Признаки математики как науки кратко

Обновлено: 05.07.2024

МАТЕМАТИКА. Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные конкретные интерпретации; например, соотношение 2 + 3 = 4 + 1 соответствует утверждению, что две и три книги составляют столько же книг, сколько четыре и одна. Любое соотношение типа 2 + 3 = 4 + 1, т.е. отношение между чисто математическими объектами без ссылки на какую бы то ни было интерпретацию из физического мира, называется абстрактным. Абстрактный характер математики позволяет использовать ее при решении самых разных проблем. Например, алгебра, рассматривающая операции над числами, позволяет решать задачи, выходящие за рамки арифметики. Более конкретным разделом математики является геометрия, основная задача которой – изучение размеров и форм объектов. Сочетание алгебраических методов с геометрическими приводит, с одной стороны, к тригонометрии (первоначально посвященной изучению геометрических треугольников, а теперь охватывающей значительно больший круг вопросов), а с другой стороны – к аналитической геометрии, в которой геометрические тела и фигуры исследуются алгебраическими методами. Существуют несколько разделов высшей алгебры и геометрии, обладающих более высокой степенью абстракции и не занимающихся изучением обычных чисел и обычных геометрических фигур; самая абстрактная из геометрических дисциплин называется топологией.

Математический анализ занимается изучением величин, изменяющихся в пространстве или во времени, и опирается на два основных понятия – функцию и предел, которые не встречаются в более элементарных разделах математики. Первоначально математический анализ состоял из дифференциального и интегрального исчислений, но теперь включает в себя и другие разделы.

Математика за последние сто лет претерпела огромные изменения, касающиеся как предмета, так и методов исследования. В данной статье мы попытаемся дать общее представление об основных этапах эволюции современной математики, главными результатами которой можно считать, с одной стороны, увеличение разрыва между чистой и прикладной математикой, а с другой – полное переосмысление традиционных областей математики.

РАЗВИТИЕ МАТЕМАТИЧЕСКОГО МЕТОДА

Рождение математики.

Аксиомы и методы доказательства.

Прекрасный пример доказательства от противного, ставший одной из вех в развитии древнегреческой математики, – доказательство того, что – не рациональное число, т.е. непредставимо в виде дроби p/q, где p и q – целые числа. Если , то 2 = p 2 /q 2 , откуда p 2 = 2q 2 . Предположим, что существуют два целых числа p и q, для которых p 2 = 2q 2 . Иначе говоря, мы предполагаем, что существует целое число, квадрат которого вдвое больше квадрата другого целого числа. Если какие-нибудь целые числа удовлетворяют этому условию, то одно из них должно быть меньше всех других. Сосредоточим внимание на наименьшем из таких чисел. Пусть это будет число p. Так как 2q 2 – четное число и p 2 = 2q 2 , то число p 2 должно быть четным. Так как квадраты всех нечетных чисел нечетны, а квадрат p 2 четен, значит само число p должно быть четным. Иначе говоря, число p вдвое больше некоторого целого числа r. Так как p = 2r и p 2 = 2q 2 , имеем: (2r) 2 = 4r 2 = 2q 2 и q 2 = 2r 2 . Последнее равенство имеет тот же вид, что и равенство p 2 = 2q 2 , и мы можем, повторяя те же рассуждения, показать, что число q четно и что существует такое целое число s, что q = 2s. Но тогда q 2 = (2s) 2 = 4s 2 , и, поскольку q 2 = 2r 2 , мы заключаем, что 4s 2 = 2r 2 или r 2 = 2s 2 . Так мы получаем второе целое число, которое удовлетворяет условию, что его квадрат вдвое больше квадрата другого целого числа. Но тогда p не может быть наименьшим таким числом (поскольку r = p/2), хотя первоначально мы предполагали, что оно – наименьшее из таких чисел. Следовательно, наше исходное предположение ложно, так как приводит к противоречию, и поэтому не существует таких целых чисел p и q, для которых p 2 = 2q 2 (т.е. таких, что ). А это означает, что число не может быть рациональным.

От Евклида до начала 19 в.

На протяжении этого периода математика существенно преобразилась в результате трех новаций.

(2) Создание в первой половине 17 в. аналитической геометрии, давшей возможность любую задачу классической геометрии свести к некоторой алгебраической задаче.

(3) Создание и развитие в период с 1600 по 1800 исчисления бесконечно малых, позволявшего легко и систематически решать сотни задач, связанных с понятиями предела и непрерывности, лишь очень немногие из которых были решены с превеликими трудностями древнегреческими математиками. Более подробно эти ветви математики рассматриваются в статьях АЛГЕБРА; АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ; МАТЕМАТИЧЕСКИЙ АНАЛИЗ; ГЕОМЕТРИИ ОБЗОР.

Сомнения и новые надежды.

Неевклидова геометрия.

Новые объекты.

Современная аксиоматика.

СОВРЕМЕННАЯ МАТЕМАТИКА

Мы пользуемся представлением о структуре на каждом шагу в нашей повседневной жизни. Если термометр показывает 10° С и бюро прогнозов предсказывает повышение температуры на 5° С, мы без всяких вычислений ожидаем температуру в 15° С. Если книга открыта на 10-й странице и нас просят заглянуть на 5 страниц дальше, мы не колеблясь открываем ее на 15-й странице, не отсчитывая промежуточных страниц. В обоих случаях мы полагаем, что сложение чисел дает правильный результат независимо от их интерпретации – в виде температуры или номеров страниц. Нам нет нужды учить одну арифметику для термометров, а другую – для номеров страниц (хотя мы пользуемся особой арифметикой, имея дело с часами, в которой 8 + 5 = 1, так как часы обладают другой структурой, чем страницы книги). Интересующие математиков структуры отличаются несколько более высокой сложностью, в чем нетрудно убедиться на примерах, разбору которых посвящены два следующих раздела данной статьи. В одном из них речь пойдет о теории групп и математических понятиях структур и изоморфизмов.

Теория групп.

(2) в G существует такой элемент e, что для любого элемента a из G имеет место соотношение e*a = a*e = a; этот элемент e называется единичным или нейтральным элементом группы;

(3) для любого элемента a из G найдется такой элемент aў, называемый обратным или симметричным к элементу a, что a*aў = aў*a = e.

Если эти свойства принять за аксиомы, то логические следствия из них (независимые от каких-либо других аксиом или теорем) в совокупности образуют то, что принято называть теорией групп. Вывести раз и навсегда эти следствия оказалось очень полезно, поскольку группы широко применяются во всех разделах математики. Из тысяч возможных примеров групп выберем лишь несколько наиболее простых.

(b) Рассмотрим в качестве G набор из четырех целых чисел 0, 1, 2, 3, а в качестве a*b – остаток от деления a + b на 4. Результаты таким образом введенной операции представлены в табл. 1 (элемент a*b стоит на пересечении строки a и столбца b). Нетрудно проверить, что свойства (1)–(3) выполняются, а единичным элементом служит число 0.

(с) Выберем в качестве G набор чисел 1, 2, 3, 4, а в качестве a*b – остаток от деления ab (обычного произведения) на 5. В результате получим табл. 2. Легко проверить, что свойства (1)–(3) выполняются, а единичным элементом служит 1.

S: 1 ® 4, 2 ® 1, 3 ® 2, 4 ® 3,

которое можно записать в более удобном виде

Для любых двух таких преобразований S, T мы определим S*T как преобразование, которое получится в результате последовательного выполнения Т, а затем S. Например, если , , то . При таком определении все 24 возможных преобразования образуют группу; ее единичным элементом служит , а элемент, обратный к S, получается при замене стрелок в определении S на противоположные; например, если , то .

Нетрудно заметить, что в первых трех примерах a*b = b*a; в таких случаях говорят, что группа или групповое умножение коммутативны. С другой стороны, в последнем примере , и, следовательно, T*S отличается от S*T.

Группа из примера (d) является частным случаем т.н. симметрической группы, в сферу приложений которой входят, среди прочего, методы решения алгебраических уравнений и поведение линий в спектрах атомов. Группы из примеров (b) и (c) играют важную роль в теории чисел; в примере (b) число 4 можно заменить любым целым числом n, а числа от 0 до 3 – числами от 0 до n – 1 (при n = 12 мы получим систему чисел, которые стоят на циферблатах часов, о чем мы упоминали выше); в примере (с) число 5 можно заменить любым простым числом р, а числа от 1 до 4 – числами от 1 до p – 1.

Структуры и изоморфизм.

Предыдущие примеры показывают, насколько разнообразной может быть природа объектов, образующих группу. Но на самом деле в каждом случае все сводится к одному и тому же сценарию: из свойств множества объектов мы рассматриваем лишь те, которые превращают это множество в группу (вот пример неполноты знания!). В таких случаях говорят, что мы рассматриваем групповую структуру, заданную выбранным нами групповым умножением.

В качестве последнего примера структуры упомянем структуру метрического пространства; такая структура задается на множестве Е, если каждой паре элементов a и b, принадлежащих E, можно поставить в соответствие число d (a,b) і 0, удовлетворяющее следующим свойствам:

Приведем примеры метрических пространств:

(b) поверхность сферы, где d (a,b) – длина наименьшей дуги круга, соединяющей две точки a и b на сфере;

Точное определение понятия структуры довольно сложно. Не вдаваясь в подробности, можно сказать, что на множестве Е задана структура определенного типа, если между элементами множества Е (а иногда и другими объектами, например числами, которые играют вспомогательную роль) заданы отношения, удовлетворяющие некоторому фиксированному набору аксиом, характеризующему структуру рассматриваемого типа. Выше мы привели аксиомы трех типов структур. Разумеется, существуют многие другие типы структур, теории которых полностью разработаны.

С понятием структуры тесно связаны многие абстрактные понятия; назовем лишь одно из наиболее важных – понятие изоморфизма. Вспомним пример групп (b) и (c), приведенных в предыдущем разделе. Нетрудно проверить, что от табл. 1 к табл. 2 можно перейти с помощью соответствия

0 ® 1, 1 ® 2, 2 ® 4, 3 ® 3.

В этом случае мы говорим, что данные группы изоморфны. В общем случае две группы G и Gў изоморфны, если между элементами группы G и элементами группы Gў можно установить такое взаимно однозначное соответствие a « aў, что если c = a*b, то cў = aў*bў для соответствующих элементов . Любое утверждение из теории групп, справедливое для группы G, остается в силе и для группы Gў, и наоборот. Алгебраически группы G и Gў неразличимы.

Читатель без труда убедится, что точно так же можно определить два изоморфных упорядоченных множества или два изоморфных метрических пространства. Можно показать, что понятие изоморфизма распространяется на структуры любого типа.

КЛАССИФИКАЦИЯ

Старая и новая классификации математики.

ФИЛОСОФСКИЕ ТРУДНОСТИ

Мы уже упоминали о понятии множества. Это понятие всегда использовалось более или менее явно в математике и логике. Во второй половине 19 в. элементарные правила обращения с понятием множества были частично систематизированы, кроме того, были получены некоторые важные результаты, составившие содержание т.н. теории множеств (см. также МНОЖЕСТВ ТЕОРИЯ), ставшей как бы субстратом всех остальных математических теорий. Начиная с античности и вплоть до 19 в. существовали опасения относительно бесконечных множеств, например нашедшие отражение в знаменитых парадоксах Зенона Элейского (5 в. до н.э.). Эти опасения носили отчасти метафизический характер, а отчасти были вызваны трудностями, связанными с понятием измерения величин (например, длины или времени). Устранить эти трудности удалось только после того, как в 19 в. были строго определены основные понятия математического анализа. К 1895 все страхи были развеяны, и казалось, что математика покоится на незыблемом фундаменте теории множеств. Но в следующее десятилетие возникли новые аргументы, которые, по-видимому, показывали внутреннюю противоречивость теории множеств (и всей остальной математики).

Интуиционисты и формалисты.

Резюмируя с формалистской точки зрения сложившуюся проблемную ситуацию, мы должны признать, что она далека от завершения. Использование понятия множества ограничивалось оговорками, которые специально вводились чтобы избежать известных парадоксов, и нет никаких гарантий, что в аксиоматизированной теории множеств не возникнут новые парадоксы. Тем не менее ограничения аксиоматической теории множеств не помешали рождению новых жизнеспособных теорий.

МАТЕМАТИКА И РЕАЛЬНЫЙ МИР

Несмотря на заявления о независимости математики никто не станет отрицать, что математика и физический мир связаны друг с другом. Разумеется остается в силе математический подход к решению проблем классической физики. Верно и то, что в весьма важной области математики, а именно в теории дифференциальных уравнений, обыкновенных и в частных производных, процесс взаимообогащения физики и математики достаточно плодотворен.

Математика – наука или искусство?


Матема́тика (др.-греч. μᾰθημᾰτικά [1] μάθημα — изучение, наука) — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов [2] . Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов [3] . Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы [4] .

☀"математика это, скорее, язык, созданный для описания количественных отношений и пространственных форм объективного Мiръ(а) и математических языков несколько.

  • Каким математическим языком пользовались, например, Пифагор Архимедом, я так от современных математиков и не добился — не в курсе оне. Но то, что с помощью римских цыфирь доказать теорему пифагора невозможно оне, однако, соглашаются.

Содержание

Основные сведения

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики [5] .

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология

Определения

Одно из первых определений предмета математики дал Декарт [9] :

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ [10] , данное А. Н. Колмогоровым:

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса [11] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

    , : планиметрия и стереометрия
  • теория элементарных функций и элементы анализа

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика [14] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [15] подразделяется на специальности:

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история


Кипу, использовались инками для записи чисел

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Основные темы

Числа

Натуральные числа ( >" width="" height="" />
) • Целые ( >" width="" height="" />
) • Рациональные ( >" width="" height="" />
) • Алгебраические ( >>>" width="" height="" />
) • Периоды • Вычислимые • Арифметические

МАТЕМА́ТИКА, нау­ка о ко­ли­че­ст­вен­ных от­но­ше­ни­ях и про­стран­ст­вен­ных фор­мах. Осн. ме­то­дом ис­сле­до­ва­ний про­цес­сов и яв­ле­ний с по­мо­щью М. яв­ля­ет­ся соз­да­ние фор­ма­ли­зов. мо­де­ли изу­чае­мо­го яв­ле­ния и её изу­че­ние ма­те­ма­тич. сред­ст­ва­ми. При не­дос­та­точ­ном со­от­вет­ст­вии ре­зуль­та­тов, по­лу­чен­ных при ис­сле­до­ва­нии ма­те­ма­тич. мо­де­ли, ре­зуль­та­там не­по­средств. на­блю­де­ний это­го яв­ле­ния тре­бу­ет­ся со­вер­шен­ст­во­ва­ние мо­де­ли. Ти­пич­ным при­ме­ром при­ме­не­ния это­го под­хо­да мо­жет слу­жить по­строе­ние (и мно­го­крат­ное со­вер­шен­ст­во­ва­ние) мо­де­ли дви­же­ния пла­нет Сол­неч­ной сис­те­мы.

Математика — наука, исторически основанная на решении задач о количественных и пространственных соотношениях реального мира путём идеализации необходимых для этого свойств объектов и формализации этих задач. Наука, занимающаяся изучением чисел, структур, пространств и преобразований.

Умение считать — это еще не все. Ребенку необходимо уметь хорошо выражать свои мысли, чтобы понимать задачи и устанавливать связи между фактами, которые хранятся в памяти. Для того чтобы выучить таблицу умножения, нужны память и речь. Именно поэтому некоторым людям с поврежденным мозгом трудно умножать, хотя другие виды счета не представляют для них сложности.

Для того чтобы хорошо знать геометрию и разбираться в форме и пространстве, требуются и другие виды мышления. С помощью математики мы решаем в жизни проблемы, например, делим шоколадку поровну или находим нужный размер ботинок. Благодаря знанию математики ребенок умеет копить карманные деньги и понимает, что можно купить и сколько денег тогда у него останется. Математика — это еще и способность отсчитать нужное количество семян и посеять их в горшочек, отмерять нужное количество муки для пирога или ткани на платье, понять счет футбольной игры и множество других повседневных дел. Везде: в банке, в магазине, дома, на работе — нам необходимо умение понимать числа, формы и меры и обращаться с ними. Числа — это только часть особого математического языка, а лучший способ выучить любой язык — это применять его. И начинать лучше с ранних лет.

Обычно идеализированные свойства исследуемых объектов и процессов формулируются в виде аксиом, затем по строгим правилам логического вывода из них выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Т.о. первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное к математике положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе существует много различных определений математики.

Разделы математики

  • Математический анализ.
  • Алгебра.
  • Аналитическая геометрия.
  • Линейная алгебра и геометрия.
  • Дискретная математика.
  • Математическая логика.
  • Дифференциальные уравнения.
  • Дифференциальная геометрия.
  • Топология.
  • Функциональный анализ и интегральные уравнения.
  • Теория функций комплексного переменного.
  • Уравнения с частными производными.
  • Теория вероятностей.
  • Математическая статистика.
  • Теория случайных процессов.
  • Вариационное исчисление и методы оптимизации.
  • Методы вычислений, то есть численные методы.
  • Теория чисел.

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного математика — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Читайте также: