В чем отличие силы ампера от силы лоренца кратко

Обновлено: 05.07.2024

Никак не могу понять в чём разница. В обоих силах магнитный поток влияет на проводник с током с определённой силой. Одно и тоже.

господа ответившие,
вы считаете что проводник с током не содержит заряженных частиц?
или что сила не на них действует? )))))

Ну что тут непонятного-то?
Сила Лоренца - это сила, которая действует на заряд, движущийся в магнитном поле. Из формулы для силы Лоренца следует, что она ВСЕГДА ПЕРПЕНДИКУЛЯРНА вектору скорости движущегося заряда.

Далее, электрический ток - это упорядоченное движение зарядов ВДОЛЬ тонкого проводника. Магнитное поле, "заходя" внутрь этого проводника действует с силой Лоренца на КАЖДЫЙ движущийся упорядоченно заряд ПЕРПЕНДИКУЛЯРНО направленю его движения, т. е. ПОПЕРЕК тонкого проводника. Из-за этого получается некоторая сила, действующая на весь тонкий проводник с током. Она называется силой Ампера.

Значит, сила Ампера возникает из-за того в природе существует сила Лоренца, если бы ее не было, то не было бы и силы Ампера!

Кстати, сила Лоренца есть ПЕРВОПРИЧИНА не только силы Ампера, но и электромагнитной индукции.

Под силой Лоренца обычно понимают силу, которой действует на заряженную частицу электромагнитное поле.
Сила Ампера - это сила, которой магнитное поле действует на электрический ток.

Суть одно и то же, только сила Лоренца действует на заряженные частицы, а сила Ампера - на проводник с током.

Сила Ампера определяет действие на участок проводника с током, помещённый в магнитное поле, а сила Лоренца определяет действие этого поля на попавшую в него заряженную частицу. Да, от формулы для силы Ампера переходят путём простых действий к формуле для силы Лоренца. Обе силы определяются по правилу левой руки. Обе силы широко применяются в технике.

Лоренц родился в Альтенберге, а Ампер с Лиона. Удачи!

Принципиально - ни в чем. Сила Ампера - обобщение силы Лоренца. Воздействие на проводник с током со стороны магнитного поля осуществляется посредством воздействия силы Лоренца на электроны в этом проводнике.


Из курса физики 9 класса известно, что электрический ток — это движение заряженных частиц. Опыты показывают, что при движении заряженные частицы взаимодействуют с магнитным полем. Рассмотрим особенности этого взаимодействия.

Сила Ампера и сила Лоренца

Если рассмотреть устройство любого электрического двигателя, то в нём всегда можно найти два элемента:

Магнитное поле, создаваемое статором, порождает силу, которая действует на рамку с электрическим током и поворачивает ее. Сила, которая при этом возникает, называется силой Ампера — именем физика, открывшего ее.

Если ток в рамке исчезнет, то и сила Ампера также уменьшится до нуля. А поскольку ток — это движение заряженных частиц, то можно предположить, что сила Ампера возникает при действии магнитного поля на заряженные частицы, и проводник здесь не обязателен.


Рис. 2. Движение зарядов в магнитном поле.

Сила Ампера, действующая на проводник с током, возникает потому, что магнитное поле действует на заряды, движущиеся в проводнике. Этот механизм возникновения силы Ампера был открыт физиком Х. Лоренцем, и поэтому сила, действующая на движущийся заряд в магнитном поле, была названа его именем.

Можно спросить: определяет ли сила Лоренца закон Ампера? Ответ утвердителен: да, определяет.

Формулы силы Ампера и силы Лоренца

Поскольку сила Ампера — это результат действия силы Лоренца, то и формулы, описывающие эти силы, близки, единицы измерения одинаковы. Сила Ампера и сила Лоренца пропорциональны величине перпендикулярной составляющей индукции $B_\perp=Bsin\alpha$, следовательно, эта часть в обеих формулах будет общей. Кроме того, обе этих силы пропорциональны величине заряда и его скорости движения. То есть формула силы Лоренца примет вид:

$$F_L = qBv sin \alpha$$

Формула силы Ампера будет аналогичной, место заряда займет величина тока $I$ (поскольку ток равен отношению заряда, проходящего по проводнику, ко времени прохождения), место скорости займет длина проводника $Δl$ (поскольку скорость равна отношению длины, которую прошел заряд, ко времени этого прохождения). В результате формула силы Ампера примет вид:

$$F_A = I B Δl sin \alpha$$

Направление силы Ампера и силы Лоренца

В отличие от многих других сил, направление силы Лоренца (а значит, и силы Ампера) не совпадает с направлением движения носителя и не совпадает с направлением на источник магнитного поля. Для определения направления этих сил используется мнемоническое правило левой руки.

Например, если линии магнитного поля направлены сверху вниз, то руку надо располагать ладонью вверх. Теперь, если проводник с током направлен вперед и мы расположим четыре вытянутых пальца вперед, то отставленный большой палец укажет направление справа налево. Это и будет направление силы Ампера, действующей на данный проводник, или силы Лоренца, если двигаются заряды.

Правило левой руки

Рис. 3. Правило левой руки.

Что мы узнали?

На заряд, движущийся в магнитном поле, действует сила Лоренца. Поскольку электрический ток — это упорядоченное движение зарядов, то на проводник с током в магнитном поле действует сила Ампера, которая представляет собой сумму сил Лоренца, действующих на движущиеся в проводнике заряды.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B . I . ℓ . sin α — закон Ампера.

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Действие магнитного поля на движущийся заряд.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:

Направление силы Лоренца (правило левой руки) Направление F определяется по правилу левой руки : вектор F перпендикулярен векторам В и v ..

Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным.


Если вектор v частицы перпендикулярен вектору В , то частица описывает траекторию в виде окружности:

Роль центростремительной силы играет сила Лоренца:

При этом радиус окружности: ,

а период обращения

не зависит от радиуса окружности!

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).

Действие магнитного поля на рамку с током

На рамку действует пара сил, в результате чего она поворачивается.

Устройство электроизмерительных приборов

1.Магнитоэлектрическая система:

1 - рамка с током; 2 - постоянный магнит; 3 спиральные пружины; 4 клеммы;

5 подшипники и ось; 6 стрелка; 7 — шкала (равномерная)

Принцип действия: взаимодействие рамки с током и поля магнита.

Угол поворота рамки и стрелки ~ I ..

2. Электромагнитная система:

1 - не­подвижная катушка; 2 - щель (магнит­ное поле); 3 - ось с подшипниками;

4 - сердечник; 5 - стрелка; 6 -шкала; 7 — спиральная пружина

Принцип действия: взаимодействие магнитного поля катушки со стальным сердечником, где Fмаг ~ I .

Использование силы Лоренца

В циклических ускорителях: 1 - вакуум­ная камера; 2 и 3 – дуанты;

4 - источник заряженных частиц; 5 - мишень.


В циклотроне магнитное поле управляет движением заряженной частицы. Период обращения частицы в цикло­троне: .

Т не зависит от R и υ!

Электрическое поле между дуантами разгоняет частицы, а магнитное поворачивает поток частиц. В момент попадания частиц в ускоряющий промежуток направление электрического поля меняется так, чтобы оно всегда увеличивало скорость частиц.

Схема действия масс-спектрографа Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные ( B1 ) и электрические ( E ) поля. Тогда .


Т.к. , то удельный заряд , следовательно

можно определить удельный заряд частицы, заряд. массу.

Движение заряженных частиц в магнитном поле Земли. Вблизи магнитных полюсов Земли космические заряженные частицы движутся по спирали (с ускорением) Одно из основных положений теории Максвелла говорит о том, что заряженная частица, движущаяся с ускорением, является источником электромагнитных волн - возникает т.н. синхротронное излучение. Столкновение заряженных частиц с атомами и молекулами из верхних слоев атмосферы приводит к возникновению полярных сияний.

Проводник с током является источником магнитного поля. А если в магнитное поле поместить сам проводник с током? То возникнет взаимодействие магнитной природы.

Если проводник с током поместить во внешнее магнитное поле, то оно будет воздействовать на проводник ссилой Ампера.




Направление силы Ампера



1) Вектор индукции "входит" в ладонь; 2) четыре пальца сонаправлены с током; 3) большой палец указывает направление силы Ампера.

Взаимодействие двух проводников с током

Проводник с током создает вокруг себя магнитное поле, в это поле помещается второй проводник с током, а значит на него будет действовать сила Ампера. Направление силы Ампера зависит от направления линий индукции магнитного поля, которое в свою очередь зависит от направления тока в проводнике.



Сила Лоренца



Если заряженная частица влетела в магнитное поле вдоль линий индукции, то угол , следовательно FЛ равна нулю.

Если частица влетела перпендикулярно линиям индукции, то под воздействием силы Лоренца ее траектория будет окружность. А если под некоторым углом к силовым линиям - винтовая траектория.




Направление силы Лоренца



1) Вектор индукции "входит" в ладонь; 2) четыре пальца сонаправлены с движением положительной частицы (см. направление тока) и четыре пальца противоположно направлены движению отрицательной частицы; 3) большой палец указывает направление силы Лоренца.

Читайте также: