При каких условиях в системе возникают свободные колебания кратко

Обновлено: 04.07.2024

Колебания — движения, которые точно или приблизительно повторяются через определенные интервалы времени.
Свободные колебания — колебания в системе под действием внутренних тел, после того как система выведена из положения равновесия.
Колебания груза, подвешенного на нити, или груза, прикрепленного к пружине, — это примеры свободных колебаний. После выведения этих систем из положения равновесия создаются условия, при которых тела колеблются без воздействия внешних сил.
Система — группа тел, движение которых мы изучаем.
Внутренние силы — силы, действующие между телами системы.
Внешние силы — силы, действующие на тела системы со стороны тел, не входящих в нее.

Свободные колебания (или собственные колебания ) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии ( потенциальной или кинети­ческой ) при отсутствии внешних воздействий.

Свободные колебания (или собственные колебания) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети­ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра­зуют систему тел, которая называется колебательной системой.

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.

Свободные колебания

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Свободные колебания

Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называют­ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод­ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.


Динамика свободных колебаний.

Колебания тела под действием сил упругости. Уравнение колебательного движения тела под действием силы упругости F (см. рис.) может быть получено с учетом второго закона Ньютона (F = mа) и закона Гука (Fупр = -kx), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

Свободные колебания

.

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени (ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Колебания математического маятника. Для получения уравнения колебания математического маятника (рисунок) необходимо разложить силу тяжести FT = mg на нормальную Fn (направлен­ную вдоль нити) и тангенциальную Fτ (касательную к траектории движения шарика — окружности) составляющие. Нормальная составляющая силы тяжести Fn и сила упругости нити Fynp в сумме сооб­щают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меня­ющее ее направление, а тангенциальная составляющая Fτ является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускорения maτ = Fτ и учитывая, что Fτ = -mg sinα, получим:

Знак минус появился потому, что сила и угол отклонения от положения равновесия α име­ют противоположные знаки. Для малых углов отклонения sin α ≈ α. В свою очередь, α = s/l, где s — дуга OA, I — длина нити. Учитывая, что аτ = s", окончательно получим:

Свободные колебания

.

Вид уравнения аналогичен уравнению . Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений и является функция вида:

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими:

Свободные колебания

В уравнении x = xm cos ω0 t (или x = xm sin ω0 t), хm — амплитуда колебания, ω0 — собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

Свободные колебания

.

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

Свободные колебания

.

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятни­ка, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции (x = xm cos ω0 t (или x = xm sin ω0 t)), получим выражение для скорости:

где am = ω 2 0 xm — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле­баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.

Решение упражнений к учебнику Г.Я.Мякишева, Б.Б.Буховцева

1. Какие колебания называют свободными?

Ответы на вопросы к §19


2. При каких условиях в системе возникают свободные колебания?

Ответы на вопросы к §19


3. Какие колебания называют вынужденными? Приведите примеры вынужденных колебаний.

Колебательные движения широко распространены в окружающей нас жизни. Колебания совершают раскачивающиеся качели (рис. \(2\)), маятник часов (рис. \(3\)), игла швейной машины (рис. \(1\)), крылья насекомых при полёте (рис. \(4\)) и многих других тел.

Конечно, движения этих тел многим и отличаются. Так качели совершают движение по дуге окружности, а игла швейной машины — по прямой; у крыльев стрекозы меньший размах, чем у маятника часов. Комариные крылья совершают большое количество колебаний за то же время, за которое качели могут совершить всего одно.
Эти движения объединяет свойство колеблющегося объекта повторять траекторию движения и находиться в одних и тех же точках через равные промежутки времени.

На анимации шарик, подвешенный на нити, совершает колебания (рис. \(5\)). Через равные промежутки времени он возвращается в одни и те же точки траектории. Затем движение повторяется, т.е. оно является периодичным.

чтобы заставить качели совершать колебательные движения, нужно сначала вывести их из положения равновесия, оттолкнувшись ногами, либо сделать это руками.

Колебания, происходящие благодаря только начальному запасу энергии колеблющегося тела при отсутствии внешних воздействий на него, называются свободными колебаниями.

а) система должна находиться в положении устойчивого равновесия: при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия — возвращающая сила;
б) наличие у системы избыточной механической энергии по сравнению с её энергией в положении равновесия;
в) избыточная энергия, полученная системой при смещении её из положения равновесия, не должна быть полностью израсходована на преодоление сил трения при возвращении в положение равновесия, т. е. силы трения в системе должны быть достаточно малы.

Физическая система — множество взаимосвязанных элементов, отделённых от окружающей среды, взаимодействующих с ней как целое.

  • атом состоит из протонов, нейтронов и электронов;
  • математический маятник состоит из подвеса и тела, имеющего массу;
  • твёрдое тело состоит из молекул или атомов.

Колебательные движения основаны на действии возвращающей силы, которая является суммой остальных сил. Например, сила тяжести и сила упругости математического маятника.

Рассмотрим колебания шарика на нити (рис. \(6\)). При отклонении шарика от положения равновесия свободные колебания возникают под действием силы тяжести и силы упругости. Равнодействующая этих сил направлена к положению равновесия.

Маятник — твёрдое тело, совершающее колебания под действием приложенных сил около положения равновесия.

груз, подвешенный на пружине и совершающий колебательные движения по вертикали под действием сил упругости, называется пружинным маятником (рис. \(7\)).

Рис. 5. Колебания математического маятника.
Рис. 6. Силы, действующие на шарик. © ЯКласс.
Рис. 7. Колебания пружинного маятника.

Читайте также: