Специфика химии как науки кратко

Обновлено: 04.07.2024

Понятие о химическом элементе
Магическая матрица периодической системы химических элементов
Современная картина химических знаний
Первый уровень химического знания. Учение о составе вещества
Второй уровень химического знания
Третий уровень химического знания. Учение о химических процессах
Четвертый уровень химического знания. Эволюционная химия

Список использованной литературы

Предмет познания и важнейшие особенности химический науки

Специфика химии как науки

Важнейшие особенности современной химической картины

В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).
Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия — закономерности поведения химических элементов в земной коре. Биогеохимия — это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.
В химии появляются принципиально новые методы исследования (рентгеновский структурный анализ, масс-спектроскопия, радиоспектроскопия и др.)

Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными:

введение в практику эфирного наркоза, а затем и других наркотических веществ;
использование антисептических средств для предупреждения инфекции;
получение новых, не имеющихся в природе аллопластических материалов-полимеров.

В химической картине мира весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) — это органические соединения. В их основе лежат 18 элементов (наибольшее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение.В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни.В развитии химии происходит не смена, а строго закономерное, последовательное появление концептуальных систем. При этом вновь появляющаяся система опирается на предыдущую и включает ее в себя в преобразованном виде. Таким образом, появляется система химии — единая целостность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы знаний, которые находятся между собой в отношениях иерархии.

Концептуальные системы химии

Понятие о химическом элементе

Магическая матрица периодической системы химических элементов

Современная картина химических знаний

Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов:

от элементного и молекулярного состава вещества;
от структуры молекул вещества;
от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции;
от уровня химической организации вещества.

Поскольку эти способы появлялись последовательно, мы можем в истории химии выделить четыре последовательно сменявших друг друга этапа ее развития. В то же время с каждым из названных способов решения основной проблемы химии связана своя концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему всего естествознания в целом. Современную картину химических знаний объясняют с позиций четырех концептуальных систем.На рисунке показано последовательное появление новых, концепций в химической науке, которые опирались на предыдущие достижения, сохраняя в себе все необходимое для дальнейшего развития.Даже невооруженным взглядом в этих этапах видна симметрия этапов.В левой части тождества отношение отражает структурный аспект эволюции химии, правая часть тождества, напротив, отражает уже функциональный (процессы) аспект эволюции химии.

Первый уровень химического знания. Учение о составе вещества

Второй уровень химического знания

Третий уровень химического знания. Учение о химических процессах

Учение о химических процессах — область науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основе этого учения находятся химическая термодинамика и кинетика, поэтому оно в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов, основатель химической физики.Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций, которые могут оказывать воздействие на характер и результаты этих реакций.Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические (влияют на смещение химического равновесия реакции) и кинетические (влияют на скорость протекания химической реакции).Для управления химическими процессами разработаны термодинамический и кинетический методы.Французский химик А. Лее Шателье в конце XIX в. сформулировал принцип подвижного равновесия, обеспечив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических. Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий процесса.Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость. Скоростью химических процессов управляет химическая кинетика, в которой изучается зависимость протекания химических процессов от строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т. п.Химическая кинетика. Объясняет качественные и количественные изменения в химических процессах и выявляет механизм реакции. Реакции проходят, как правило, ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее. К ним относятся концентрация, температура и присутствие катализаторов. Описывая химическую реакцию, ученые скрупулезно отмечают все условия ее протекания, поскольку в других условиях и при иных физических состояниях веществ эффект будет разный.Задача исследования химических реакций является очень сложной. Ведь практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.Катализ — ускорение химической реакции в присутствии особых веществ — катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Он был открыт в 1812 г. российским химиком К. Г. С. Кирхгофом.Сущность катализа сводится к следующему:

активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента;
в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей.

Каталитические процессы различаются по своей физической и химической картине на следующие типы:

гетерогенный катализ — химическая реакция взаимодействия жидких или газообразных реагентов на поверхности твердого катализатора;
гомогенный катализ — химическая реакция в газовой смеси или в жидкости, где растворены катализатор и реагенты;
электрокатализ — реакция на поверхности электрода в контакте с раствором и под действием электрического тока;
фотокатализ — реакция на поверхности твердого тела или в жидком растворе, стимулируется энергией поглощенно¬го излучения.

Применение катализаторов изменило всю химическую промышленность. Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (60-80 %) основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.С участием катализаторов скорость некоторых реакций возрастает в 10 млрд раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).В современных условиях одно из важнейших направлений развития учения о химических процессах — создание методов управления этими процессами. Поэтому сегодня химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.Химия плазмы изучает химические процессы в низкотемпературной плазме при 1000-10 000 °С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока, поэтому они очень производительны.Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок — стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.Еще одна область развития учения о химических процессах — химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм — к химии сверхвысоких давлений.При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102-103 атм исчезает различие между жидкой и газовой фазами, а при 103-105 атм — междутвердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства вещества. Например, при давлении 20 000 атм. металл становится эластичным, как каучук. Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача — научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить — реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов.

Четвертый уровень химического знания. Эволюционная химия

Список использованной литературы

Краткая химическая энциклопедия, гл. ред. И. Л. Кнунянц, т. 1—5, М., 1961—67;
Краткий справочник по химии, под ред. О. Д. Куриленко, 4 изд.. К., 1974;
Общая химия, Полинг Л., пер. с англ., М., 1974;
Современная общая химия, Кемпбел Дж., пер. с англ., [т.] 1—3, М., 1975.

Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К их числу относят:

  • Синтез новых веществ и композиций, необходимых для решения технических задач будущего;
  • Увеличение эффективности искусственных удобрений для повышения уровня урожайности сельскохозяйственной продукции;
  • Синтез продуктов питания из несельскохозяйственного сырья;
  • Разработку и создание новых источников энергии;
  • Охрану окружающей среды;
  • Выяснение механизма важнейших биохимических процессов и их реализация в искусственных условиях;
  • Освоение огромных океанических источников сырья.

Все химические знания, приобретаемые за многие столетия и представленные в форме теорий, законов, методов, технологических прописей и т.д. объединяет одна-единственная непреходящая, – главная задача химии – задача получения веществ с необходимыми свойствами.

Существует множество определений химии. Ее называют, во-первых, наукой о химических элементах и их соединениях; во-вторых, наукой о веществах и их превращениях; в-третьих, наукой о процессах качественного превращения веществ. Они слишком кратки и не дают полного ответа. Определяя химию как науку, следует иметь в виду два обстоятельства: во-первых, химия – не просто сумма знаний о веществах, а высоко упорядоченная, постоянно развивающаяся система знаний, имеющих определенное социальное назначение. Во-вторых, специфика химии в том, что в отличие от других наук химия сама создает свой предмет исследования. Как никакая другая наука, она является одновременно и наукой, и производством. Химия всегда была нужна человеку в основном для того, чтобы получать из вещества природы вещества с необходимыми заданными свойствами. Это – производственная задача и, чтобы ее реализовать, надо уметь производить качественные превращения вещества. Другими словами, чтобы решить производственную задачу, химия должна решить теоретическую задачу генезиса (происхождения) свойств вещества. Таким образом, основанием химии является двуединая проблема: получение веществ с заранее заданными свойствами (производственная задача) и выявление способов управления свойствами вещества (научно - исследовательская деятельность). Это и есть основная проблема химии – она возникает в древности и не теряет своего значения в наше время, конечно, способы ее решения меняются в зависимости от эпох, развития материального производства и познания.

Исключительное значение для развития химии имело атомно-молекулярное учение, колыбелью которого является Древняя Греция. Атомистика древнегреческих материалистов отделена от нас 25-вековым периодом, однако философское учение о дискретном строении материи, развитое ими, невольно сливается в сознании с нашими сегодняшними представлениями.

Как же зародилась атомистика?

Все положения древнегреческой атомистики выглядят удивительно современно, и нам они, естественно, понятны. Ведь любой из нас, ссылаясь на опыт науки, может описать множество интересных экспериментов, подтверждающих справедливость любой из выдвинутых концепций. Но совершенно непонятны они были 20-25 веков назад, поскольку никаких экспериментальных доказательств, подтверждающих справедливость своих идей, древнегреческие атомисты представить не могли.

Итак, хотя атомистика древних греков и выглядит удивительно современно, ни одно из ее положений в то время не было доказано. Следовательно, атомистика, развитая Левкиппом, Демокритом и Эпикуром была и остается просто догадкой, смелым предположением, философской концепцией, не подкрепленной практикой. Это привело к тому, что одна из гениальных догадок человеческого разума постепенно была предана забвению.

История науки знает немало удивительных совпадений. Вот одно из них: возрождение древнегреческой атомистики совпадает по времени с открытием Р. Бойлем (1627 – 1691 г.г.) фундаментальной закономерности, описывающей изменения объема газа от его давления. Качественное объяснение фактов, наблюдаемых Р. Бойлем, может дать только атомистика: если газ имеет дискретное строение, т.е. состоит из атомов и пустоты, то легкость его сжатия обусловлена сближением атомов в результате уменьшения свободного пространства между ними.

Первая робкая попытка применения атомистики для объяснения количественно наблюдаемых явлений природы позволила сделать два очень важных вывода:

  • Превращение атомистики из философской гипотезы в научную концепцию позволило бы дать единственно правильную трактовку самым разнообразным явлениям природы.
  • Для превращения атомистики из философской гипотезы в научную концепцию, доказательства существования атомов необходимо было изучать газы, а не жидкие и не твердые вещества, чем до этого занимались химики.

Только в XVIII веке ученые вплотную занялись исследованием газов. Последовал каскад открытий простых веществ: водород, азот, кислород, хлор. А несколько позже химики установили те законы, которые принято называть основными законами химии.

Закон сохранения массы сформулирован М.В. Ломоносовым в 1748 году и А. Лавуазье в 1777 году. Он гласит: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

В 1801 году Ж. Пруст установил закон постоянства состава, согласно которому каждое химически чистое соединение независимо от способа его получения имеет вполне определенный состав.

Закон эквивалентов был сформулирован В. Рихтером в 1794 году. Он гласит: во всех химических реакциях взаимодействие различных веществ друг с другом происходит в соответствии с их эквивалентами, независимо от того, являются ли эти вещества простыми или сложными.

В 1803 году Д. Дальтон открыл закон кратких отношений, который представляет собой дальнейшее развитие закона эквивалентов, основанное на последовательном анализе ряда химических соединений, образующихся при взаимодействии друг с другом любых химических элементов. Вот его формулировка: если два элемента образуют друг с другом несколько химических соединений, то на одну и ту же массу одного из них приходятся такие массы другого, которые соотносятся между собой как простые целые числа.

Используя открытый им закон кратных отношений, закон эквивалентов и закон постоянства состава, Д. Дальтон создал новую версию атомистической теории. В ней атом из отвлеченной модели превратился в конкретное химическое понятие.

В серьезном противоречии с выводами атомистики Д. Дальтона оказался открытый Ж. Гей-Люссаком (в 1805 г.) закон объемных отношений, согласно которому объемы вступающих в реакцию газов относятся друг к другу, а также к объему получающихся газообразных продуктов как простые целые числа. Для объяснения наблюдавшихся закономерностей соединения газов оказалось необходимым предположить, что любые газы, в том числе и простые, состоят не из атомов, а молекул. В равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Это положение, высказанное в 1811 году А. Авогадро, вошло в химию как закон Авогадро. Однако в начале XIX века он не получили должного признания: даже крупные химики того времени отрицали возможность существования молекул, состоящих из нескольких одинаковых атомов. И только спустя полвека в сентябре 1860 года на I Международном съезде химиков в Германии, в г. Карлсруэ были окончательно приняты основные положения атомно-молекулярного учения:

  • Все вещества состоят из атомов.
  • Атомы каждого вида (элемента) одинаковы между собой, но отличаются от атомов другого вида (элемента).
  • При взаимодействии атомов образуются молекулы: гомоядерные (при взаимодействии атомов одного элемента) или гетероядерные (при взаимодействии атомов разных элементов).
  • При физических явлениях молекулы сохраняются, а при химических – разрушаются. При химических реакциях атомы в отличие от молекул сохраняются.
  • Химические реакции заключаются в образовании новых веществ из тех же самых, из которых состоят первоначальные вещества.

Дальнейшее развитие атомно-молекулярного учения стало возможным благодаря открытию Д.И. Менделеева в 1869 году периодического закона химических элементов и создания его табличного выражения – периодической системы. Оказалось, что периодичность изменения свойств химических элементов и их соединений, связаны с повторяющейся структурой электронных оболочек их атомов.

На рубеже XIX – XX веков в химии начали прослеживаться кризисные тенденции, поскольку подверглась сомнению истинность сложившейся атомно-молекулярной концепции, т.к. она не могла объяснить некоторые экспериментальные данные, полученные к концу XIX века. Открытие электрона, радиоактивность, по мнению многих химиков, разрушили основы объективного анализа химических процессов. Однако дальнейшее исследование сложного строения атома прояснило причину связи атомов друг с другом. Это – химическая связь, указывающая на действие электростатических сил между атомами. Это силы взаимодействия электрических зарядов, а их носители – электроны и ядра атомов. В образовании химической связи между атомами наиболее важны валентные электроны, которые расположены на внешней оболочке и связаны с ядром менее прочно. Различаются три основных типа химической связи: ковалентная, ионная и металлическая.

Химическая связь – это взаимодействие, связывающее отдельные атомы в молекулы, ионы, кристаллы. Они являются теми структурными уровнями организации материи, которые изучает химия. Энергия связи является важнейшей характеристикой химической связи, определяющей ее прочность. Количественно она оценивается при помощи энергии, которая затрачивается на ее разрыв. Вопрос об энергетике различных химических процессов, о степени превращения веществ в химических реакциях связан с применением в химии законов термодинамики. Химическая кинетика выявляет механизм реакции, качественные и количественные изменения химических процессов. Стало очевидным, что химическая картина мира оказалась много сложнее, чем это представлялось в XIX веке. Позиции атомно-молекулярной теории продолжали усиливаться в XX веке.

Таковы общие представления о предмете химии как науки и о круге ее проблем.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Специфика химии как науки «Химия - наука, изучающая свойства и превращения в.

Описание презентации по отдельным слайдам:

Специфика химии как науки «Химия - наука, изучающая свойства и превращения в.

Важнейшие особенности современной химии 1.В химии появляются многочисленные с.

Важнейшие особенности современной химии 1.В химии появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия). 2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии (изучают химические процессы в живых организмах), молекулярной биологии, космохимии (изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам), геохимии (закономерности поведения химических элементов в земной коре), биогеохимии (изучает процессы перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский).

3. В химии появляются принципиально новые методы исследования (рентгеновский.

3. В химии появляются принципиально новые методы исследования (рентгеновский структурный анализ, масс-спектроскопия, радиоспектроскопия и др.) Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2)использование антисептических средств для предупреждения инфекции; 3)получение новых, не имеющихся в природе аллопластических материалов-полимеров.

В химии большинство химических соединений (96%) - это органические соединения.

В химии большинство химических соединений (96%) - это органические соединения. В их основе лежат 18 элементов (наибольшее распространение имеют всего 6 из них). Химические связи этих элементов прочны (энергоемки) и лабильны. Углерод как никакой другой элемент отвечает этим требованиям. Он совмещает в себе химические противоположности, реализуя их единство. В развитии химии происходит строго закономерное, последовательное появление концептуальных систем. При этом вновь появляющаяся система опирается на предыдущую и включает ее в себя в преобразованном виде. Таким образом, система химии - единая целостность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы знаний, которые находятся между собой в отношениях иерархии.

Концептуальные системы химии Понятие о химическом элементе Р. Бойль положил н.

Расположение химических элементов в порядке возрастания атомной массы привело.

Расположение химических элементов в порядке возрастания атомной массы привело к выявлению периодической зависимости: химические свойства повторяются через каждые семь элементов на восьмой. По химическим свойствам выделились 4 группы: - металлы: К, Мg, Na, Fe – очень активны, легко соединяются с другими веществами, образуя соли, щелочи; - неметаллы: S, Se, Si, Cl – значительно менее активны; в соединениях образуют кислоты; - газы: C, O, H, N – в молекулярном состоянии неактивны, в атомарном – высоко активны; - инертные газы: Ne, Ar, Cr – не вступают в химические соединения с другими веществами.

В связи с открытиями в ядерной физике, стало известно, что валентность отража.

Современная картина химических знаний Важнейшей особенностью основной проблем.

Современная картина химических знаний Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов: 1) от элементного и молекулярного состава вещества; 2) от структуры молекул вещества; 3) от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции; 4) от уровня химической организации вещества. Современную картину химических знаний объясняют с позиций четырех концептуальных систем. На рисунке показано последовательное появление новых концепций в химической науке, которые опирались на предыдущие достижения.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особо.

Концепция химических соединений В начале XIX в. Ж. Пруст сформулировал закон.

Концепция химических соединений В начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое химическое соединение обладает строго определенным, неизменным составом и тем самым отличается от смесей. Теоретически обосновал закон Пруста Дж. Дальтон в законе кратных отношений. Согласно этому закону состав любого вещества можно было представить как простую формулу, а эквивалентные составные части молекулы - атомы, обозначавшиеся соответствующими символами, - могли замещаться на другие атомы. Химическое соединение состоит из одного, двух и более разных химических элементов. С открытием сложного строения атома стали ясны причины связи атомов, взаимодействующих друг с другом, которые указывают на взаимодействие атомных электрических зарядов, носителями которых оказываются электроны и ядра атомов.

Ковалентная связь осуществляется за счет образования электронных пар, в одина.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам. Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов. Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Органогены Первая половина XIX в Ученые убеждены, что свойства веществ и их к.

Органогены Первая половина XIX в Ученые убеждены, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. Сотни тысяч химических соединений, состав которых состоит из нескольких элементов-органогенов (углерода, водорода, кислорода, серы, азота, фосфора). Органогены - элементы, составляющие основу живых систем. В состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.

Возникновение структурной химии означало, что появилась возможность для целен.

Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любых химических соединений. Основы структурной химии были заложены Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. И.-Я. Берцелиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других.

Учение о химических процессах В основе учения находятся химическая термодина.

Учение о химических процессах В основе учения находятся химическая термодинамика и кинетика. Основоположник этого направления стал русский химик Н.Н. Семенов, основатель химической физики. Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. Методы управления химическими процессами делятся термодинамические (влияют на смещение химического равновесия реакции) кинетические (влияют на скорость протекания химической реакции). Французский химик Ле Шателье в конце XIX в. сформулировал принцип равновесия, т.е. метод смещения равновесия в сторону образования продуктов реакции. Каждая реакция обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий процесса. Реакции проходят ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее: концентрация температура катализаторы

Катализ(1812 г) - ускорение химической реакции в присутствии особых веществ -.

Катализ(1812 г) - ускорение химической реакции в присутствии особых веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Типы: гетерогенный катализ - химическая реакция взаимодействия жидких или газообразных реагентов на поверхности твердого катализатора; гомогенный катализ - химическая реакция в газовой смеси или в жидкости, где растворены катализатор и реагенты; электрокатализ - реакция на поверхности электрода в контакте с раствором и под действием электрического тока; фотокатализ - реакция на поверхности твердого тела или в жидком растворе, стимулируется энергией поглощенного излучения. Применение катализаторов: при производстве маргарина многих пищевых продуктов средств защиты растений

Антропогенный химизм и его влияние на среду обитания Задача органического син.

Антропогенный химизм и его влияние на среду обитания Задача органического синтеза – создание веществ со специфическими свойствами, не существующие в природе и обладающие почти неограниченным сроком жизни. Все искусственные полимеры практически не разрушаются в естественных условиях, не теряют своих свойств в течение 50-100 лет. Единственный способ их утилизации – уничтожение: либо сжигание, либо затопление. При сжигании углеводородов, выделяется углекислота – один из основных загрязнителей атмосферы, наряду с метаном и хлорсодержащими веществами. Именно она ответственна за катастрофические процессы в атмосфере, которые находят выражение в эффекте климатических изменений. Новые популярные источники энергии ХХI: биоэтанол, электричество, энергия солнечная батарей, водород и обычная вода.

Биоэтанол – это возобновляемый вид топлива. Этанол может добываться различным.

Биоэтанол – это возобновляемый вид топлива. Этанол может добываться различными способами. Например, из зерновых культур: кукурузы, пшеницы, ячменя и корнеплодов - из картофеля, сахарной свеклы и т.п. Сложность заключается в том, что это не совсем рентабельный источник энергии: для его развития необходимы дополнительные территории и вода. Кроме того, добыча этанола в технических целях – угроза пищевой безопасности на планете. Еще одно популярное направление исследований альтернативных источников энергии – возможность использования энергии нашей звезды. В 2009 г. на ежегодной выставке-ярмарке автомобилей японские автопроизводители демонстрировали автомобили, которые работают на основе энергии расщепления молекул воды. Энергия синтеза воды из молекул водорода и кислорода сопровождается выбросом энергии, которая используется в двигателях.

Прикладная химия предлагает новые материалы, которые способны заменить метал.

Прикладная химия предлагает новые материалы, которые способны заменить металлы, хлопок, лен, шелк, дерево. Французы нашли способ производства бумаги из отходов сахарного производства. Долговечность пластика и синтетических материалов в данном случае – благо, спасение от техногенных катастроф. Силикон, который уже давно и с успехом используют в пластической хирургии и косметологии, японские инженеры рискнули применить для замены металлического корпуса автомобиля. Машины не деформируются, люди не страдают в авариях. Дедерон, лайкра, эластан – материалы, которые активно используют в легкой, текстильной, чулочно-носочной индустрии. Очень популярны гибридные ткани, в которых присутствуют молекулы натуральных материалов: льна, хлопка и синтетические материалы вроде эластанов. Искусственные шелка, искусственные мех, искусственные кожи – все это пути снижения антропогенного давления на животные и растительные виды. Органический синтез и прикладная химия открывает широкую дорогу для замены естественного – искусственным, снижая индустриальный прессинг на среду обитания.

Вопрос утилизации пластмасс, твердых промышленных и бытовых отходов решается.

Вопрос утилизации пластмасс, твердых промышленных и бытовых отходов решается за счет улучшения дорог. В 1980-е гг. были изобретены и синтезированы первые пластики, способные к биологическому разложению. Канадский химик Джеймс Гуиллер, которого ужаснули груды пустых пластиковых бутылок, разбросанные вдоль итальянских дорог, задумался о возможности их разрушения в естественных условиях и в небольшие сроки. Гуиллер синтезировал первый экологически чистый пластик – биопал, который разлагается бактериями, живущими в почве. В 90-е гг. химики занялись поиском технологий отхода от традиционного сырья для производства пластмасс - нефтепродуктов. В ХХI в. был наконец найден катализатор, позволяющий создавать пластик из апельсиновой кожуры и углекислоты. Он был синтезирован на основе лимонина – органического вещества, входящего в состав цитрусовых. Пластик получил название полилимонин карбонат. Внешне он похож на пенопласт, а его качества не уступают качествам традиционных пластмасс

Успехи в синтезе наноматериалов российскими учеными Наноструктурированные ком.

Успехи в синтезе наноматериалов российскими учеными Наноструктурированные композитные материалы для изготовления арф высокого качества, которые гораздо дешевле в производстве, чем традиционные музыкальные инструменты. Очень возможно, что драгоценные скрипки, созданные искусными руками Гварнери и Страдивари, также имеют отношение к нанопроизводству. Радиоэкранирующие и радиозащищающие материалы на основе кремния, которые отражают вредные излучения и могут быть использованы для защиты военной техники, экранируют более 99% электромагнитного излучения. Наноалмазы. Это искусственные материалы, содержащие алмазы, – твердые, стойкие к коррозии, к износу. Их можно использовать в нефтяной и металлургической промышленности для бурения скважин и при резке металла. Наноалмазы добавляют в смазочно-охлаждающие жидкости в качестве катализаторов химических реакций.

ВЫВОДЫ Химическая наука на ее высшем эволюционном уровне углубляет представле.

ВЫВОДЫ Химическая наука на ее высшем эволюционном уровне углубляет представления о мире. Концепции эволюционной химии, в том числе о химической эволюции на Земле, о самоорганизации и самосовершенствовании химических процессов, о переходе от химической эволюции к биогенезу, являются убедительным аргументом, подтверждающим научное понимание происхождения жизни во Вселенной. Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы. Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет. Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека.

Краткое описание документа:

природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов.

основанием химии выступает двуединая проблема - получение веществ с заданными свойствами (на достижение ее направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию этой задачи направлена научно-исследовательская работа ученых). Эта же проблема является одновременно и системообразующим началом химии.

ХИМИЯ, наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара – нет; почему одни химические изменения происходят быстро, а другие – медленно. Главная задача химии – выяснение природы вещества, главный подход к решению этой задачи – разложение вещества на более простые компоненты и синтез новых веществ. Используя этот подход, химики научились воспроизводить множество природных химических субстанций и создавать материалы, не существующие в природе. На химических предприятиях уголь, нефть, руды, вода, кислород воздуха превращаются в моющие средства и красители, пластики и полимеры, лекарства и металлические сплавы, удобрения, гербициды и инсектициды и т.д. Живой организм тоже можно рассматривать как сложнейший химический завод, на котором тысячи веществ вступают в точно отрегулированные химические реакции.

ЭЛЕМЕНТЫ И СОЕДИНЕНИЯ

Элементы

Исследование сложного вещества начинается с попыток разложить его на более простые. Простейшая форма материи, в которой сохраняется определенная совокупность физических и химических свойств, называется химическим элементом. Химические элементы – это частицы вещества, представляющие собой совокупность атомов с одинаковым зарядом ядра. Водород, кислород, хлор, натрий, железо – все это элементы. Элемент нельзя разложить на более простые составляющие обычными методами: с помощью тепла, света, электричества или под действием другого вещества. Для этого нужны колоссальное количество энергии, специальное оборудование (например, ускоритель частиц) или высокие температуры, сравнимые с температурами в недрах Солнца. Из 109 известных элементов в природе существует девяносто два элемента, остальные получены искусственно. Все они систематизированы в периодической таблице элементов, где каждому элементу соответствует свой порядковый номер, называемый атомным номером (см. ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ). В табл. 1 перечислены первые 103 элемента в алфавитном порядке. Из этого ограниченного набора элементов и состоят миллионы химических веществ.

Таблица 1. АТОМНЫЕ МАССЫ ЭЛЕМЕНТОВ
Элемент Символ Атомный номер Атомная масса
Азот N 7 14,0067
Актиний Ac 89 (227)
Алюминий Al 13 26,98154
Америций Am 95 (243)
Аргон Ar 18 39,948
Астат At 85 (210)
Барий Ba 56 137,33
Бериллий Be 4 9,01218
Берклий Bk 97 (247)
Бор B 5 10,811
Бром Br 35 79,904
Ванадий V 23 50,9415
Висмут Bi 83 208,9804
Водород H 1 1,0079
Вольфрам W 74 183,85
Гадолиний Gd 64 157,25
Галлий Ga 31 69,723
Гафний Hf 72 178,49
Гелий He 2 4,0026
Германий Ge 32 72,59
Гольмий Ho 67 164,9304
Диспрозий Dy 66 162,50
Европий Eu 63 151,96
Железо Fe 26 55,847
Золото Au 79 196,9665
Индий In 49 114,82
Иод I 53 126,9045
Иридий Ir 77 192,22
Иттербий Yb 70 173,04
Иттрий Y 39 88,9059
Кадмий Cd 48 112,41
Калий K 19 39,0983
Калифорний Сf 98 (251)
Кальций Ca 20 40,078
Кислород O 8 15,9994
Кобальт Co 27 58,9332
Кремний Si 14 28,0855
Криптон Kr 36 83,80
Ксенон Xe 54 131,29
Кюрий Cm 96 (247)
Лантан La 57 138,9055
Лоуренсий Lr 103 (260)
Литий Li 3 6,941
Лютеций Lu 71 174,967
Магний Mg 12 24,305
Марганец Mn 25 54,9380
Медь Cu 29 63,546
Менделевий Md 101 (258)
Молибден Mo 42 95,94
Мышьяк As 33 74,9216
Натрий Na 11 22,98977
Неодим Nd 60 144,24
Неон Ne 10 20,179
Нептуний Np 93 237,0482
Никель Ni 28 58,69
Ниобий Nb 41 92,9064
Нобелий No 102 (259)
Олово Sn 50 118,710
Осмий Os 76 190,2
Палладий Pd 46 106,42
Платина Pt 78 195,08
Плутоний Pu 94 (244)
Полоний Po 84 (209)
Празеодим Pr 59 140,9077
Прометий Pm 61 (145)
Протактиний Pa 91 231,0359
Радий Ra 88 226,0254
Радон Rn 86 (222)
Рений Re 75 186,207
Родий Rh 45 102,9055
Ртуть Hg 80 200,59
Рубидий Rb 37 85,4678
Рутений Ru 44 101,07
Самарий Sm 62 150,36
Свинец Pb 82 207,2
Селен Se 34 78,96
Сера S 16 32,066
Серебро 2) Ag 47 107,8682
Скандий Sc 21 44,9559
Стронций Sr 38 87,62
Сурьма Sb 51 121,75
Таллий Tl 81 204,383
Тантал Ta 73 180,9479
Теллур Te 52 127,60
Тербий Tb 65 158,9254
Технеций Tc 43 [97]
Титан Ti 22 47,88
Торий Th 90 232,0381
Тулий Tm 69 168,9342
Углерод C 6 12,011
Уран U 92 238,0289
Фермий Fm 100 (257)
Фосфор P 15 30,97376
Франций Fr 87 (223)
Фтор F 9 18,998403
Хлор Cl 17 35,453
Хром Cr 24 51,9961
Цезий Cs 55 132,9054
Церий Ce 58 140,12
Цинк Zn 30 65,39
Цирконий Zr 40 91,224
Эйнштейний Es 99 (252)
Эрбий Er 68 167,26
1) В расчете на атомную массу изотопа углерода 12 С, равную 12,0000. В круглых скобках указано массовое число наиболее долгоживущего нуклида.
2) См. также АТОМНАЯ МАССА.

Соединения

Элементы, соединяясь друг с другом, образуют сложные вещества – химические соединения. Соль, вода, ржавчина, каучук – это примеры соединений. Соединение состоит из элементов, но обычно по своим свойствам и внешнему виду не напоминает ни один из них. Так, ржавчина образуется при взаимодействии газа – кислорода с металлом – железом, а сырьем для получения многих волокон служат уголь, вода и воздух. Именно индивидуальность свойств – одна из черт, отличающих соединение от простой смеси. Другая, и наиболее важная, характеристика соединения заключается в том, что элементы всегда соединяются между собой в определенных массовых соотношениях. Например, вода состоит из 2,016 массовых частей водорода и 16,000 массовых частей кислорода. Массовое соотношение между водородом и кислородом в водах Волги и льдах Антарктики одинаково и равно 1:8. Иными словами, каждое химическое соединение имеет вполне определенный состав, т.е. всегда содержит одни и те же элементы в одних и тех же массовых соотношениях. Это один из основных химических законов – закон постоянства состава.

Многие элементы образуют несколько соединений. Так, помимо воды известно еще одно соединение водорода и кислорода – пероксид водорода, который состоит из 2,016 частей водорода и 32 частей кислорода. Здесь водород и кислород находятся в массовом соотношении 1:16, что ровно вдвое отличается от их соотношения в воде. Этот пример иллюстрирует закон кратных соотношений: если два элемента образуют между собой несколько соединений, то массовые количества одного элемента, соединяющиеся с одним и тем же массовым количеством другого, относятся между собой как небольшие целые числа.

Атомы и молекулы

Понятия атомов и молекул – основные в химии. Атом – это мельчайшая частица элемента, обладающая всеми его свойствами, а молекула – мельчайшая частица соединения, обладающая его свойствами и способная к самостоятельному существованию. Атомистическая идея восходит к 6–5 вв. до н.э. и принадлежит древнегреческим философам Левкиппу и его ученику Демокриту. По их представлениям, вещество состоит из мельчайших неделимых частиц – атомов, созданных из одного и того же первичного материала. Правда, ни один из этих философов не определил, что это за материал. Впоследствии атомную теорию развил другой греческий философ, Эпикур (4–3 вв. до н.э.). Он утверждал, что атомы обладают весом и перемещаются в горизонтальном и вертикальном направлениях, взаимодействуя друг с другом. Аналогичные идеи высказывал римский поэт Лукреций в 1 в. до н.э., наблюдавший за пылинками, которые танцуют в солнечном луче. Наконец, в 1804–1810 английский химик и физик Дж.Дальтон разработал атомную теорию, которая включала законы кратных соотношений и постоянства состава. Однако убедительные доказательства существования атомов были получены только в 20 в. Когда Лукреций утверждал, что пылинки подталкиваются невидимыми потоками движущихся атомов, он был не так уж далек от истины: их танец действительно могут вызывать воздушные течения, но даже в неподвижном воздухе частички пыли или дыма находятся в постоянном движении. Этот эффект называют броуновским движением (см. также БРОУНОВСКОЕ ДВИЖЕНИЕ). Спустя два тысячелетия после Лукреция французский ученый Ж.Перрен, вооруженный микроскопом и математической теорией, изучил случайные блуждания суспендированных частичек краски и рассчитал число невидимых молекул, чьи удары заставляли их двигаться. После того, как атомы и молекулы удалось сосчитать, само их существование стало гораздо более убедительным.

Строение атома

Согласно современным представлениям, атом содержит центральное ядро, размеры которого очень малы по сравнению с атомом в целом. Ядро несет положительный электрический заряд и окружено диффузной оболочкой (облаком) из отрицательно заряженных электронов, которая и определяет размер атома. Диаметр атома – ок. 10 –8 см, диаметр ядра в 10 000 раз меньше и равен примерно 10 –12 см. У простейшего из атомов – атома водорода – в ядре всего одна частица – протон. Ядро атомов других элементов содержит более одного протона, а также нейтроны – частицы, близкие к протонам по массе, но не имеющие электрического заряда. Заряд ядра называют его атомным (или порядковым) номером. Атомный номер равен числу протонов в ядре и определяет химическую природу элемента. Так, атом с зарядом ядра +26 содержит 26 протонов в ядре и представляет собой элемент железо. Ядро атома железа окружают 26 электронов, поэтому атом в целом электронейтрален.

Электронное облако

Физические и химические свойства атомов, а следовательно, и вещества в целом во многом определяются особенностями электронного облака вокруг атомного ядра. Положительно заряженное ядро притягивает отрицательно заряженные электроны. Электроны вращаются вокруг ядра так быстро, что точно определить их местонахождение не представляется возможным. Движущиеся вокруг ядра электроны можно сравнить с облаком или туманом, в одних местах более или менее плотным, в других – совсем разреженным. Форму электронного облака, а также вероятность нахождения электрона в любой его точке можно определить, решив соответствующие уравнения квантовой механики (см. также КВАНТОВАЯ МЕХАНИКА). Области наиболее вероятного нахождения электронов называют орбиталями. Каждая орбиталь характеризуется определенной энергией, и на ней может находиться не более двух электронов. Обычно вначале заполняются ближайшие к ядру самые низкоэнергетические орбитали, затем орбитали с более высокой энергией и т.д.

Совокупность электронных орбиталей с близкой энергией образует слой (т.е. оболочку, или энергетический уровень). Энергетические уровни нумеруют, начиная от ядра атома: 1, 2, 3, . . Чем дальше от ядра, тем просторнее слои и тем больше орбиталей и электронов они могут вместить. Так, на n-м уровне n 2 орбиталей, и на них могут располагаться до 2n 2 электронов. У известных элементов электроны находятся только на первых семи уровнях, и лишь первые четыре из них бывают заполненными.

Существует четыре типа орбиталей, их обозначают s, p, d и f. На каждом уровне (слое) имеется одна s-орбиталь, которая содержит наиболее прочно связанные с ядром электроны. За ней следуют три p-орбитали, пять d-орбиталей и, наконец, семь f-орбиталей.

Читайте также: