Свет как экологический фактор кратко

Обновлено: 06.07.2024

Свет оказывает значительное формообразующее действие, определяя особенности внешнего строения, внутреннюю структуру листа, величину хлоропластов, особенности географического распространения.

Свет характеризуется интенсивностью и качественным составом, которые влияют на рост и развитие растений. Различают длинноволновые (инфракрасные) и коротковолновые (ультрафиолетовые) лучи. Так приземистость световых растений является действием коротковолновых лучей, растения, испытывающие недостаток освещения, отличаются вытянутостью побегов.

Прямые солнечные лучи могут быть губительны для растения, интенсивное освещение ведет к разрушению хлоропластов, а сильный перегрев может повредить и цитоплазму клеток.

Рассеянный свет, отраженный частицами воды, пыли, листьями, растения используют значительно лучше. Кроме того, в рассеянном свете содержится больше желто-красных лучей спектра (50-60%), чем в прямых солнечных лучах (37 %).

Соотношение между прямым и рассеянным солнечным светом в различных географических условиях не одинаков. В высоких широтах из-за частой облачности и большой влажности воздуха преобладает рассеянный свет (70%), в низких же преобладает прямая радиация (70%).

На условия освещенности немалое влияние оказывают свойства субстрата, на котором растут растения – его способность к отражению света, характеризуемая величиной альбедо (отношение отраженной радиации к падающей):

Различные периоды фаз развития также связаны с действием на них света. Имеет значение и периодичность освещения – растения длинного дня – береза, культурные растения – капуста, картофель, пшеница, короткого дня – рис, огурец, соя, просо, кукуруза, и нейтральные – одуванчик, очиток, мятлик, малина.

Знание экологических особенностей растений по отношению к свету имеют большое значение в агротехнике культурных растений, времени посева и посадки.

Приспособления растений к световому режиму.

По отношению к свету различают три основные группы растений: гелиофиты, сциофиты и теневыносливые.

Светолюбивые растения имеют экологический оптимум в области полного солнечного освещения и сильное затенение действует на них угнетающе. Это растения открытых местообитаний или хорошо освещенных экологических ниш – степные и луговые травы, наскальные лишайники, прибрежные и водные растения, ранневесенние растения листопадных лесов, большинство культурных растений открытого грунта.

По морфологическим признакам гелиофиты близки к ксерофитам, т.е. имеют ксероморфные черты

1. Невысокие, приземистые растения,

2. Разветвленные деревья с широкой кроной

3. Розеточные травы

4. Развитие мощной корневой системы

5. Небольшие. Плотные. Сравнительно толстые, блестящие листья

6. Очередно расположенные листья повернуты ребром к падающим лучам.

7. Эфемероидные растения

При недостатке света

1. растения становятся высокими

2. с удлиненными, вытянутыми междоузлиями и побегами

3. изгибаются в строну света

4. деревья развивают однобокую крону

5. отмечается самоочищение ствола древесных растений

Анатомические признаки гелиофитов

1. Дифференцированный мезофилл листа. Хлоропласты мелкие и светлые

2. Толстостенный многослойный эпидермис и хорошо развитая кутикула

3. Многочисленные погруженные устьица на нижней поверхности листа

4. Уменьшенное число межклетников

5. Хорошо развитые механические ткани

6. Развитая проводящая система с обкладкой из паренхимных клеток

7. В стебле древесных растений умеренной зоны более широкие годичные кольца на освещенную сторону

8. Формируется сбрасываемая кольцевая пробка у лиан

Тенелюбивые растения имеют экологический оптимум в области слабой освещенности и не выносят сильного света. К этой группе принадлежат виды затененных местообитаний, экотопы пещер, расщелин скал, водных глубин, верхних слоев почвы. Они сравнительно редки и характерны для ограниченной группы растений. Это растения нижних затененных ярусов ельников, дубрав, тропических лесов, многие оранжерейные и комнатные растения.

По признакам морфологической организации они близки к гигрофитам:

1. На долю листьев приходится значительная часть биомассы растений

2. Листья темно окрашены, хлоропласта содержат в 2-3 раза больше хлорофилла

3. Большое количество межклетников




4. Устьица в нижнем эпидермисе выдаются над поверхностью или не закрываются

5. Кутикула выражена слабо

6. Опушение отсутствует

К теневым растениям относятся лесные травы, папоротники, они не выносят яркого света, оказавшись на вырубке, они сильно нагреваются и гибнут. Тенелюбие сочетается с выраженной потребностью в обильно водоснабжении.

Теневыносливые растения имеют широкую экологическую амплитуду по отношению к свету. К ней относятся многие деревья с густой кроной, а также виды травянистых растений лесов. Опушек и лугов. Существует шкала древесных пород по теневыносливости

Ни один из факторов так неинтересен для экологов, как свет, отмечал Ю. Одум. Среди жизненно важных экологических факторов солнечный свет занимает особое место. Радиация Солнца породила жизнь на Земле. Биосферу можно рассматривать как продукт преобразования солнечной энергии в энергию живого вещества, т. е. биомассы всех организмов, населяющих нашу планету.

С физической точки зрения солнечная радиация состоит из волн разной длины. Лучистую энергию растения используют избирательно. При фотосинтезе они потребляют лучи с длиной волны от 380 до 740 нм. Область солнечного спектра, используемая растениями для фотосинтеза, получила название фотосинтетически активной радиации (ФАР). Со стороны более коротких волн к ФАР примыкает ультрафиолетовая радиация (УФ), а более длинных — инфракрасная (ИК).

Проходя расстояние от Солнца до поверхности Земли, солнечная радиация сильно изменяется. Одна часть лучей отражается и поглощается облаками и аэрозолями, другая — отбрасывается в виде рассеянного света. На внешней границе атмосферы Земли интенсивность солнечной радиации составляет 1,39 кВт/м2 (солнечная константа). До поверхности Земли доходит лишь около половины (47 %) этой радиации. Происходят потери и фотосинтетически активной радиации. ФАР теряется не только в верхних слоях атмосферы, но и непосредственно в сообществе растений (фитоценозе). Часть радиации от насаждений отражается, часть ими поглощается, и, наконец, остальная часть ФАР доходит до поверхности почвы. Так, в посевах подсолнечника отражается 6 % радиации, поглощается 75, доходит до почвы 19 %. В посевах кукурузы 7 % радиации отражается, 86 — поглощается, 7 % доходит до почвы и теряется (рис. 5 и 6).

Коэффициент полезного действия поглощенной растениями солнечной энергии невелик. На фотосинтез используется лишь небольшая часть радиации, всего около 1,5%. У сельскохозяйственных культур КПД использования лучистой энергии обычно выше, чем у диких предков и сородичей. Так, на фотосинтез кормовая свекла использует 1,90 % поглощенной солнечной энергии, вика — 1,98, клевер — 2,18, картофель — 2,38, рожь — 2,42, пшеница — 1,68, овес — 2,74, лен — 3,61, люпин — 4,79 %. От эффективности использования ФАР зависит урожайность растений. Чем выше эффективность использования света в фотосинтезе, тем выше урожайность сельскохозяйственной культуры.

На поверхности земного шара свет распределен неравномерно. Интенсивность солнечной радиации зависит от географического расположения того или иного региона. Так, на севере из-за низкого солнцестояния освещенность местности относительно слабая, ниже, чем в регионах, расположенных южнее. На юге, в частности на экваторе, лучи Солнца падают на Землю отвесно, поэтому здесь интенсивность солнечной радиации достигает максимальных величин.

Интенсивность освещения земной поверхности зависит от рельефа местности. Особенности природных условий того или иного региона земного шара влияют и на качество радиации, ее спектральный состав. Во многих регионах Северного «полушария создаются благоприятные условия для образования рассеянного света, богатого длинноволновыми лучами. На юге иная картина: здесь свет прямой, и в световом спектре преобладает коротковолновая радиация.

Интенсивность света и его спектральный состав — мощный ботанико-географический экологический фактор. Широтные различия в интенсивности и спектральном составе радиации во многом определили особенности формирования типов растительности, характерных для тундр, тайги, степей и других географических зон земного шара. Световой режим, сложившийся в том или ином регионе, выполняет роль фактора естественного отбора растений. Поэтому в одних местообитаниях преобладают светолюбивые растения (гелиофиты), в других — тенелюбивые, теневыносливые (сциофиты).

Примером крайнего светолюбив может служить акация беловатая, широко распространенная в суданской саванне. Любопытно, что растение сбрасывает листья не в жаркий период года, а в сезон дождей. В дождливый период года, когда небо покрыто тучами, акация беловатая находится в состоянии светового голодания, что приводит к отмиранию листьев (Двора- ковский, 1983). В лесной зоне светолюбивых растений мало. Они встречаются лишь на свободных от леса местах. Здесь, на солнцепеке, растут мать-и-мачеха, лапчатка песчаная, другие растения-светолюбы. Пшеница, рожь, кукуруза, сахарная свекла, картофель, томат и некоторые иные виды культурных растений относятся к светолюбивым. Их посевы (посадки) размещают на открытых местообитаниях, т. е. на полях, в садах и огородах, расположенных обычно на территориях ранее сведенных лесов.

Солнечная радиация — это экологический фактор, оказывающий сильное влияние не только на растительные, но и на животные организмы. Лучи Солнца активизируют обмен веществ в организме животных, повышают их продуктивность и воспроизводительную способность. Под влиянием солнечных лучей изменяются функционально-морфологические свойства глаз, слизистых оболочек, кожи и волосяного покрова. Солнечную радиацию широко используют в животноводстве и ветеринарии.

Под действием солнечного света, особенно ультрафиолетовых лучей, происходит активизация витамина D в организме. Витамин D обладает антирахитическим действием, он служит регулятором минерального обмена в организме и способствует укреплению костей.

Прогулки (моцион) лошадей, крупного рогатого скота, свиней, овец и коз в погожие солнечные дни — один из эффективных методов повышения продуктивности, воспроизводительной способности животных и предохранения их от заболеваний (гелиотерапия и гелиопрофилактика рахита, остеодистрофии и др.) (Никитин).
Солнечная радиация — это не только источник энергии, без которого жизнедеятельность растений и животных невозможна. Свет — это лимитирующий фактор, так как при его недостатке или избытке жизнедеятельность организмов нарушается. ^Резкое ослабление, как и усиление, воздействия солнечной радиации на организмы может стать причиной снижения воспроизводительной способности растений и животных.

В местообитаниях, где освещенность минимальна, недостаточна (например, пещеры, расщелины скал), растения могут испытывать световое голодание. Часто причиной светового голодания у культурных растений является переуплотнение популяций (при загущении посева). В загущенных посевах сельскохозяйственных культур, выращенных на хорошо увлажненных почвах, отмечают недоразвитость механических тканей соломы и полегание хлебов.

При нарушении условий выращивания наблюдается полегание всходов овощных культур в парниках и теплицах. Из-за дефицита света покровные ткани растений становятся тонкими. Устойчивость растительных организмов к воздействию болезнетворных агентов снижается.

Световая недостаточность негативно влияет на рост и развитие крупного рогатого скота, овец, коз, свиней, кур. У животных снижаются упитанность, продуктивность, воспроизводительная способность, нарушается витаминно-минеральный обмен, ухудшается качество животноводческой продукции. Развиваются болезни: у молодых животных рахит, у взрослых — остеодистрофия. При рахите и остеодистрофии поражается костная система; кости размягчаются, искривляются. Иногда они становятся хрупкими и ломкими, что приводит к перелому костей.

Свет высокой интенсивности — это раздражитель, который может оказывать вредное влияние на организм. Прямое действие лучей на протоплазму клеток губительно (Одум). Слишком интенсивная радиация может стать причиной заболевания растений и животных. Прямой солнечный свет разрушает хлорофилл, нарушает обменные процессы, вызывает деструктивные изменения в органах и тканях растительного организма. Патогенное действие избыточного освещения особенно резко проявляется у теневыносливых растений. У сельскохозяйственных животных бывает солнечный удар. 2.4.2.

Фото

Свет как экологический фактор имеет важнейшее значение потому, что является источником энергии для процессов фотосинтеза, т. е. участвует в образовании органических веществ из неорганических составляющих. Он играет большую и разнообразную роль в различных жизненных процессах у животных, что определяется его физическими свойствами.

150—400 нм — ультрафиолетовая радиация (УФ);

400—800 нм — видимый свет (границы отличаются для раз организмов);

800—1000 нм — инфракрасная радиация (ИК).

За пределами зоны ПК-радиации располагается область так называемой дальней инфракрасной радиации — мощного фактора теплового режима среды.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАЗЛИЧНЫХ УЧАСТКОВ СПЕКТРА СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

Не вся солнечная радиация достигает поверхности Земли. За пределами атмосферы перпендикулярная к солнечным лучам поверхность получает энергию порядка 2,00 кал/см2 • мин (1,39 • 103 Дж/м2). Эта величина называется солнечной постоянной; она слегка варьирует по сезонам года в соответствии с изменением удаления Земли Солнца.

При прохождении через атмосферу часть солнечной радиации рассеивается молекулами газов воздуха и водяными парами, часть отражается от облаков. Этот процесс связан и с изменением качественного состава радиации. В частности, наиболее коротковолновая часть спектра (с длиной волны примерно до 300 нм) отражается озоновым экраном.

Ионизирующее излучение. Это излучение включает космические лучи, а также естественную и искусственную радиоактивность. На поверхности Земли эта форма воздействия на организмы связана главным образом с естественным радиоактивным фоном, а в наше время — и с его резкими возрастаниями техногенного происхождения.

Биологическое действие радиации осуществляется, в основном, на субклеточном уровне (ядра, митохондрии, микросомы). Установлена зависимость этого действия от дозы облучения: при малых дозировках повреждающий эффект может сменяться стимулирующим. Известно влияние ионизирующей радиации на генетический аппарат (мутагенный эффект). Экологический аспект действия этой части спектра остается практически не изученным.

Зеленый лист поглощает в среднем 75 % падающей на него лучистой энергии. Но коэффициент использования ее на фотосинтез невысок: около 10 % при низкой освещенности и лишь 1—1 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Наиболее важные внешние факторы, влияющие на уровень фотосинтеза,— температура, свет, диоксид углерода и кислород. На уровне самого растения на этот процесс влияют содержание хлорофилла и воды, особенности анатомии листа, концентрация ферментов.

Зависимость фотосинтеза от температуры характеризуется кривой, на которой выделяются точки (зоны) минимума, оптимума и максимума. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к температурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (—1, —2°С), но у наиболее холодолюбивых форм опускается до—5. —ТС. Максимальная температура фотосинтеза в среднем на 10—12°С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растений. Оптимальной температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90 % своей максимальной величины; эта зона зависит от освещенности: повышается при ее увеличении и снижается в условиях затенения. Поэтому при низкой освещенности фотосинтез идет активнее при более низких температурах, а при высокой (более 3000 лк) интенсивность этого процесса увеличивается с повышением температуры.

Освещенность в своем влиянии на фотосинтез характеризуется так называемой кривой насыщения: вначале с повышением освещенности кривая потребления СО2 резко идет вверх, затем — по достижении определенного порога освещенности — нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. В этой зависимости хорошо прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещенности, чем у светолюбивых. В темноте кривые ассимиляции переходят за нулевой уровень: выделение СО2 при дыхании не компенсируется его потреблением для фотосинтеза. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выделению его при дыхании, называют точкой компенсации; у светолюбивых растений она располагается выше, чем у тенелюбивых. Кроме того, положение этой точки зависит от концентрации СО2 и от температуры.

Диоксид углерода в процессе фотосинтеза выступает как ресурс для синтеза углеводов. Норма содержания СО2 в атмосфере составляет 0,57 мг/л. Повышение концентрации ведет к усилению фотосинтеза, но лишь до известных пределов; при концентрации 5—10 % (против нормальной — 0,03 %) фотосинтез ингибируется. В сочетании с реакцией на другие факторы колебания концентрации СО2 определяют поддержание нормального уровня фотосинтеза в разнообразных природных условиях. Такие колебания обусловлены суточным ритмом фотосинтеза, закономерными изменениями интенсивности почвенного дыхания и некоторыми другими факторами. Например, суточные колебания СО2 в густых растительных сообществах могут достигать 25 % от средних величин.

Вода, тоже участвующая в процессе фотосинтеза, редко его лимитирует. Непрямым путем, однако, недостаток воды (в частности, сезонный) может быть ограничителем. Например, в западной Австралии некоторые виды растений во время засухи снижают фотосинтез на 2/3 по сравнению с весенним периодом (В. Collier et al., 1974)

Ни один из факторов так неинтересен для экологов, как свет, отмечал Ю. Одум. Среди жизненно важных экологических факторов солнечный свет занимает особое место. Радиация Солнца породила жизнь на Земле. Биосферу можно рассматривать как продукт преобразования солнечной энергии в энергию живого вещества, т. е. биомассы всех организмов, населяющих нашу планету.

С физической точки зрения солнечная радиация состоит из волн разной длины. Лучистую энергию растения используют избирательно. При фотосинтезе они потребляют лучи с длиной волны от 380 до 740 нм. Область солнечного спектра, используемая растениями для фотосинтеза, получила название фотосинтетически активной радиации (ФАР). Со стороны более коротких волн к ФАР примыкает ультрафиолетовая радиация (УФ), а более длинных — инфракрасная (ИК).

Проходя расстояние от Солнца до поверхности Земли, солнечная радиация сильно изменяется. Одна часть лучей отражается и поглощается облаками и аэрозолями, другая — отбрасывается в виде рассеянного света. На внешней границе атмосферы Земли интенсивность солнечной радиации составляет 1,39 кВт/м2 (солнечная константа). До поверхности Земли доходит лишь около половины (47 %) этой радиации. Происходят потери и фотосинтетически активной радиации. ФАР теряется не только в верхних слоях атмосферы, но и непосредственно в сообществе растений (фитоценозе). Часть радиации от насаждений отражается, часть ими поглощается, и, наконец, остальная часть ФАР доходит до поверхности почвы. Так, в посевах подсолнечника отражается 6 % радиации, поглощается 75, доходит до почвы 19 %. В посевах кукурузы 7 % радиации отражается, 86 — поглощается, 7 % доходит до почвы и теряется (рис. 5 и 6).

Коэффициент полезного действия поглощенной растениями солнечной энергии невелик. На фотосинтез используется лишь небольшая часть радиации, всего около 1,5%. У сельскохозяйственных культур КПД использования лучистой энергии обычно выше, чем у диких предков и сородичей. Так, на фотосинтез кормовая свекла использует 1,90 % поглощенной солнечной энергии, вика — 1,98, клевер — 2,18, картофель — 2,38, рожь — 2,42, пшеница — 1,68, овес — 2,74, лен — 3,61, люпин — 4,79 %. От эффективности использования ФАР зависит урожайность растений. Чем выше эффективность использования света в фотосинтезе, тем выше урожайность сельскохозяйственной культуры.

На поверхности земного шара свет распределен неравномерно. Интенсивность солнечной радиации зависит от географического расположения того или иного региона. Так, на севере из-за низкого солнцестояния освещенность местности относительно слабая, ниже, чем в регионах, расположенных южнее. На юге, в частности на экваторе, лучи Солнца падают на Землю отвесно, поэтому здесь интенсивность солнечной радиации достигает максимальных величин.

Интенсивность освещения земной поверхности зависит от рельефа местности. Особенности природных условий того или иного региона земного шара влияют и на качество радиации, ее спектральный состав. Во многих регионах Северного «полушария создаются благоприятные условия для образования рассеянного света, богатого длинноволновыми лучами. На юге иная картина: здесь свет прямой, и в световом спектре преобладает коротковолновая радиация.

Интенсивность света и его спектральный состав — мощный ботанико-географический экологический фактор. Широтные различия в интенсивности и спектральном составе радиации во многом определили особенности формирования типов растительности, характерных для тундр, тайги, степей и других географических зон земного шара. Световой режим, сложившийся в том или ином регионе, выполняет роль фактора естественного отбора растений. Поэтому в одних местообитаниях преобладают светолюбивые растения (гелиофиты), в других — тенелюбивые, теневыносливые (сциофиты).

Примером крайнего светолюбив может служить акация беловатая, широко распространенная в суданской саванне. Любопытно, что растение сбрасывает листья не в жаркий период года, а в сезон дождей. В дождливый период года, когда небо покрыто тучами, акация беловатая находится в состоянии светового голодания, что приводит к отмиранию листьев (Двора- ковский, 1983). В лесной зоне светолюбивых растений мало. Они встречаются лишь на свободных от леса местах. Здесь, на солнцепеке, растут мать-и-мачеха, лапчатка песчаная, другие растения-светолюбы. Пшеница, рожь, кукуруза, сахарная свекла, картофель, томат и некоторые иные виды культурных растений относятся к светолюбивым. Их посевы (посадки) размещают на открытых местообитаниях, т. е. на полях, в садах и огородах, расположенных обычно на территориях ранее сведенных лесов.

Солнечная радиация — это экологический фактор, оказывающий сильное влияние не только на растительные, но и на животные организмы. Лучи Солнца активизируют обмен веществ в организме животных, повышают их продуктивность и воспроизводительную способность. Под влиянием солнечных лучей изменяются функционально-морфологические свойства глаз, слизистых оболочек, кожи и волосяного покрова. Солнечную радиацию широко используют в животноводстве и ветеринарии.

Под действием солнечного света, особенно ультрафиолетовых лучей, происходит активизация витамина D в организме. Витамин D обладает антирахитическим действием, он служит регулятором минерального обмена в организме и способствует укреплению костей.

Прогулки (моцион) лошадей, крупного рогатого скота, свиней, овец и коз в погожие солнечные дни — один из эффективных методов повышения продуктивности, воспроизводительной способности животных и предохранения их от заболеваний (гелиотерапия и гелиопрофилактика рахита, остеодистрофии и др.) (Никитин).
Солнечная радиация — это не только источник энергии, без которого жизнедеятельность растений и животных невозможна. Свет — это лимитирующий фактор, так как при его недостатке или избытке жизнедеятельность организмов нарушается. ^Резкое ослабление, как и усиление, воздействия солнечной радиации на организмы может стать причиной снижения воспроизводительной способности растений и животных.

В местообитаниях, где освещенность минимальна, недостаточна (например, пещеры, расщелины скал), растения могут испытывать световое голодание. Часто причиной светового голодания у культурных растений является переуплотнение популяций (при загущении посева). В загущенных посевах сельскохозяйственных культур, выращенных на хорошо увлажненных почвах, отмечают недоразвитость механических тканей соломы и полегание хлебов.

При нарушении условий выращивания наблюдается полегание всходов овощных культур в парниках и теплицах. Из-за дефицита света покровные ткани растений становятся тонкими. Устойчивость растительных организмов к воздействию болезнетворных агентов снижается.

Световая недостаточность негативно влияет на рост и развитие крупного рогатого скота, овец, коз, свиней, кур. У животных снижаются упитанность, продуктивность, воспроизводительная способность, нарушается витаминно-минеральный обмен, ухудшается качество животноводческой продукции. Развиваются болезни: у молодых животных рахит, у взрослых — остеодистрофия. При рахите и остеодистрофии поражается костная система; кости размягчаются, искривляются. Иногда они становятся хрупкими и ломкими, что приводит к перелому костей.

Свет высокой интенсивности — это раздражитель, который может оказывать вредное влияние на организм. Прямое действие лучей на протоплазму клеток губительно (Одум). Слишком интенсивная радиация может стать причиной заболевания растений и животных. Прямой солнечный свет разрушает хлорофилл, нарушает обменные процессы, вызывает деструктивные изменения в органах и тканях растительного организма. Патогенное действие избыточного освещения особенно резко проявляется у теневыносливых растений. У сельскохозяйственных животных бывает солнечный удар. 2.4.2.

Читайте также: