В чем главная причина различия спектров звезд кратко

Обновлено: 04.07.2024

Спектры звезд – это своеобразные паспорта небесных светил, которые способны рассказать обо всех звездных особенностях. Благодаря спектрам ученые могут определить показатель светимости, расстояние до нее, состав атмосферы, скорость вращения вокруг собственной оси, и даже принципы движения вокруг общего центра тяжести.

План урока:

Что такое спектральный класс

Спектральный класс – это классификация звезд, во время которой светила делят на группы с учетом температуры их фотосферы. Различие в звездных спектрах можно объяснить тем, что их атмосфера обладает разными физическими свойствами. Кроме температурных показателей в расчет берется давление. Так же на вид спектрального класса звезды влияет ее магнитное поле, электрические поля между атомами, химический состав, вращение.

В домашних условиях получить спектр не так уж и сложно. Для этого свет, который исходит от объекта, направляют в узкое отверстие, в конце которого установлена призма. В призме свет преломляется и направляется на экран или пленку. Картинка, которую видит наблюдатель, представлена в виде цветовых оттенков. Они плавно меняются от фиолетового до красного. Если в спектре нет линий черного цвета, его принято называть непрерывным. Такая картина будет наблюдаться, если свет исходит от твердого или жидкого тела. Например, лампы накаливания.

Прибор, который используется для получения и визуального исследования спектра, называется спектроскопом. Если цвет спектра регистрируется на фотопластинке, то прибор именуют спектрографом. Во время наблюдения за солнечным диском на небосводе, немецкий ученый Йозеф Фраунгофер установил, что в его непрерывном спектре присутствуют тоненькие линии черного цвета. Немного позже Густав Кирхгоф выяснил, что абсолютно любой газ в разреженном состоянии способен поглощать свет с такой длиной волн, которые излучает сам. Благодаря этому открытию и физическим законам специалисты определили химический состав солнечной атмосферы, а линии черного цвета были названы линиями поглощения.

На сегодняшний день существуют приборы, которые способны измерить спектр звезд практически во всех диапазонах, кроме оптического. Для этого достаточно менять фильтры и окуляры.

Классы Анджело Секки

В 60-70 годах XIX века Анджело Секки изучал небесные светила, в ходе чего создал самую первую спектральную классификация звезд. В 1866 г в первых трех классах он расположил объекты по мере убывания температурных показателей поверхности, что проявлялось в изменении цвета спектра. Спустя два года ученый выделили еще одну группу, куда вошли углеродные звезды.

Спектральные классы, выделенные Анджело Секки, применялись практически до конца 1900 года, после чего им на смену пришла новая классификация – Гарвардская, которая используется и сегодня.

Основная (гарвардская) спектральная классификация звезд

В Гарвардской обсерватории (США) на протяжении нескольких десятков лет были сделаны многочисленные фотографии небесных светил. Анализируя полученные изображения, ученые смогли создать классификацию звездных спектров. Над ней трудились Пикеринг и Кэннон с 1890 по 1924 года. Гарвардская спектральная классификация звезд на сегодняшний день считается основной. Для обозначения спектральных типов используют буквы - О, В, A, F, G, К и М. На момент разработки классификации специалисты еще не знали, как связаны спектр и температурные показатели, поэтому первоначально порядок спектральных классов совпадал с расположением букв в алфавите.

Каждый класс из основной спектральной классификации звезд делится на подклассы. Их принято обозначать от 0 до 9, где 0 – это самые горячие светила, а 9 – самые холодные. В последовательности спектральных классов наблюдается непрерывное падение температуры. Большая часть небесных светил относится к последовательности от О до М. Ее особенность в непрерывности, а звездные характеристики здесь постепенно меняются при переходе от одного класса к другому.

Цвет поверхности звезды говорит об ее температуре, благодаря чему светило относят к тому или иному спектральному классу. Например, звезды с самыми высокими температурами светятся голубым цветом и относятся к классам О и В. Спектральные класс нашего Солнца G2, его цвет – желтый. А вот самые холодные звезды светятся красным, их относят к классам К и М.

Есть еще дополнительные классы L и T. Их применяют для обозначения коричневых карликов с разными температурными показателями. Но эти объекты настолько малы (примерно 0,1 солнечных масс), что наблюдать их в большинстве случаев невозможно. Они практически ничего не излучают в видимом диапазоне.

Йеркская классификация с учетом светимости

В основе гарвардской спектральной классификации звезд лежат температурные показатели фотосферы светила. Исходя из этого, к одному классу могут относиться тела с одинаковой температурой, но с разной светимостью. Чтобы упорядочить небесные светила более точно, ученые разработали еще одну классификация, но в ее основу уже легли показатели светимости. Она получила название Йеркская спектральная классификация. Классы светимости обозначаются цифрами от 0 до VII, которые ставят после спектрального класса звезды. Светимость Солнца обозначается V, поэтому в таблице классификации (спектр-светимость) его записывают G2V. У некоторых звезд основной класс может добавляться подклассом:

Например, спектральный класс и класс светимости Полярной звезды – F7 Ib.

Главная последовательность звезд

К 20 веку астрономы, изучая космическое пространство, все больше получали информации о звездах. К этому времени было известно достаточно много о типах этих объектов, их светимости, расстоянии, температуре. Созревала необходимость упорядочить классификацию звезд, которые наблюдаются во Вселенной. Это успешно сделали двое ученых, проживающих на разных континентах. Датский астроном Эйнар Герцшпрунг и американский ученый Генри Рассел в разное время создали одно и тоже, даже не зная об этом. Это была диаграмма, которую сегодня в честь обеих ученых называют диаграммой Герцшпрунга—Рассела (ГР). Диаграмма ГР представляет собой график. Его вертикальная ось указывает на светимость, а горизонтальная – на температуру поверхности звезды.

Чем выше была температура, тем звезда находилась левее. Расположение на диаграмме объекта не было случайным. Учитывая соотношение спектра и светимости, звезды были поделены на три последовательности. С левого верхнего угла до нижнего правого расположились звезды главной последовательности. Практически все светила оказываются на этой линии после того, как полностью сформируются. Исключение – субкарлики. С одной стороны, они похожи на звезды главной последовательности, так как выделяют энергию в результате горения водорода, но с другой – их светимость гораздо меньше. В их составе незначительное количество тяжелых элементов, соответственно они имеют небольшой размер.

Главная последовательность имеет достаточно большое количество густо расположенных объектов. Здесь звезда находится примерно 90% времени всей своей жизни. В середине этой линии расположилось и Солнце.

Абсолютно все представители главной последовательности обладают горячим ядром с высокой плотностью. В нем в ходе термоядерных реакций происходит сгорание водорода и его превращение в гелий. После того как процесс горения водорода прекращается, пребывание звезды на этой линии тоже заканчивается.

На втором месте после главной последовательности идут красные гиганты и сверхгиганты. Это яркие светила с достаточно большой массой и светимостью. Расположены они в верхней правой части диаграммы. Их температура варьируется от 3000 до 5000 0 С. Красные гиганты и сверхгиганты – это то, во что превращаются светила после главной последовательности, то есть ближе к концу своей жизни.

Слева внизу на диаграмме находятся белые карлики.Их диаметр небольшой, но температура высокая. Белые карлики лишены всех источников энергии, они постепенно остывают и становятся темными и невидимыми.

В 2018 году открыли самую далекую звезду главной последовательности – Икар. От Земного шара она отдалена на 9 млрд. световых лет.

Звезды до главной последовательности

Сюда относят тип самых молодых светил, которые уже можно разглядеть в оптический телескоп. В звездах до главной последовательности могут происходить термоядерные реакции, но их сила настолько мала, что выделяемой энергии не хватает, чтобы компенсировать затраты энергии на свечение. Сжатие и нагрев светил происходит благодаря собственным силам гравитации, что и является их главной отличительной чертой от звезд главной последовательности.

Высокая светимость звезд объясняется их большими размерами и низкими температурами. На диаграмме Герцшпрунга — Рассела они находятся в верхней правой части. Постепенно температура светил повышается, а размеры уменьшаются и тогда звезда перемещается вниз и влево по диаграмме, чтобы перейти в стадию звезд главной последовательности. Одним из примера таких объектов являются светила типа Т Тельца. У самых холодных звезд до главной последовательности температура составляет всего 650 Кельвинов (К).

В некоторой терминологии к звездам до главной последовательности относят протозвезды на завершающей стадии формирования.

Жизненный путь звезды очень интересен и таинственен. Несмотря на многочисленные знания, у ученых все еще остается множество вопросов. В современном мире разрабатываются новые методики, усовершенствуются аппараты и приборы, которые в дальнейшем позволят не только подтвердить или обновить, имеющуюся информацию, но и, возможно, открыть еще не изведанные тела в космическом пространстве.

1.Как определяют расстояния до звезд?
2. От чего зависит цвет звезды?
3. В чем главная причина различия спектров звёзд?
4.от чего зависит светимость звезды?

2. От мощности излучения световой энергии по сравнению с мощностью излучения света Солнцем.
3. Главной причиной различия спектров звёзд является их температура.
4. Светимость звезды зависит от её температуры: наиболее горячие звёзды обладают самой высокой светимостью, по мере уменьшения температуры светимость падает.

Основное различие спектров звезд — это в температуре звезд. Самые горячие — голубые, холодные — красные. Со временем звезды остывают и, соответственно, меняется и спектр.

Ученые изучают звезды с древних времен и одним из вопросов, которым задавались астрономы, был разный спект излучения звезд. Почему одни имеют красные оттенки спектра, другие — голубые. Долгое время существовало мнение, что на видимый спектр оказывает влияние химический состав звездной атмосферы. Ведь каждая звезда имеет разный набор химических элементов, входящих в атмосферу. Но современная наука позволяет изучать небесные тела, даже находящие на большом удалении от Земли. И учеными было установлено, что химический состав может влиять лишь косвенно, а именно на интенсивность спектра. Главная причина того или иного спектра — это температура. Чем звездная температура выше, тем больше синего в спектре, красным цветом светят звезды с меньшей температурой.

Но еще один фактор оказывает влияние на спектр — это размер. Разница в спектрах так называемых гигантов и карликов, имеющих одинаковую температуру поверхности, тоже ощутима.

Вы можете войти или зарегистрироваться, чтобы добавить ответ и получить бонус.

Как отличить болезнь сердца от невралгии?

Понятно, что лучше всего не заниматься самодиагностикой и самолечением, а обратиться к врачу при первых же беспокоящих симптомах. Тем не менее, есть ряд признаков, по которым можно отличить невралгию (заболевание менее опасное для жизни) от болезней сердца, представляющих серьезную опасность. Для . Читать далее



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Мы уже с вами как-то говорили о том, что всю информацию о звёздах мы получаем лишь на основе приходящего от них излучения. Все звёзды, как и наше Солнце, излучают свет потому, что их наружные слои сильно нагреты и имеют температуру равную многим тысячам градусов по шкале Кельвина. Звезда излучает свет так же, как и любое нагретое тело, например нить накаливания в электрической лампе. При этом чем выше температура нити накаливания, тем более белый свет она излучает.

Аналогично и с излучением звёзд: чем выше температура звезды, тем более голубоватым выглядит её свечение (как, например, у Плеяд — рассеянного звёздного скопления в созвездии Тельца).


И наоборот, холодные звёзды кажутся нам красноватыми. Это хорошо заметно на примере такого гиганта, как Бетельгейзе (альфа Ориона).


Однако наиболее полное представление об этой зависимости даёт изучение звёздных спектров. Важнейшие различия спектров звёзд заключаются в количестве и интенсивности наблюдаемых спектральных линий (в особенности линий поглощения), а также в распределении энергии в непрерывном спектре.

В 1893 году немецкий учёный Вильгельм Вин установил, что длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. При этом по мере роста температуры положение максимума смещается в коротковолновую область спектра. Длина волны, которой соответствует максимум в распределении энергии, связана с абсолютной температурой соотношением, которое называют законом смещения Ви́на:


Давайте, используя этот закон, определим температуру звезды, если в её спектре максимум интенсивности излучения приходится на длину волны равную 230 нм.


Изучение различных типов звёзд показало, что температура большинства из них заключена в пределах от 2000 до 60 000 К кельвинов. Также было установлено, что изменение температуры меняет состояние атомов и молекул в атмосфере звёзд, что отражается в их спектрах. С учётом видов спектральных линий и их интенсивности строится спектральная классификация звёзд.

Современная спектральная классификация звёзд была создана в двадцатые (20-е) годы двадцатого (ХХ) века в Гарвардской обсерватории (США). В ней спектральные типы принято обозначать большими буквами латинского алфавита в порядке, соответствующем убыванию температуры:


Для запоминания этой последовательности астрономами было придумано мнемоническое правило. В оригинале оно звучит так: Oh, Be A Fine Girl, Kiss Me. В русском эквиваленте вариант такой: Один Бритый Англичанин Финики Жевал Как Морковь.

Давайте чуть подробнее остановимся на каждом из классов. Итак, звёзды, принадлежащие классу О, являются очень горячими, с температурой 30—60 тыс. К. При такой высокой температуре наибольшая интенсивность излучения приходится на ультрафиолетовую область спектра. Поэтому такие звёзды имеют ярко выраженный голубой оттенок. Типичным представителем данного класса является Хека — Лямбда Ориона.


К классу В относятся звёзды, температура которых колеблется в пределах 10—30 тыс. К. Они имеют голубовато-белый цвет. А типичным представителем класса является звезда Спика, находящаяся в созвездии Девы.

Звёзды белого цвета, с температурой поверхности 7500—10 000 К относятся к классу А. Их яркими представителями являются звёзды Вега и Сириус.

Классу F принадлежат звёзды, температура которых лежит в диапазоне 6000—7500 К. Они имеют жёлто-белый цвет. Типичным представителем данного класса является Канопус в созвездии Киля.


Жёлтые звёзды, с температурой поверхности 5000—6000 К относятся к классу G. Известным представителем этого класса является наше Солнце.

Звёзды, принадлежащие классу К, обладают оранжевым цветом. А температура их поверхности заключена в пределах 3500—5000 К. К этому классу относятся звёзды Арктур в созвездии Волопаса и Альдебаран в Тельце.

И, наконец, класс М. К нему относятся холодные звёзды с минимальной температурой равной 2000—3500 К. Их цвет — ярко-красный, иногда тёмно-оранжевый. К этому классу относится знаменитая звезда Бетельгейзе в созвездии Ориона.

По мере усовершенствования методов наблюдения за звёздами и их спектрами Гарвардская спектральная классификация дополнялась и расширялась. Так, например, буквой Q стали обозначать спектральные классы новых (молодых) звёзд. Спектры планетарных туманностей причислили к классу Р. А буквой W или WR стали обозначать спектры звёзд типа Вольфа — Райе — это очень горячие звёзды, температура превышает звёзды O класса и достигает 100 000 К.


В 1995 году были впервые были обнаружены звёзды, температура которых не превышала 2000 К — коричневые карлики. Так появились спектральные классы L, Т и Y. Причём класс Y появился относительно недавно — в августе 2011 года.


К нему относятся ультрахолодные коричневые карлики, с температурой 300—500 К.

Тонкие различия внутри каждого класса дополнительно подразделяют на 10 подклассов — от 0 (самые горячие) до 9 (самые холодные). Лишь спектральный класс O делится на меньшее количество подклассов: от 4 до 9,5. Например, наше Солнце принадлежит к спектральному классу G2.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения.

Ещё 1842 году Кристиан Доплер, наблюдая за волнами на воде, обнаружил, что при движении источника волн происходит изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем.


Давайте поясним это на простом примере. Представьте, что вы стоите на остановке и ждёте автобус. Где-то вдалеке от вас слышится звук сирены, например машины скорой помощи. По мере её приближения к вам частота звуковых волн, издаваемых сиреной, будет увеличиваться. Как следствие, вы будете слышать её более высокий тон. Происходит это из-за того, что за время испускания одного пика волны́ от сирены до следующего машина успеет проехать некоторое расстояние в вашу сторону. Из-за этого источник каждого следующего пика волны будет ближе, а волны будут достигать ушей чаще. Когда же машина будет проезжать рядом с вами, вы услышите тот тон, который издаёт сирена на самом деле. В дальнейшем, по мере удаления машины, тон сирены будет становиться более низким из-за уменьшения частоты звуковых волн.

То же самое происходит и с электромагнитными волнами. При уменьшении расстояния между звездой и наблюдателем длина волны её излучения уменьшается и соответствующая линия в спектре смещается к фиолетовому концу спектра. И наоборот, при удалении звезды длина волны излучения увеличивается, а линия смещается в красную часть спектра.

Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения и скорости света выражается формулой:


В этой формуле — это длина волны спектральной линии для неподвижного источника, а — в спектре движущегося источника. Соответственно, — это скорость источника (в нашем случае звезды), а — скорость света в вакууме.

Ещё одним фактором, влияющим на вид спектра звезды, является её светимость, которая не учитывается в Гарвардской классификации. Хотя различия в светимостях приводят к различию в спектрах звёзд-гигантов и карликов одинаковых Гарвардских спектральных классов. Поэтому в 1943 году в Йеркской обсерватории была разработана ещё Йеркская классификация, которая учитывает светимость звёзд. Иначе её называют МКК — по первым буквам фамилий учёных: Уильям Морган, Филипп Кинан и Эдит Келлман.


С учётом двух классификаций наше Солнце имеет спектральный класс G2V.

Если бы звезды распределились по системе равномерно, никакого открытия не было бы. Но любое отклонение от порядка показало бы закономерность в устройстве светил, объясняющую многие загадки. Так и случилось. Если светимость звезды будет расти по Y снизу вверх, а температура по оси Х — справа налево, то звезды делятся на чётко выраженные группы — последовательности.


Посередине, с верхнего левого в нижний правый угол, тянется так называемая Главная последовательность — ряд обычных, карликовых звёзд, составляющих около 90 % от всех звёзд во Вселенной. Здесь же располагается и наше Солнце.

В верхнем правом углу собрались звёзды, которые очень яркие, но температура их фотосферы достаточно низкая — на это указывает их красный цвет. Они образуют последовательность красных гигантов.

В верхней части диаграммы располагается последовательность сверхгигантов. Это звёзды с очень высокой светимостью, низкой плотностью, в десятки и сотни раз большими диаметрами, чем у Солнца.

Под главной последовательностью расположены горячие звёзды со слабой светимостью. Это последовательность белых карликов. Их размеры сравнимы с размерами Земли, а массы близки к массе Солнца.

Наш вам совет: держите в голове эту диаграмму. Она не сложная для понимания, но имеет огромное значение в эволюции звёзд.


Космос

Различия в цвете звезд

Различия в цвете звезд объясняются тем, что звезды имеют разную температуру. Вот отчего это происходит. Свет — это волновое излучение. Расстояние между гребнями одной волны называется ее длиной. Волны света очень коротки. Насколько? Попробуйте разделить дюйм на 250000 равных частей (1 дюйм равен 2,54 сантиметра). Несколько таких частей составят длину световой волны.

Различный цвет звезд

Различный цвет звезд

Несмотря на столь ничтожную длину световой волны, малейшая разница между размерами световых волн резко меняет цвет картинки, которую мы наблюдаем. Это происходит от того, что световые волны различной длины воспринимаются нами как разные цвета. Например, длина волны красного цвета в полтора раза больше, чем длина волны синего. Белый цвет — это луч, состоящий из фотонов световых волн различной длины, то есть из лучей разного цвета.

Из повседневного опыта нам известно, что цвет тел зависит от их температуры. Положите в огонь железную кочергу. Нагреваясь, она сначала приобретает красный цвет. Затем она покраснеет еще больше. Если бы кочергу можно было нагреть еще сильнее, не расплавив ее, то из красной она превратилась бы в оранжевую, потом в желтую, потом в белую и наконец, в сине-белую.

Солнце — желтая звезда. Температура на его поверхности 5 500 градусов Цельсия. Температура на поверхности самой горячей голубой звезды превышает 33000 градусов.

Физические законы цвета и температуры

Ученые сформулировали физические законы, которые связывают цвет и температуру. Чем горячее тело, тем больше энергия излучения с его поверхности и тем короче длина излучаемых волн. Синий цвет имеет более короткую волну, чем красный. Поэтому если тело излучает в синем диапазоне волн, то оно горячее, чем тело, излучающее красный свет. Атомы раскаленных газов звезд излучают частицы, называемые фотонами. Чем горячее газ, тем выше энергия фотонов и тем короче их волна.

Температура и цвет звезд

Температура и цвет звезд

Поэтому самые горячие новые звезды излучают в сине – белом диапазоне. По мере расходования своего ядерного топлива звезды остывают. Поэтому старые, остывающие звезды излучают в красном диапазоне спектра. Звезды среднего возраста, такие, как Солнце, излучают в желтом диапазоне.

Наше Солнце удалено от Земли на 149 миллионов километров, поэтому мы ясно видим его цвет. Другие звезды удалены от нас на триллионы километров и больше. Мы даже с помощью мощных телескопов не можем с уверенностью сказать, какого они цвета. Для выяснения этого вопроса ученые пропускают свет от звезд через специальный прибор — спектрограф. С его помощью можно выявить спектральный состав звездного света.

Возраст звезды по ее цвету

Астрономы определяют цвет звезды по цвету самого интенсивного излучения в ее спектре. Зная цвет звезды, с помощью простых математических формул можно вычислить температуру поверхности звезды. А по температуре можно судить о ее возрасте.

Интересное видео о цвете звезд

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также: