В чем состоит закон сохранения энергии кратко

Обновлено: 05.07.2024

Закон сохранения энергии – фундаментальный закон природы

Содержание этого закона в наиболее краткой формулировке формулируется так : “Энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной. Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение/уменьшение ее энергии равно убыли/возрастанию энергии взаимодействующих с ней тел и физических полей.”

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени.

Некоторые авторы не согласны с тем, что энергия является скалярной величиной. Ведь энергия — это физическая величина, характеризующая движение материи, а понятие движение очевидно связано с понятием направления. Закон сохранения энергии в современной трактовке ничего не говорит о сохранении направления движения, так как энергия трактуется как скалярная величина. Поскольку энергия является характеристикой движения, то закон сохранения энергии является частным случаем более общего закона сохранения движения, учитывающего не только сохранение количества энергии, но и сохранение направления движения. Именно закон сохранения движения отражает не только вечное существование материи, но и вечное ее движение. Впрочем, наш сайт — не место для научных споров и мы ограничимся наиболее распространенным понятием энергии как скалярной величины.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) выражают в процентах.

КПД механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. Например, а среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло. КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Но при описании таких устройств как тепловые насосы мы встречаемся с утверждениями, что их КПД превышает 100%. На первый взгляд может показаться, что тут есть какое-то противоречие с законом сохранения энергии. В действительности же тут просто некорректно используется понятие КПД. Действительно, достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса. Но для характеристики эффективности теплового насоса нужно применять не КПД, а коэффициент преобразования или отопительный коэффициент СОР (coefficient of performance), равный отношению энергии, отдаваемой потребителю теплоты к мощности, потребляемой компрессором. Поскольку энергия, отдаваемая потребителю перекачивается от источника этой теплоты, значение коэффициэнта преобразования может быть и больше 100%.

Энтропия

Энтропия — это сокращение доступной энергии вещества в результате передачи энергии. Энтропия используется для измерения уменьшения пригодности энергии в результате процесса.

Энтропия увеличивается, когда жидкость изменяет состояние на газообразное при потреблении большего количества тепловой энергии. Такая же аналогия существует при описании порядка источников энергии. Если энергия заключена в ограниченном источнике, у нее низкое значение энтропии. Если она распределена среди большого количества молекул, ее интенсивность уменьшается, увеличивая энтропию. Например, если 1,05 кДж энергии у 1000 молекул передать 1 миллиону молекул, интенсивность энергии уменьшится, а энтропия возрастет.

Энтропию трудно понять, так как это абстрактное понятие беспорядка энергии во вселенной. Этот беспорядок связан с уменьшением пригодности энергии для преобразования в работу. Энергия всегда становится недоступной, если процессы уменьшают ее интенсивность, распространяя ее по вселенной. Если энергия распределена среди бесчисленных молекул вселенной, разница температур самых холодных и самых теплых участков уменьшается. Если разница температур уменьшается, тепловая энергия, которую можно преобразовать в полезную работу, также уменьшается. Следовательно, любой процесс, который производит увеличение энтропии, уменьшает энергию для будущих процессов. В конечном счете наступит момент, когда энтропия вселенной приблизится к максимальному значению, и преобразование теплоты в работу станет невозможным.

Абсолютная энтропия (S) вещества или процесса — это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре. Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах.

Все процессы преобразования энергии в конечном счете увеличивают энтропию вселенной. Вывод отсюда — полезная работа может производиться только до тех пор, пока не иссякли запасы доступной нам энергии.

Вечный двигатель

Perpetu

Люди веками мечтали (некоторые все еще мечтают) создать устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Но согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. К выводу о невозможности создания вечного двигателя ученые пришли после того, как многочисленные попытки создать такой двигатель оказались безуспешными.

Проекты вечных двигателей разделяют на два типа по характеру совершаемой работы:

Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) — непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне. Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях. Возможность работы такой машины неограниченное время означала бы получение энергии из ничего.

В результате бесконечных попыток создать вечный двигатель были сформулированы так называемые первое и второе начала термодинамики, которые являются следствиями закона сохранения энергии:

Первое начало термодинамики гласит: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Второе начало термодинамики утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.


Физика — такая клевая наука, в которой ничего не исчезает бесследно. В том числе энергия. Вернее: особенно энергия. О том, куда она девается, если не бесследно — в этой статье.

О чем эта статья:

Энергия: что это такое

Поэтому давайте условимся здесь и сейчас, что энергия — это запас, который пойдет на совершение работы.

Энергия бывает разных видов: механическая, электрическая, внутренняя, гравитационная и так далее. Измеряется она в Джоулях (Дж) и чаще всего обозначается буквой E.

Механическая энергия

Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Она представляет собой совокупность кинетической и потенциальной энергии. Кинетическая энергия — это энергия действия. Потенциальная — ожидания действия.

Еще один примерчик: лыжник скатывается с горы. В самом начале — на вершине — у него максимальная потенциальная энергия, потому что он в режиме ожидания действия (ждущий режим 😂), а внизу горы он уже явно двигается, а не ждет, когда с ним это случится — получается, внизу горы кинетическая энергия.

Кинетическая энергия

Еще разок: кинетическая энергия — это энергия действия. Величина, которая очевиднее всего характеризует действие — это скорость. Соответственно, в формуле кинетической энергии точно должна присутствовать скорость.

Кинетическая энергия

Ек — кинетическая энергия [Дж]

m — масса тела [кг]

Чем быстрее движется тело, тем больше его кинетическая энергия. И наоборот — чем медленнее, тем меньше кинетическая энергия.

Задачка раз

Определить кинетическую энергию собаченьки массой 10 кг, если она бежала за мячом с постоянной скоростью 2 м/с.

Решение:

Формула кинетической энергии

Ответ: кинетическая энергия пёсы равна 20 Дж.

Задачка два

Найти скорость бегущего по опушке гнома, если его масса равна 20 кг, а его кинетическая энергия — 40 Дж

Решение:

Формула кинетической энергии

Ответ: гном бежал со скоростью 2 м/с.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Потенциальная энергия

В отличие от кинетической энергии, потенциальная чаще всего тем меньше, чем скорость больше. Потенциальная энергия — это энергия ожидания действия.

Например, потенциальная энергия у сжатой пружины будет очень велика, потому что такая конструкция может привести к действию, а следовательно — к увеличению кинетической энергии. То же самое происходит, если тело поднять на высоту. Чем выше мы поднимаем тело, тем больше его потенциальная энергия.

Потенциальная энергия деформированной пружины

Еп — потенциальная энергия [Дж]

k — жесткость [Н/м]

x — удлинение пружины [м]

Потенциальная энергия в поле тяжести

Еп = mgh

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g ≃ 9,8 м/с 2

Задачка раз

Найти потенциальную энергию рака массой 0,1 кг, который свистит на горе высотой 2500 метров. Ускорение свободного падения считать равным 9,8 м/с 2 .

Решение:

Формула потенциальной энергии Еп = mgh

Eп = 0,1 · 9,8 · 2500 = 2450 Дж

Ответ: потенциальная энергия рака, свистящего на горе, равна 2450 Дж.

Задачка два

Найти высоту горки, с которой собирается скатиться лыжник массой 65 кг, если его потенциальная энергия равна 637 кДж. Ускорение свободного падения считать равным 9,8 м/с 2 .

Решение:

Формула потенциальной энергии Еп = mgh

Переведем 637 кДж в Джоули.

637 кДж = 637000 Дж

Ответ: высота горы равна 1000 метров.

Задачка три

Два шара разной массы подняты на разную высоту относительно поверхности стола (см. рисунок). Сравните значения потенциальной энергии шаров E1 и E2. Считать, что потенциальная энергия отсчитывается от уровня крышки стола.


Задача для самопроверки

Решение:

Потенциальная энергия вычисляется по формуле: E = mgh

По условию задачи

Таким образом, получим, что

Закон сохранения энергии

В физике и правда ничего не исчезает бесследно. Чтобы это как-то выразить, используют законы сохранения. В случае с энергией — Закон сохранения энергии.

Закон сохранения энергии

Полная механическая энергия замкнутой системы остается постоянной.

Полная механическая энергия — это сумма кинетической и потенциальной энергий. Математически этот закон описывается так:

Закон сохранения энергии

Еполн. мех. — полная механическая энергия системы [Дж]

Еп — потенциальная энергия [Дж]

Ек — кинетическая энергия [Дж]

const — постоянная величина

Задачка раз

Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. Как изменится высота подъёма мяча при увеличении начальной скорости мяча в 2 раза?

Решение:

Должен выполняться закон сохранения энергии:

В начальный момент времени высота равна нулю, значит Еп = 0. В этот же момент времени Ек максимальна.

В конечный момент времени все наоборот — кинетическая энергия равна нулю, так как мяч уже не может лететь выше, а вот потенциальная максимальна, так как мяч докинули до максимальной высоты.

Это можно описать соотношением:

Разделим на массу левую и правую часть

Из соотношения видно, что высота прямо пропорциональна квадрату начальной скорости, значит при увеличении начальной скорости мяча в два раза, высота должна увеличиться в 4 раза.

Ответ: высота увеличится в 4 раза

Задачка два

Тело массой m, брошенное с поверхности земли вертикально вверх с начальной скоростью v0, поднялось на максимальную высоту h0. Сопротивление воздуха пренебрежимо мало. Чему будет равна полная механическая энергия тела на некоторой промежуточной высоте h?

Решение

По закону сохранения энергии полная механическая энергия изолированной системы остаётся постоянной. В максимальной точке подъёма скорость тела равна нулю, а значит, оно будет обладать исключительно потенциальной энергией Емех = Еп = mgh0.

Таким образом, на некоторой промежуточной высоте h, тело будет обладать и кинетической и потенциальной энергией, но их сумма будет иметь значение Емех = mgh0.

Задачка три

Мяч массой 100 г бросили вертикально вверх с поверхности земли с начальной скоростью 6 м/с. На какой высоте относительно земли мяч имел скорость 2 м/с? Сопротивлением воздуха пренебречь.

Решение:

Переведем массу из граммов в килограммы:

m = 100 г = 0,1 кг

У поверхности земли полная механическая энергия мяча равна его кинетической энергии:

На высоте h потенциальная энергия мяча есть разность полной механической энергии и кинетической энергии:

Ответ: мяч имел скорость 2 м/с на высоте 1,6 м

Переход механической энергии во внутреннюю

Внутренняя энергия — это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия. То есть та энергия, которая запасена у тела за счет его собственных параметров.

Часто механическая энергия переходит во внутреннюю. Происходит этот процесс путем совершения механической работы над телом. Например, если сгибать и разгибать проволоку — она будет нагреваться.

Или если кинуть мяч в стену, часть энергии при ударе перейдет во внутреннюю.

Задачка

Какая часть начальной кинетической энергии мяча при ударе о стену перейдет во внутреннюю, если полная механическая энергия вначале в два раза больше, чем в конце?

Решение:

В самом начале у мяча есть только кинетическая энергия, то есть Емех = Ек.

В конце механическая энергия равна половине начальной, то есть Емех/2 = Ек/2

Часть энергии уходит во внутреннюю, значит Еполн = Емех/2 + Евнутр

Ответ: во внутреннюю перейдет половина начальной кинетической энергии

Закон сохранения энергии в тепловых процессах

Чтобы закон сохранения энергии для тепловых процессов был сформулирован, было сделано два важных шага. Сначала французский математик и физик Жан Батист Фурье установил один из основных законов теплопроводности. А потом Сади Карно определил, что тепловую энергию можно превратить в механическую.

Вот что сформулировал Фурье:

При переходе теплоты от более горячего тела к более холодному температуры тел постепенно выравниваются и становятся едиными для обоих тел — наступает состояние термодинамического равновесия.

Таким образом, первым важным открытием было открытие того факта, что все протекающие без участия внешних сил тепловые процессы необратимы.

Дальше Карно установил, что тепловую энергию, которой обладает на­гретое тело, непосредственно невозможно превратить в механиче­скую энергию для производства работы. Это можно сделать, только если часть тепловой энергии тела с большей температурой передать другому телу с меньшей температурой и, следовательно, нагреть его до более высокой температуры.

Закон сохранения энергии в тепловых процессах

При теплообмене двух или нескольких тел абсолютное количество теплоты, которое отдано более нагретым телом, равно количеству теплоты, которое получено менее нагретым телом.

Математически его можно описать так:

Уравнение теплового баланса

Qотд — отданное системой количество теплоты [Дж]

Qпол — полученное системой количество теплоты [Дж]

Данное равенство называется уравнением теплового баланса. В реальных опытах обычно получается, что отданное более нагретым телом количество теплоты больше количества теплоты, полученного менее нагретым телом:

Это объясняется тем, что некоторое количество теплоты при теплообмене передаётся окружающему воздуху, а ещё часть — сосуду, в котором происходит теплообмен.

Чтобы разобраться в задачках, читайте нашу статью про агрегатные состояния вещества.

Задачка раз

Сколько граммов спирта нужно сжечь в спиртовке, чтобы нагреть на ней воду массой 580 г на 80 °С, если учесть, что на нагревание пошло 20% затраченной энергии.

Удельная теплота сгорания спирта 2,9 · 107 Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг · °С).

Решение:

При нагревании тело получает количество теплоты

где c — удельная теплоемкость вещества

При сгорании тела выделяется энергия

где q — удельная теплота сгорания топлива

По условию задачи нам известно, что на нагревание воды пошло 20% энергии, полученной при горении спирта.

Ответ: масса сгоревшего топлива равна 33,6 г.

Задачка два

Какое минимальное количество теплоты необходимо для превращения в воду 500 г льда, взятого при температуре −10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь. Удельная теплоемкость льда равна 2100 Дж/кг · ℃, удельная теплота плавления льда равна 3,3 · 10 5 Дж/кг.

Решение:

Для нагревания льда до температуры плавления необходимо:

Qнагрев = 2100 · 0,5 · (10 − 0) = 10 500 Дж

Для превращения льда в воду:

Qпл = 3,3 · 10 5 · 0,5 = 165 000 Дж

Таким образом, для превращения необходимо затратить:

Q = Qнагрев + Qпл = 10 500 + 165 000 = 175 500 Дж = 175,5 кДж

Ответ: чтобы превратить 0,5 кг льда в воду при заданных условиях необходимо 175,5 кДж тепла.

Закон сохранения энергии гласит, что энергия не может быть ни создана, ни уничтожена — только преобразована из одной формы энергии в другую.

Это означает, что система всегда имеет одинаковое количество энергии, если только она не добавляется извне. Единственный способ использовать энергию — это преобразовывать энергию из одной формы в другую.

Таким образом, количество энергии в любой системе определяется следующей совокупностью факторов:

  • это общая внутренняя энергия системы;
  • является начальной внутренней энергией системы;
  • это работа, выполняемая системой или в системе;
  • это тепло, добавляемое в систему или удаляемое из нее.

Вывод состоит в том, что энергия не может быть создана из ничего. Общество должно откуда-то получать энергию, хотя есть много скрытых мест, откуда ее можно получить (некоторые источники являются первичным топливом, а некоторые источники являются первичными потоками энергии).

В начале XX века Эйнштейн выяснил, что даже масса является формой энергии (это называется эквивалентностью массы и энергии). Количество массы напрямую связано с количеством энергии, как определяется самой известной формулой в физике:

  • E — это количество энергии в объекте или системе;
  • m — это масса объекта или системы.
  • c — равна скорости света.

Общая энергия постоянна в любом процессе. Она может измениться по форме или быть перенесена из одной системы в другую, но общая сумма остается прежней.

По мере того как объекты перемещаются с течением времени, связанная с ними энергия (например, кинетический, гравитационный потенциал, тепло) — может менять формы, но если энергия сохраняется, то общее количество останется прежним.

Экономия энергии применима только к изолированным системам. Шар, катящийся по неровному полу, не будет подчиняться закону сохранения энергии, потому что он не изолирован от пола. Пол, по сути, воздействует на мяч за счет трения. Однако, если рассмотрим шар и пол вместе, то будет применяться закон сохранения энергии. Обычно эта комбинация называется системой шарового пола.

В механических задачах мы, скорее всего, столкнемся с системами, содержащими:

  • кинетическую энергию (Ek);
  • гравитационную потенциальную энергию (Ug);
  • потенциальную энергию упругой пружины (Us)4
  • тепловую энергию (Eh).

Решение таких задач часто начинается с установления сохранения энергии в системе между начальным временем (индекс i) и более поздним временем (индекс f).

E k i + U g i + U s i = E K f + U g f + U s f + E H f .

Пример сохранения энергии

Например, если взрывается динамитная шашка, химическая энергия, содержащаяся в динамите, преобразуется в кинетическую энергию, тепло и свет. Если всю эту энергию сложить вместе, то она будет равна начальной величине химической энергии.

В замкнутой системе, т.е. системе, изолированной от окружающей среды, общая энергия системы сохраняется.

Таким образом, если в изолированной системе (такой, как Вселенная) в какой-то ее части происходит потеря энергии, в какой-то другой части Вселенной должно быть увеличение равного количества энергии. Хотя этот принцип не может быть доказан, не существует известного примера нарушения принципа сохранения энергии.

Количество энергии в любой системе определяется следующим уравнением:

U T — полная энергия системы;
U i — это начальная энергия системы;
Q — это тепло добавляется или удаляется из системы;
W — это работа, выполняемая системой или в системе.

Первый закон уравнения термодинамики

Изменение внутренней энергии системы определяется с помощью уравнения:

Δ U = W + Q .

Δ U — изменение внутренней энергии системы.
q — алгебраическая сумма теплопередачи между системой и окружающей средой.
W — рабочее взаимодействие системы с окружающей средой.

Первый закон термодинамики для замкнутой системы

Работа, выполняемая для закрытой системы, является произведением приложенного давления и изменения объема, которое происходит из-за приложенного давления:

w = - P Δ V ,

Где P — постоянное внешнее давление на систему, а Δ V — изменение объема системы.

Внутренняя энергия системы увеличивается или уменьшается в зависимости от рабочего взаимодействия, которое происходит через ее границы. Внутренняя энергия будет увеличиваться, если работа выполняется в системе, и уменьшаться, если работа выполняется системой.

Любое тепловое взаимодействие, происходящее в системе с окружающей средой, также изменяет ее внутреннюю энергию. Но поскольку энергия остается постоянной (согласно первому закону термодинамики), общее изменение внутренней энергии всегда равно нулю. Если энергия теряется системой, то она поглощается окружающей средой.

Если энергия поглощается системой, то это означает, что энергия была выделена окружающей средой:

Δсист. = -δ окружения.

Где Δсист. — изменение общей внутренней энергии системы, а δ окружения — изменение общей энергии окружающей среды.

Следствие сохранения энергии

Одним из интересных следствий закона сохранения энергии является то, что он означает невозможность создания вечных двигателей первого рода. Другими словами, система должна иметь внешний источник питания для непрерывной подачи неограниченной энергии в окружающую среду.

Также стоит отметить, что не всегда возможно определить сохранение энергии, потому что не все системы обладают симметрией перемещения во времени. Например, сохранение энергии может быть не определено для кристаллов времени или для искривленных пространственных времен.

Закон изменения энергии

Примеры использования механической энергии дома и в повседневной жизни

Механическая энергия, также известная как энергия движения, — это то, как объект движется в зависимости от его положения и движения.

Это происходит, когда на объект действует сила, и объект использует переданную энергию в качестве движения. Если объект движется, он использует механическую энергию. Повседневные примеры механической энергии приведены ниже.

Механическая энергия — один из единственных видов энергии, который легко увидеть.

  1. Поворот дверной ручки.
  2. Вдох и выдох.
  3. Забивание гвоздя.
  4. Езда на велосипеде.
  5. Заточка карандаша.
  6. Использование кухонной техники.
  7. Прослушивание музыки.
  8. Набор текста на клавиатуре.
  9. Вождение автомобиля.

Когда мы двигаем что-то рукой, то передаем кинетическую механическую энергию от одного объекта к другому объекту, который мы перемещаем.

Виды механической энергии

Существует два вида механической энергии: потенциальная энергия (накопленная энергия положения) и кинетическая энергия (энергия движения).

Механическая энергия объекта — это сумма его потенциальной энергии и кинетической энергии. Объекты с большим количеством механической энергии будут двигаться больше, чем объекты с низкой механической энергией.

Потенциальная механическая энергия

Когда объект способен двигаться, но на него не действует сила, он накапливает потенциальную механическую энергию. Двумя основными типами потенциальной энергии являются:

  1. Гравитационная потенциальная энергия: энергия, которая накапливается в высоте или положении объекта. Более тяжелые объекты обладают большим количеством гравитационной энергии.
  2. Упругая потенциальная энергия: энергия, которая накапливается в силу состояния объекта. Это условие часто зависит от материала объекта (например, резины).
    Например, тяжелый шар для боулинга, удерживаемый на высоте четырех футов над землей, обладает большей гравитационной потенциальной энергией, чем более легкий теннисный мяч, который обладает некоторой упругой потенциальной энергией из-за своего резинового материала.

Когда сила воздействует на шары, чтобы отбросить их, гравитационная потенциальная энергия шара для боулинга объединяется с его кинетической энергией движения. Он упадет с большей силой, чем теннисный мяч, который отскочит из-за своей высокой потенциальной энергии упругости.

Кинетическая механическая энергия

Объект использует кинетическую механическую энергию, когда он в данный момент движется. На объект воздействовала сила, заставляя его выполнять работу. Кинетическая механическая энергия может возникать, когда кинетическая энергия другого объекта передается ему (например, когда человек бросает мяч) или когда другой тип кинетической энергии преобразуется в механическую энергию.

В дополнение к механической энергии, существует четыре вида кинетической энергии:

  1. Лучистая энергия: энергия, производимая световыми волнами.
  2. Электрическая энергия, производимая электричеством.
  3. Звуковая энергия, производимая звуковыми волнами.
  4. Тепловая энергия, получаемая за счет тепла.

Никакая форма энергии не может быть создана или уничтожена. Энергия может быть передана или преобразована только в различные виды энергии.

Преобразования механической энергии

Любая переданная энергия, которая заставляет объект выполнять работу, является примером преобразования энергии. Преобразования в механическую энергию позволяют объекту двигаться.

Вот несколько примеров того, как различные виды энергии превращаются в механическую энергию:

  1. Бензин преобразует химическую энергию в механическую в автомобилях.
  2. Паровые двигатели преобразуют тепловую энергию в механическую в поезде.
  3. Организм преобразует химическую энергию из питательных веществ в механическую для движения.
  4. Электрическая дрель преобразует электрическую энергию в механическую при подключении и использовании.
  5. Музыка преобразует звуковую энергию в механическую в вашей барабанной перепонке.

И наоборот, механическая энергия может преобразовываться в различные виды энергии.

  1. Ветряные мельницы преобразуют механическую энергию в электрическую в домах.
  2. Удар по барабану преобразует механическую энергию в звуковую.
  3. Потирание рук друг о друга преобразует механическую энергию в тепловую.
  4. Включение выключателя света преобразует механическую энергию в электрическую и лучистую энергию.
  5. Переваривание пищи преобразует механическую энергию в химическую.

Формулировка закона сохранения энергии

​Первый закон термодинамики является повторением этого закона сохранения энергии в терминах тепловой энергии: внутренняя энергия системы должна равняться сумме всей работы, проделанной в системе, плюс или минус тепло, поступающее в систему или из нее.

Другим хорошо известным принципом сохранения в физике является закон сохранения массы.

Законы движения Ньютона

Любое изучение универсальных физических принципов должно подкрепляться обзором трех основных законов движения, сформулированных Исааком Ньютоном сотни лет назад. Это:

  1. ​Первый закон движения (закон инерции): Объект с постоянной скоростью (или в состоянии покоя, где v=0) остается в этом состоянии, если только несбалансированная внешняя сила не действует, чтобы нарушить его.
  2. ​Второй закон движения: Суммарная сила (Fnet) действует для ускорения объектов с массой (m). Ускорение (a) — это скорость изменения скорости (v).
  3. ​Третий закон движения: Для каждой силы в природе существует сила, равная по величине и противоположная по направлению.

Сохраняемые величины в физике

Законы сохранения в физике применимы к математическому совершенству только в действительно изолированных системах. В повседневной жизни такие сценарии встречаются редко. Четыре сохраняемые величины: это масса, энергия, импульс и угловой момент. Последние три из них относятся к области механики.

  1. ​Масса — это просто количество вещества чего-либо. При умножении массы на локальное ускорение, вызванное гравитацией, в результате получается вес. Масса не может быть уничтожена или создана с нуля в большей степени, чем энергия.
  2. ​Импульс — это произведение массы объекта на его скорость (m·v). В системе из двух или более сталкивающихся частиц общий импульс системы (сумма отдельных импульсов объектов) никогда не изменяется до тех пор, пока нет потерь на трение или взаимодействий с внешними телами.
  3. ​Угловой момент (L) — это просто импульс вокруг оси вращающегося объекта и равен m · v · r, где r — расстояние от объекта до оси вращения.
  4. ​Энергия проявляется во многих формах, некоторые из них более полезны, чем другие. Тепло, форма, в которой в конечном счете суждено существовать всей энергии, является наименее полезной с точки зрения ее использования для полезной работы и обычно является продуктом.

Закон сохранения энергии может быть записан:

K E + P E + I E = E K E + P E + I E = E ,

где KE — кинетическая энергия = mv2/2, PE — потенциальная энергия (PE = mgh, когда гравитация является единственной действующей силой, но проявляется в других формах), IE — внутренняя энергия и E — общая энергия (константа).

Изолированные системы могут преобразовывать механическую энергию в тепловую энергию в пределах своих границ.

Энергетические преобразования и формы энергии

Вся энергия во Вселенной возникла в результате Большого взрыва, и это общее количество энергии не может измениться. Вместо этого мы наблюдаем, как энергия постоянно меняет формы: от кинетической энергии (энергии движения) до тепловой энергии, от химической энергии до электрической энергии, от гравитационной потенциальной энергии до механической энергии и т. д.

Примеры передачи энергии

Тепло — это особый вид энергии (тепловая энергия), поскольку, как уже отмечалось, оно менее полезно для человека, чем другие формы.

Это означает, что как только часть энергии системы преобразуется в тепло, ее нельзя так же легко вернуть в более полезную форму без дополнительной работы, которая требует дополнительных затрат энергии.

Примером является огромное количество лучистой энергии, которую солнце выделяет каждую секунду и никогда не сможет каким-либо образом восстановить или использовать повторно.

Она также может быть захвачена продуктами человеческой инженерии, такими как солнечные батареи.

При тепловой смерти Вселенной, согласно третьему закону термодинамики, вся материя будет преобразована в тепловую энергию. Как только это преобразование энергии будет завершено, больше никаких преобразований произойти не может, по крайней мере, без другого гипотетического сингулярного события, такого как Большой взрыв.

Вечный двигатель (например, маятник, который качается с одинаковым временем и размахом, никогда не замедляясь) на Земле невозможен из-за сопротивления воздуха и связанных с этим потерь энергии. Для поддержания работы этого устройства в какой-то момент потребуется внешняя работа, что приведет к поражению цели.

Примеры задач

Студентка решает попробовать прыгнуть с тарзанки. Она использует шнур длиной h = 12 м с постоянной пружины K = 3 , 00 * 10 2 Н / м . В полном снаряжении она имеет массу m = 69 к г . Она ищет мост, к которому могла бы привязать веревку и прыгнуть. Определите минимальную высоту моста L, которая позволит ей оставаться сухой (то есть так, чтобы она останавливалась непосредственно перед тем, как упасть в воду ниже). Предположим, что сопротивление воздуха незначительно.

Исходя из сохранения энергии, мы имеем кинетическую и упругую энергии, которые превратились в потенциальную энергию:

m v 2 2 + K L - h 2 2 = m g L

где, m v 2 / 2 = m g h .

m g h = K L - h 2 2 = m g L

K * L 2 - 2 K * L * h + K * h 2 - 2 m g L = 0 ,

K * L 2 - 2 ( K * h + m g ) L + K * h 2 = 0 ,

3 * 102 * L 2 - 2 ( 3 * 102 * 12 + 69 * 9 , 81 ) L + 3 * 102 * 122 = 0 ,

3 * 102 * L 2 - 8553 , 78 * L + 43200 = 0 .

У нас есть два решения:

L = 21 , 95 и L = 6 , 56 .

Высота моста не может быть меньше длины шнура, поэтому мы выбираем только L = 21 , 95 м .

Ответ: L = 21 , 95 м .

v 1 = 2 g h 1 = 2 * 9 . 81 * 18 = 18 . 8 м / с

б) Из сохранения энергии: Потенциальная энергия на вершине 18 м преобразуется в кинетическую и потенциальную энергию на вершине холма.

Энергия — одно из сложнейших понятий современной физики. И закон сохранения энергии относится к числу ее основополагающих принципов. Вместе с экспертом разберем задачи с решением этого фундаментального закона природы и узнаем, кто его открыл


Физика ставит своей целью понимание самых общих закономерностей материального мира. Имена Архимеда, Ньютона, Эйнштейна знакомы каждому школьнику. Но великое множество ученых вложили по кирпичику в здание современной науки и ускорили развитие человеческой цивилизации. Ее современный уровень был бы недостижим без понимания природы энергии и ее законов прежде всего в механике, самом доступном для наблюдений и экспериментов разделе физики.

Закон сохранения энергии действует повсеместно и незаметно. В механике он срабатывает в замкнутой системе под воздействием консервативных сил – то есть сил тяжести и упругости, зависящих только от стартового и финального положения тела и не зависящих от траектории движения. При таких условиях энергия тел никуда не исчезает, а лишь переходит из кинетической в потенциальную и наоборот – из потенциальной в кинетическую. Это и есть самая простая формулировка закона сохранения энергии для механических систем.

Ep — потенциальная энергия;
Ek — кинетическая энергия;



Самый общий физический закон используется при решении совершенно практических задач.

Задача 1

Некое тело подбросили вверх вертикально с начальной скоростью 15 м/с. На какую высоту оно поднимется? Сопротивление воздуха при решении задачи не учитывать.

Решение: полученная при броске кинетическая энергия будет постепенно преобразовываться в потенциальную энергию:

То есть: mgh=(m*V 2 )/2

m – масса тела;
V – начальная скорость;
g – ускорение свободного падения;
h – высота подъема.

После преобразований получаем формулу для высоты подъема:

h= V 2 /(2*g)=225/(2*9,8)=11,47 м.

Ответ: тело поднимется на высоту 11,47 м.

Задача 2

Пружину растянули на 15 см. Известно, что она получила потенциальную энергию 24 Дж. Какова жесткость пружины?

Решение: формула потенциальной энергии упруго деформированного тела:

k – коэффициент жесткости;
x – величина деформации.

Преобразуем формулу для расчета:

Ответ: жесткость пружины равна 2133,33 Н/м.

— В открытии закона сохранения энергии участвовали многие ученые. Некоторые из них были очень близки, чтобы сформулировать его. Например, Майер и Джоуль своими работами показали, что количество выделяемой теплоты равно совершенной работе и наоборот. Однако наиболее полную формулировку первым дал в своих работах Гельмгольц.

— Таких примеров множество. Пример с молотком и гвоздем хорошо иллюстрирует переход механической энергии от молотка к гвоздю. Закон сохранения энергии здесь в том, что сколько молоток при ударе энергии отдал, столько же энергии гвоздь и получил. Ни больше ни меньше.

Другой пример. Кубики льда, взятые при температуре 0º С и опущенные в бокал с газированной водой, растаят, если им сообщить столько же Джоулей тепла, сколько забрали тепла у воды, взятой при температуре 0º С, когда ее замораживали, чтобы она перешла в твердое агрегатное состояние – лед. А если газированная вода будет недостаточно теплой, то лед не растает. Однако если этот бокал оставить на столе надолго, лед все равно растает, так как он получит необходимое количество тепла из окружающего воздуха.

Еще пример. Когда болит горло, есть хороший бабушкин рецепт. Надо пить теплое молоко. Молоко прогревает горло, отдает тепло, что помогает лечению. Молоко при этом остывает в горле и не греет желудок, что тоже важно.

Во всех этих примерах можно наблюдать большие потери тепла на нагрев окружающих тел. Но основная часть энергии идет на полезное действие. Сколько энергии отдает одно тело, столько же получает и другое, минус потери тепла на нагрев окружающих тел.

Если исключить потери тепла, можно добиться очень высокой эффективности процесса. Это возможно в системах, где энергия не выходит наружу и не рассеивается, поэтому ее потери минимальные. Примером такой системы может служить термос. Горячая вода в термосе долго не остывает, потому что потери тепла минимальные.

Данный закон один из фундаментов законов природы. Основная суть ео в том, что в замкнутой ситеме энергия никуда не теряется, она проходит стадии преобразования, видоизменяется, но не исчезает. Самый простой пример, когда соприкасаются два предмета разной температуры, один холодный другой тёплый, то происходит отдача теповой энергии более холодному предмету.

Спасибо за ответ)

Энергия - это обусловленная свойством мира движением способность каждой части мира-объекта изменяться. Закон сохранения энергии. Количество использованной энергии всего мира, каждой части мира-объекта в каждый момент или промежуток времени в абсолютных единицах времени сохраняется одинаковым-постоянным, равным этому моменту или промежутку времени, а в других-относительны. Читать далее

Это основополагающий закон природы, обнаруженный опытным путем. Его суть в том, что внутри замкнутой системы энергия не изменяется с течением времени. Закон настолько универсален, что может быть применен в самых разных областях физики: в классической механике - это закон сохранения механической энергии, в термодинамике - первое начало термодинамики, в электродинамике. Читать далее

Закон сохранения энергии - это фундаментальный закон природы. Суть его заключается в следующем: в замкнутой системе (на которую не влияют внешние факторы) энергия тела при изменении состояния тела не исчезает и не появляется из ниоткуда, а просто видоизменяется, превращается из одного вида энергии в другой. В разных разделах физики этот закон имеет свою формулировку, но. Читать далее

Читайте также: