При каких условиях ток и напряжение в цепи переменного тока совпадают по фазе кратко

Обновлено: 04.07.2024

Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

Напряжение на клеммах источника меняется по закону:

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

Текущее значение напряжения в момент времени называется мгновенным значением напряжения.

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: с.

Взаимодействие между зарядами передаётся со скоростью света: м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой . Период колебаний равен , и за это время взаимодействие между зарядами передаётся на расстояние . Пусть — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если много меньше :

Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) , называемый также активным сопротивлением (рис. 1 )


Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

Таким образом, сила тока в резисторе также меняется по закону синуса:

Амплитуда тока равна отношению амплитуды напряжения к сопротивлению :


Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости , подключённый к источнику синусоидального напряжения (рис. 3 ). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.


Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины совпадает со знаком напряжения . Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство .

Напряжение на конденсаторе равно напряжению источника:

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

Графики тока и напряжения представлены на рис. 4 . Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на больше фазы напряжения (ток опережает по фазе напряжение на ).


Рис. 4. Ток через конденсатор опережает по фазе напряжение на

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

Используя её, получим из (3) :

И теперь мы чётко видим, что фаза тока больше фазы напряжения на .

Для амплитуды силы тока имеем:

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

Величина называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости ), тем за меньшее время по цепи проходит заряд ; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При ёмкостное сопротивление стремится к нулю: . Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при имеем . Это неудивительно: случай отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности (рис. 5 ). Активное сопротивление катушки считается равным нулю.


Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле , которое, оказывается, в точности уравновешивает кулоновское поле движущихся зарядов:

Работа кулоновского поля по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение . Аналогичная работа вихревого поля — это ЭДС индукции .

Поэтому из (4) получаем:

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея , переписываем соотношение (5) :

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6) . Сообразить это нетрудно (продифференцируйте и проверьте!):

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6 .


Рис. 6. Ток через катушку отстаёт по фазе от напряжения на

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на .

Определить сдвиг фаз можно и с помощью формулы приведения:

Непосредственно видим, что фаза силы тока меньше фазы напряжения на .

Амплитуда силы тока через катушку равна:

Это можно записать в виде, аналогичном закону Ома:

Величина называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что будет больше.

2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При имеем , т. е. высокочастотный ток практически не проходит через катушку.

Наоборот, при имеем . Для постоянного тока катушка является коротким замыканием цепи.

И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

Парень созданный Солнцем Оракул (61728) Ток возникает при наличии напряжения и сопротивления. Если чего-то одного нет, то и другого не будет.

Парень созданный Солнцем Оракул (61728) Отсутствующий ток не может ни с чем совпадать. Его же нет, он отсутствует.

Ну пока в цепи нет конденсаторов и катушек индуктивностей -- совпадают. Но такую цепь ещё поискать нужно.

Парень созданный Солнцем Оракул (61728) Ток зависит от напряжения и сопротивления. Ток - это как бы результат напряжения приложенного к сопротивлению. Если есть напряжение, то есть и фаза. Может быть я не понял вопрос.

Переменным называется ток, который с течением времени изменяет свою величину или направление. В промышленности наибольшее распространение получил синусоидальный переменный ток, то есть ток, величина которого изменяется со временем по закону синуса или косинуса. Синусоидальный переменный ток имеет целый ряд преимуществ перед постоянным током, что и объясняет его использование в промышленности и в быту.

В цепях переменного тока, кроме процессов нагрева проводов имеются дополнительные процессы, обусловленные изменяющимися магнитными и электрическими полями. Изменение этих полей оказывает влияние на величину и форму тока в цепи и может приводить к дополнительным потерям энергии. Величина и форма кривой силы тока зависят не только от параметров электрической цепи, но и от частоты и формы кривой приложенного напряжения. Поэтому анализ явлений, происходящих в цепях переменного тока, вследствие этого усложняется.

Рассмотрим электрическую цепь с последовательно включёнными катушкой индуктивностью L, конденсатора ёмкостью C и резистором с активным сопротивлением R (рис. 10.1) к источнику переменного тока, напряжение которой меняется по закону . В цепи возникает переменный ток, меняющийся по закону где φ - сдвиг фаз между током и напряжением. При этом связь между током Im и напряжением Um, согласно закону Ома, будет


, (10.1)

где - реактивное сопротивление, - индуктивное сопротивление, - емкостное сопротивление, - полное сопротивление или импеданс.


Рис.10.1. Электрическая цепь с последовательно включёнными катушкой индуктивности L, конденсатором C и резистором R

Этот ток вызывает падение напряжения на элементах цепи L, C, R:


, (10.2)


, (10.3)


. (10.4)


По второму закону Кирхгофа общее напряжение равно сумме падений напряжений на участках (элементах) цепи , и это соотношение иллюстрируется на векторной диаграмме (рис.10.2,а)). (На векторной диаграмме параметры рассматриваются как векторы, хотя знак вектора часто не ставится).

Из векторной диаграммы для сопротивлений (рис. 10.2.б)) видно, при и . Это соответствует условию последовательного резонанса. При этом и . Отсюда - формула Томсона, соответствует периоду собственных колебаний контура.



Рис. 10.2. Векторные диаграммы напряжений (а) и сопротивлений (б)

Мощность в цепи переменного тока со временем меняется по закону


.

Среднее значение мощности будет определяться соотношением


,


.

Выполняя усреднение по периоду колебаний T=2π/ω


,

с учётом значений интегралов


,


,


.

Таким образом, среднее значение мощности будет определяться соотношением


, (5)

Величины и соответственно называются эффективными, или действующими значениями тока и напряжения, а cosφназывается коэффициентом мощности. Большинство электроизмерительных приборов (амперметры, вольтметры) измеряют эффективные значения.

Зависимость мощности от cosφ необходимо учитывать при проектировании линий электропередачи на переменном токе. Если питаемые нагрузки имеют большое реактивное сопротивление, то cosφ может быть гораздо меньше единицы.

Выполнение работы

Электрическая схема установки показана на рис. 10.3. Параметры установки: С1=1 мкФ, С2=5 мкФ, С3=10 мкФ, R=710 Ом.


Рис. 10.3. Электрическая схема установки

Выполните измерения в следующем порядке


  1. Вычислите полное сопротивление (импеданс) Z.
  2. Исходя из полученных данных и векторной диаграммы вычислите индуктивность дросселя L (Гн)


.

(преобразуйте векторную диаграмму по напряжениям в векторную диаграмму по сопротивлениям (рис.10.2))


  1. Из полученных результатов определите значение cosφ (каков знак + или -). Объясните результат.
  2. Вычислите мощность (Вт). Для каждого из полученных значений мощности рассчитайте относительную погрешность ε.

С, мкФ I, mА UC, В UL, В UR, В ULC, В Uвх, B Z, Ом L, Гн cosφ P, Вт ε, %

Контрольные вопросы

  1. При каком сердечнике активное сопротивление катушки будет большим: при сплошном металлическом или набранном из изолированных металлических пластин? Объяснить ответ.
  2. Чему равняется сдвиг фаз между током и напряжением, если цепь состоит из:
    а) чисто активного сопротивления?
    б) чисто индуктивного сопротивления?
  3. Когда наблюдается резонанс? Используя результаты экспериментов, определить частоту резонанса.

Лабораторная работа № 2.8
Свободные механические колебания

Цель работы: изучение механических гармонических, ангармонических и затухающих колебаний с помощью математического и физического маятников.

Приборы и принадлежности: физические маятники – шары на нитях, секундомер, линейка.

Литература: 2

План работы:

1. Изучение гармонических колебанийфизического и математического маятников.

2. Изучение ангармонических колебанийфизического маятника.

3. Изучение затухающих колебаний.

4. Измерение периода малых колебаний математического маятника и определение ускорения свободного падения.

5. Исследование зависимости периода колебаний маятника от амплитуды.

6. Исследование затухающих колебаний маятника.

Переменным называется ток, который с течением времени изменяет свою величину или направление. В промышленности наибольшее распространение получил синусоидальный переменный ток, то есть ток, величина которого изменяется со временем по закону синуса или косинуса. Синусоидальный переменный ток имеет целый ряд преимуществ перед постоянным током, что и объясняет его использование в промышленности и в быту.

В цепях переменного тока, кроме процессов нагрева проводов имеются дополнительные процессы, обусловленные изменяющимися магнитными и электрическими полями. Изменение этих полей оказывает влияние на величину и форму тока в цепи и может приводить к дополнительным потерям энергии. Величина и форма кривой силы тока зависят не только от параметров электрической цепи, но и от частоты и формы кривой приложенного напряжения. Поэтому анализ явлений, происходящих в цепях переменного тока, вследствие этого усложняется.

Рассмотрим электрическую цепь с последовательно включёнными катушкой индуктивностью L, конденсатора ёмкостью C и резистором с активным сопротивлением R (рис. 10.1) к источнику переменного тока, напряжение которой меняется по закону . В цепи возникает переменный ток, меняющийся по закону где φ - сдвиг фаз между током и напряжением. При этом связь между током Im и напряжением Um, согласно закону Ома, будет


, (10.1)

где - реактивное сопротивление, - индуктивное сопротивление, - емкостное сопротивление, - полное сопротивление или импеданс.


Рис.10.1. Электрическая цепь с последовательно включёнными катушкой индуктивности L, конденсатором C и резистором R

Этот ток вызывает падение напряжения на элементах цепи L, C, R:


, (10.2)


, (10.3)


. (10.4)


По второму закону Кирхгофа общее напряжение равно сумме падений напряжений на участках (элементах) цепи , и это соотношение иллюстрируется на векторной диаграмме (рис.10.2,а)). (На векторной диаграмме параметры рассматриваются как векторы, хотя знак вектора часто не ставится).

Из векторной диаграммы для сопротивлений (рис. 10.2.б)) видно, при и . Это соответствует условию последовательного резонанса. При этом и . Отсюда - формула Томсона, соответствует периоду собственных колебаний контура.



Рис. 10.2. Векторные диаграммы напряжений (а) и сопротивлений (б)

Мощность в цепи переменного тока со временем меняется по закону


.

Среднее значение мощности будет определяться соотношением


,


.

Выполняя усреднение по периоду колебаний T=2π/ω


,

с учётом значений интегралов


,


,


.

Таким образом, среднее значение мощности будет определяться соотношением


, (5)

Величины и соответственно называются эффективными, или действующими значениями тока и напряжения, а cosφназывается коэффициентом мощности. Большинство электроизмерительных приборов (амперметры, вольтметры) измеряют эффективные значения.

Зависимость мощности от cosφ необходимо учитывать при проектировании линий электропередачи на переменном токе. Если питаемые нагрузки имеют большое реактивное сопротивление, то cosφ может быть гораздо меньше единицы.

Выполнение работы

Электрическая схема установки показана на рис. 10.3. Параметры установки: С1=1 мкФ, С2=5 мкФ, С3=10 мкФ, R=710 Ом.


Рис. 10.3. Электрическая схема установки

Выполните измерения в следующем порядке


  1. Вычислите полное сопротивление (импеданс) Z.
  2. Исходя из полученных данных и векторной диаграммы вычислите индуктивность дросселя L (Гн)


.

(преобразуйте векторную диаграмму по напряжениям в векторную диаграмму по сопротивлениям (рис.10.2))


  1. Из полученных результатов определите значение cosφ (каков знак + или -). Объясните результат.
  2. Вычислите мощность (Вт). Для каждого из полученных значений мощности рассчитайте относительную погрешность ε.

С, мкФ I, mА UC, В UL, В UR, В ULC, В Uвх, B Z, Ом L, Гн cosφ P, Вт ε, %

Контрольные вопросы

  1. При каком сердечнике активное сопротивление катушки будет большим: при сплошном металлическом или набранном из изолированных металлических пластин? Объяснить ответ.
  2. Чему равняется сдвиг фаз между током и напряжением, если цепь состоит из:
    а) чисто активного сопротивления?
    б) чисто индуктивного сопротивления?
  3. Когда наблюдается резонанс? Используя результаты экспериментов, определить частоту резонанса.

Лабораторная работа № 2.8
Свободные механические колебания

Цель работы: изучение механических гармонических, ангармонических и затухающих колебаний с помощью математического и физического маятников.

Приборы и принадлежности: физические маятники – шары на нитях, секундомер, линейка.

Литература: 2

План работы:

1. Изучение гармонических колебанийфизического и математического маятников.

2. Изучение ангармонических колебанийфизического маятника.

3. Изучение затухающих колебаний.

4. Измерение периода малых колебаний математического маятника и определение ускорения свободного падения.

5. Исследование зависимости периода колебаний маятника от амплитуды.

6. Исследование затухающих колебаний маятника.

Вспомним основные, нужные для написания следующих статей и для лучшего усвоения материала, моменты из темы: "Переменный электрический ток".

1. Векторная диаграмма.

Переменный (синусоидальный) ток можно графически изображать в виде синусоиды или заменяющего синусоиду вектора действующего тока.

Здесь вектор ОВ (вектор силы тока), вращаясь против часовой стрелки, даёт проекции на вертикальную ось. Эти проекции есть мгновенные значения силы переменного тока.

Один оборот вектора тока соответствует одному колебанию силы тока в цепи.

Точно так же вектором напряжения можно заменить синусоиду колебаний переменного напряжения, приложенного к электрической цепи.

Изображая вектор тока и вектор напряжения на одном рисунке, получаем очень наглядную векторную диаграмму, позволяющую найти сдвиг фаз между током и напряжением, а воспользовавшись теоремой Пифагора сможем найти интересующие нас величины, характеризующие данную цепь.

Ниже, в приведённом примере, рассмотрим, как строятся векторные диаграммы и как ими пользуются.

2. Действующие значения напряжения и силы тока.

Прикладываемое к цепи напряжение (в городской сети оно равно 220 В) и возникающий при этом ток называют действующими (или эффективными) значениями напряжения и силы тока.

Это означает, что по своему тепловому действию (или эффективности) переменный ток, равный например 5 А, эквивалентен постоянному току 5 А, протекающему по той же цепи (выделяется одинаковое количество теплоты).

Вольтметры и амперметры, подключенные к электрической цепи, показывают действующие значения напряжения и силы тока.

3. Электрическая цепь с чисто активным сопротивлением.

Если электрическая цепь содержит только чисто активное сопротивление (пусть это будут лампы накаливания), то при подключении их к источнику переменного тока нити ламп накаляются, излучая тепло и свет, здесь вся мощность источника (энергия в единицу времени) активно поглощается нитями ламп. Поэтому такое сопротивление назвали активным .

Полезная (или активная) мощность такой цепи равна произведению действующего напряжения на действующий ток, то есть максимальна .

Напряжение и ток в цепи, содержащей только активное сопротивление, колеблются в одинаковой фазе - изменения тока следуют сразу за изменениями напряжения, что отражено на рисунке ниже.

Читайте также: