В чем отличие прямого измерения от косвенного физика кратко

Обновлено: 04.07.2024

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения — это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.

Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения — это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.

Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.

По отношению к основным единицам измерения делят на абсолютные и относительные.

Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (c) — физическая константа.

Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.

С измерениями связаны такие понятия, как "шкала измерений", "принцип измерений", "метод измерений".

Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температурной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной соли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фаренгейта) принята одна девяносто шестая часть основного интервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в аспекте обеспечения единства измерений. В данном случае требуется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t o F/t°C.

В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений и др.

Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц измерений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа

цветов). Поскольку каждый цвет имеет немало вариантов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствующими особыми характеристиками зрительных возможностей

Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).

Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.

Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (обычно мы говорим "веса"), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы.

Измерение называется прямым, если измеряемая величина сравнивается с мерой непосредственно или при помощи измерительных приборов, градуированных в тех единицах, в которых измеряется данная величина. Измерения длины стола с помощью масштабной линейки или измерения силы тока амперметром являются прямыми.
Измерение называется косвенным^ если непосредственно измеряется не сама величина, а другие величины, связанные с нею функционально. Числовое значение величины, подлежащей измерению, при косвенном измерении получается путем соответствующих расчетов на основании зависимостей, существующих между величинами и выраженных в математической форме. Косвенные измерения применяются в том случае, когда прямые измерения затруднительны или невозможны. Например, для определения плотности вещества производят прямые измерения массы и объема тела. Результаты этих прямых измерений используют для вычисления плотности с помощью известного соотношения между массой тела, его объемом и плотностью вещества, из которого состоит тело. Выполненное таким способом измерение плотности есть косвенное измерение.

что называется прямым и косвенным измерением?

Прямыми называют измерения
----------------------------------при которых искомое значение
величины находят непосредственно из опытных данных. Простейшие
примеры прямых измерений: измерение длины линейкой, температуры –
термометром, электрического напряжения – вольтметром и пр. Уравнение
прямого измерения: y = C x, где С – цена деления СИ. Прямые измерения
– основа более сложных видов измерений.
Косвенными называют измерения,
---------------------------------результат которых определяют на
основе прямых измерений величин, связанных с измеряемой величиной
известной зависимостью y = f1 ( x1, x2, K, xn ) , где x1, x2, K, xn – результаты
прямых измерений, y – измеряемая величина.
Примеры: объем прямоугольного параллелепипеда определяется по
результатам прямых измерений длины в трех взаимно перпендикулярных
направлениях; электрическое сопротивление – по результатам измерений
падения напряжения и силы тока и т. д.
Находить значения некоторых величин легче и проще путем косвенных
измерений, чем путем прямых. Иногда прямые измерения невозможно
осуществить. Нельзя, например, измерить плотность твердого тела,
определяемую обычно по результатам измерений объема и массы.
Косвенные измерения некоторых величин позволяют получить
значительно более точные результаты, чем прямые.

Измерение называется прямым, если измеряемая величина сравнивается с мерой непосредственно или при помощи измерительных приборов, градуированных в тех единицах, в которых измеряется данная величина. Измерения длины стола с помощью масштабной линейки или измерения силы тока амперметром являются прямыми.
Измерение называется косвенным^ если непосредственно измеряется не сама величина, а другие величины, связанные с нею функционально. Числовое значение величины, подлежащей измерению, при косвенном измерении получается путем соответствующих расчетов на основании зависимостей, существующих между величинами и выраженных в математической форме. Косвенные измерения применяются в том случае, когда прямые измерения затруднительны или невозможны. Например, для определения плотности вещества производят прямые измерения массы и объема тела. Результаты этих прямых измерений используют для вычисления плотности с помощью известного соотношения между массой тела, его объемом и плотностью вещества, из которого состоит тело. Выполненное таким способом измерение плотности есть косвенное измерение.

Измерение представляет собой комплекс определенных действий с целью выявления соотношения одной однородной величины, которая измеряется, к другой, хранящейся в средстве измерений. Полученное в итоге значение и есть числовое значение измеряемой физической величины.

Понятие измерения в физике

Процесс измерения показателя физической величины на практике осуществляется посредством задействования разнообразных измерительных средств и специальных приборов, установок и систем.

Измерение физической величины включает в себя два базовых этапа:

  • сравнение величины, которая измеряется с единицей;
  • разные способы индикации для преобразования в комфортную форму.

Принцип измерений считается физическим явлением (эффектом), положенным в основу измерения. Метод измерений является одним приемом или комплексом определенных измерительных действий, осуществляемых в соответствии с реализованными принципами измерений.

Характеризует точность измерения полученная погрешность. В более упрощенном формате, путем прикладывания линейки с делениями к определенной детали, в сущности, производится сравнение ее размера с единицей на линейке и после выполнения соответствующих расчетов получается значение величины (толщины, длины, высоты и прочих параметров измеряемой детали).

В случаях невозможности произведения измерительных действий, на практике происходит оценка таких величин с опорой на условные шкалы (например, шкалы Мооса и Рихтера, характеризующие твердость металлов и землетрясения).

Важность существования и классификация измерений в физике

Наука, отвечающая за исследование всех аспектов измерений, называется метрологией.

Измерения в физике занимают существенную позицию, поскольку позволяют сравнивать результаты теоретического и экспериментального исследований. Все измерения классифицируются определенным образом:

Готовые работы на аналогичную тему

  • соответственно видам измерений (косвенные, прямые, совокупные (когда производится комплексное измерение нескольких одноименных величин, где искомое значение определяется путем решения системы соответствующих уравнений при различных сочетаниях величин), совместные (с целью определения взаимосвязи между несколькими неодноименными величинами);
  • согласно методам измерений (непосредственная оценка (значение величины устанавливается путем расчетов исключительно по показывающему средству измерений), сравнение с мерой, измерение замещением (где измеряемая величина замещается мерой с уже известным значением величины), нулевой, дифференциальный (выполняется сравнение измеряемой величины с однородной величиной с уже известным значением, несущественно отличающимся от нее, и где устанавливается разность между данными двумя величинами), измерение дополнением);
  • по назначению (метрологические и технические);
  • по точности (детерминированные и случайные);
  • согласно отношению к изменениям измеряемой величины (динамические и статические);
  • исходя из количественного показателя измерений (многократные и однократные);
  • по конечным показателям измерений (относительное (характеризуется измерением отношения физической величины к выступающей в роли единицы одноименной (исходной) величине, и абсолютное (опирается на прямые измерения одной либо нескольких ключевых величин и применении значений физических постоянных величин (констант).

Понятие прямых и косвенных измерений в физике

Полученные, согласно результатам измерений, значения разных величин могут в действительности оказаться зависимыми друг от друга. В физике устанавливается связь между подобными величинами и выражается в формате определенных формул, демонстрирующих процесс нахождения числовых значений одних величин по аналогичным значениям других.

Согласно классификационному признаку, измерения могут подразделяться на прямые и косвенные, что выступает непосредственной характеристикой их вида.

Прямым измерением считается измерение, согласно которому, искомые значения физических величин получаются непосредственным образом. В случае проведения прямых измерений, в измерительных целях привлекаются специализированные приборы, отвечающие за изменение самой исследуемой величины. Так, массу тел, например, можно узнать, используя показатель на весах, длина узнается за счет измерения линейкой, а время засекается с помощью секундомера.

Косвенное измерение считается в физике установлением искомого значения величины на основании полученных при измерении результатов прямого измерения остальных физических величин, взаимосвязанных функциональным образом с исходной величиной.

Те же величины в иных случаях могут находиться исключительно благодаря косвенным измерениям – пересчету остальных важных величин, чьи значения были получены в процессе прямых измерений.

Так физики вычисляют расстояние от нашей планеты до Солнца, массу Земли или, например, продолжительность геологических периодов. Измерение плотности тел, согласно показателям их объемов и массы, скорости поездов (по величине пройденного за известное время пути), также нужно отнести к косвенному измерению.

Поскольку физика не является точной наукой, подобно математике, абсолютная точность ей не присуща. Так, в рамках физических экспериментов любой вид измерения (как косвенный, так и прямой) может давать не точное, а лишь приблизительное значение измеряемой физической величины.

При измерении, например, длины полученный результат будет зависимым от точности выбранного прибора (к примеру, штангенциркуль позволяет осуществлять измерения с точностью до 0,1 мм, а линейка - только до 1 мм); от качества внешних условий, таких как температура, влажность, склонность к деформационным состояниям и пр.

Следовательно, результаты косвенных измерений, вычисляемые по приближенным результатам, получившимся при прямых измерениях, также окажутся приблизительными. По этой причине, параллельно с результатом, всегда требуется указание его точности, называемой абсолютной погрешностью результатов.

По способу получения результата измерения делятся на прямые и косвенные. Если значение физической величины находят непосредственным отсчетом по шкале прибора, то такие измерения называются прямыми (измерения давления барометром, температуры – термометром, времени – секундомером, длины – штангенциркулем или линейкой, силы тока – амперметром и т.п.). Эти измерения могут быть однократными и многократными. Многократное измерение – повторение экспериментельной операции, в результате которой получается одно из значений измеряемой величины , называемых результатами наблюдений. Совокупность результатов наблюдений подлежит совместной обработке для получения результата измерения.

Часто прямое измерение физической величины оказывается невозможным или слишком трудоемким. При косвенных измерениях результат определяется по формулам на основе результатов прямых измерений других величин (например, определение электрического cопротивления образца по измеренным силе тока и напряжению). Одну и ту же величину часто можно найти путем как прямых, так и косвенных измерений. Например, скорость автомобиля может быть определена по спидометру (прямое измерение) или найдена делением пройденного пути на время движения (косвенное измерение).

При косвенных измерениях погрешность искомой физической величины накапливается из погрешностей прямых измерений величин, входящих в расчетную формулу.

Читайте также: