). Вероятность образования каждого типа гаметы составляет ¼. Также равновероятно различное их объединение в одну зиготу.

Мы видим, что образуется четыре фенотипа, два из которых ранее не существовали. Соотношение фенотипов 9 : 3 : 3 : 1. Количество разных генотипов и их соотношение более сложное:

  1. AABB — 1 шт.
  2. AABb — 2
  3. AaBB — 2
  4. AAbb — 1
  5. AaBb — 4
  6. Aabb — 2
  7. aaBB — 1
  8. aaBb — 2
  9. aabb — 1

Получается 9 разных генотипов. Их соотношение: 4 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1. При этом гетерозиготы встречаются чаще, а гомозиготы реже.

Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля (т. е. не обязательно пользоваться решеткой Пеннета). Так, вероятность гладких желтых семян будет равна ¾ × ¾ = 9/16, гладких зеленых – ¾ × ¼ = 3/16, морщинистых желтых – ¼ × ¾ = 3/16, морщинистых зеленых – ¼ × ¼ = 1/16. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1.

Объясняется третий закон Менделя независимым расхождением гомологичных хромосом разных пар при первом делении мейоза. Хромосома, содержащая ген A , может с равной вероятностью уйти в одну клетку как с хромосомой, содержащей ген B , так и с хромосомой, содержащей ген b . Хромосома с геном A никак не привязана к хромосоме с геном B , хотя они обе и были унаследованы от одного родителя. Можно сказать, что в результате мейоза хромосомы перемешиваются. Количество различных их сочетаний вычисляется по формуле 2 n , где n — это количество хромосом гаплоидного набора. Так, если у вида три пары хромосом, то количество различных их комбинаций будет равно 8 (2 3 ).

Когда не действует закон независимого наследования признаков

Третий закон Менделя, или закон независимого наследования признаков, действует только для генов, локализованных в разных хромосомах или расположенных в одной хромосоме, но достаточно далеко друг от друга.

В основном если гены находятся в одной хромосоме, то они наследуются совместно, то есть проявляют сцепление между собой, и закон независимого наследования признаков уже не действует.

Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов ( AB и ab ), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).

Однако не так все просто. Из-за существования в природе конъюгации (сближения) хромосом и кроссинговера (обмена участками хромосом) рекомбинируются и гены находящиеся в гомологичных хромосомах. Так, если хромосома с генами AB в процессе кроссинговера обменяется участком с геном B с гомологичной хромосомой, чей участок содержит ген b , то могут получиться новые гаметы ( Ab и, например, aB ). Процент таких рекомбинантных гамет будет меньше, чем если бы гены находились в разных хромосомах. При этом вероятность кроссинговера зависит от удаленности генов на хромосоме: чем дальше, тем вероятность больше.

Для случаев, когда гены, отвечающие за эти признаки, не сцеплены друг с другом, т. е. не находятся на одной и той же хромосоме. Аллели должны находиться на разных, негомологичных хромосомах.

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Г. И. Мендель является наиболее известным чешским ученым. Будущий естествоиспытатель родился в Австрийской империи в обычной небогатой крестьянской семье, получив при крещении имя Иоганн.

Природа начала интересовать ребенка с ранних лет, в то время, когда он работал помощником садовника и непосредственно садовником. Некоторое время Мендель учился в институте Ольмюца в философских классах. После этого он 1843 году постригся в монахи и принял новое имя — Грегор.

Значится в биографии ученого и период, когда он учился в Брюннском богословском институте (с 1844 по 1848 год), а после учебы стал священником.

Во время учебы будущий ученый самостоятельно осваивал различные науки. Также он изучал естественную историю в Венском университете.

Непосредственно в Вене ученый стал интересоваться процессами гибридизации, а также статистическим соотношением гибридов. Особое внимание Мендель уделял вопросам, касающимся изменений качественных признаков у растений. В качестве объекта для исследований ученый выбрал горох — это растение можно было без проблем вырастить в саду монастыря.

Первые успехи подтолкнули ученого перенести эксперименты на другие растения и насекомых — он выбрал растение семейства астровых (скрещивал разновидности ястребинки) и пчел (скрещивал разновидности пчел). К сожалению, полученные результаты не были такими же успешными, как в случае с горохом. А все дело было в том, что, как уже известно сегодня, механизм наследования признаков у этих растений и животных не такой, как механизм наследования у гороха.

За этим последовало разочарование Менделя в биологии. Он был назначен настоятелем монастыря и больше не занимался наукой. Однако его заслуги сложно переоценить: именно он нашел и описал статистические закономерности наследования признаков у гибридов.

Кратко рассмотрим законы Менделя. Всего существует три закона Менделя.

Первый закон Менделя

Чтобы облегчить учет результатов исследования, Мендель целенаправленно взял растения, у которых признаки четко различались: цвет и форма семян.

Когда происходило скрещивание разных сортов гороха — с пурпурными и белыми цветками — первое поколение гибридов было представлено растениями с пурпурными цветками. Такие же результаты были получены и при скрещивании гороха с желтыми и зелеными семенами, а также с семенами гладкой и морщинистой формы.

Полученные результаты позволили Менделю сформулировать закон единообразия гибридов первого поколения — 1 закон Менделя.

Вот формулировка первого закона Менделя.

1-й закон Менделя подразумевает, что при скрещивании двух гомозиготных организмов, относящихся к чистым линиям и отличающихся друг от друга одной парой альтернативных проявлений определенного признака, первое поколение гибридов (F1) будет одинаковым и будет нести проявление признака лишь одного из родителей.

Первый закон Мендаля также получил название закона доминирования признаков. Суть его заключается в том, что доминирующий признак получает проявление в фенотипе и подавляет рецессивный признак.

Схема 1-го закона Г. Менделя.

Законы наследственности Г. Менделя

Второй закон Менделя

При последующем исследовании гибридов первого поколения Менделем было обнаружено, что при дальнейшем скрещивании между собой гибридов первого поколения, у гибридов второго поколения будет наблюдаться расщепление признаков — при чем, с устойчивым постоянством.

Формулировка второго закона Менделя выглядит так:

В результате скрещивания двух гетерозиготных потомств первого поколения между собой, можно наблюдать расщепление во втором поколении. Это расщепление имеет определенное числовое соотношение по фенотипу — 3:1, а по генотипу — 1:2:1.

2 закон Менделя также называют законом расщепления, и его суть заключается в том, что рецессивный признак у гибридов первого поколения не пропадает, а только подавляется с последующим проявлением во втором гибридном поколении.

Схема 2-го закона Г. Менделя.

Законы наследственности Г. Менделя

Третий закон Менделя

От 1 и 2 закона Менделя плавно переходим к 3-му.

Первые опыты, проводимые Менделем, были основаны на всего лишь одной паре альтернативных признаков. В этом случае ему уже стало интересно, что будет, если рассмотреть сразу несколько признаков.

В результате признаки стали между собой комбинироваться, что вызвало растерянность у ученого. Однако детальное рассмотрение позволило ученому вывести определенную закономерность расщепления.

Стало понятно, что гибриды первого поколения характеризуются однообразностью, а во втором поколении происходит расщепление признаков по фенотипу в пропорции 9:3:3:1. При чем, вне зависимости от другого признака. 3 закон Менделя получил название закона независимого наследования.

Вот как формулируется закон наследования признаков.

Третий закон наследственности гласит, что при скрещивании двух особей, отличающихся одна от другой по нескольким парам альтернативных признаков (двум и более), происходит независимое наследование генов и соответствующих им признаков, а также комбинирование во всех доступных сочетаниях (как при моногибридном скрещивании).

Вот схема 3-го закона Мендаля.

Законы наследственности Г. Менделя

Все эти законы Грегора Менделя, заложили начало новой науки — генетики. Именно благодаря законам Менделя генетика стала популярной и быстро развивающейся наукой, а само словосочетание pfrjy vtyltkz стало широко известным.

В каких случаях справедливо правило независимого наследования признаков?


Для независимого наследования признаков, гены, которые за

них отвечают, не должны быть сцепленными.

Сцепленные гены наследуются вместе.

Ранее считалось, что эти гены должны обязательно находиться

на разных негомологичных хромосомах.

Затем, стало ясно, что гены расположенные

даже на одной хромосоме, могут наследоваться независимо.

Это происходит из - за

кроссинговера, процесса, в ходе которого хромосомы обмениваются гомологичными

Поэтому для независимого наследования признаков, для их

генов справедливы два правила :

Расположение на разных негомологичных хромосомах.

2. В случае расположения на одной хромосоме, большое

расстояние между генами.

Чем дальше расположены гены друг от друга,

тем больше вероятность, что между ними произойдёт кроссинговер, а значит, эти

гены будут наследоваться независимо.


Возможность предсказывать появление у особей родственных видов определённых признаков появилась с открытием закона :1)расщепления?

Возможность предсказывать появление у особей родственных видов определённых признаков появилась с открытием закона :

3)независимого наследования генов.

4)гомологичных рядов Н.


Помогите)))) * * * *если гены, отвечающие за развитие нескольких признаков, расположены в одной хромосоме, то проявится закон :расщеплениянезависимого наследованиясцепленного наследованиянеполного дом?

если гены, отвечающие за развитие нескольких признаков, расположены в одной хромосоме, то проявится закон :


При дигибридном скрещивании и независимом наследовании признаков у родителей с генотипами ААBb и aabb в потомстве наблюдается расщепление в соотношении?

При дигибридном скрещивании и независимом наследовании признаков у родителей с генотипами ААBb и aabb в потомстве наблюдается расщепление в соотношении.


В каком случае происходит нарушение закона независимого наследования признаков?

В каком случае происходит нарушение закона независимого наследования признаков?


Какие типы наследования признаков можно установить, используя генеалогический метод?

Какие типы наследования признаков можно установить, используя генеалогический метод?


Cколько типов гамет образует организм с генотипом AAbb при независимом наследовании признаков?

Cколько типов гамет образует организм с генотипом AAbb при независимом наследовании признаков?


Какие процессы, происходящие в клетках , лежат в основе наследования признаков?

Какие процессы, происходящие в клетках , лежат в основе наследования признаков?


Как Мендель объяснил наследование признаков ?

Как Мендель объяснил наследование признаков ?


Различают независимое и сцепленное наследование признаков?

Различают независимое и сцепленное наследование признаков.

Что характерно для каждого типа наследования?


Какие виды гамет образуются у организмов с генотипом AaBb при независимом наследовании генов?

Какие виды гамет образуются у организмов с генотипом AaBb при независимом наследовании генов.


Клеточная оболочка, клеточная мембрана, хлоропласты, вакуоль, цитоплазма, митохондрии, ядро, ядрышко.


Они называются "землянки".


156 2 - нет, это мембранный органоид 3 - нет, состоит из муреина 4 - нет, т. К. бактерии безъядерные, соответсвенно нет ядерной оболочки.


Этого кулика зовут кулик - сорока.


Ормы проявления конкуренции могут быть весьма различными : от жестокой борьбы до почти мирного сосуществования. Но, как правило, из двух видов с одинаковыми экологическими потребностями один обязательно вытесняет другой. Для вида, испытывающего кон..


В результате многолетнего интенсивного применения одного и того же яда возникли устойчивые штаммы.


Около готового отверстия. Их 5 - 12 штук.


Вокруг ротового отверстия.


46 хромосом или 23 пары.


У человека 23 пары хромосом. Всего их 46.

© 2000-2022. При полном или частичном использовании материалов ссылка обязательна. 16+
Сайт защищён технологией reCAPTCHA, к которой применяются Политика конфиденциальности и Условия использования от Google.

Читайте также: