Почему в промышленных двигателях в статоре устанавливают не постоянный магнит а электромагнит кратко

Обновлено: 07.07.2024

Вокруг нас становится всё больше электродвигателей . Вместе с безнадежным устареванием бензиновых агрегатов в мире транспорта, появляются и принципиально новые сферы использования электродвигателей. Многие высокотехнологичные электронные устройства используют такие двигатели для самых различных целей, например чтобы реализовать работу вибровызова у смартфона.

Полезно и интересно разобраться в логике функционирования этого нехитрого, но крайне востребованного сегодня устройства . Давайте опустим все сложные высказывания и формулировки, а попробуем на простом языке сформулировать основы функционирования электрических агрегатов.

Начнем с самого простого. Наверняка каждый из читателей игрался с магнитиками и обращал внимание, что в одну сторону магниты притягиваются, а в другую сторону магниты отталкиваются. Говоря научным языком - полюса магнита, имеющие одинаковые знаки, отталкиваются, а полюса магнита с разными знаками притягиваются .

Причину этого явления объясняют спецификой поведения зарядов . Но полностью объяснить природу взаимодействия пока не получилось. Да нам и не нужно сейчас это делать. Для нас важен сам факт подобного явления. Обратите внимание, что отталкиваются магниты гораздо раньше, чем будут подведены друг к другу вплотную. Всё дело в линиях магнитной индукции.

Теперь представим, что мы разместили магнитики таким образом, когда возможно использовать эту силу отталкивания нам во благо . Один магнитик поместили на ось, а второй поставили где то рядом. Вектора действующих сил распихали таким образом, что они по касательной толкают ось и заставляют её крутиться. Получилось, что система будет вращаться при правильном подборе точек расположения магнитов . Эффект напоминает раскручивание карусели, на котором катаются дети. Когда карусель с ребенком проходим мимо папы, он подкручивает систему и поддерживает вращение. Замени мы папу одним магнитом, а ребенка другим того же полюса - выйдет модель электродвигателя .

Может сложиться неправильное представление, что мы получили вечный двигатель. На самом деле это не так. Мы не сможем без прочих ухищрений заставить эту систему работать постоянно из-за потери энергии на сторонние факторы.

Теперь представим, что нам нужно управлять такой моделью . Ведь когда магниты постоянные, мы не сможем регулировать процесс вращения. Да и оптимизировать его не получится. Поэтому, мы прибегнем к помощи электромагнита . Электромагнит может создавать поле тогда, когда нам это нужно. Нажали на кнопочку - ток проходит через цепь и формируется магнитное поле.

Но в более простом случае рационально использовать рамку с током. Там начинает работать закон Ампера , а род взаимодействия будет таким же. Вспомним, что закон Ампера описывает влияние магнитного поля на проводник с током. Он описывает силу, которая будет действовать на проводник с током со стороны магнитного поля.

Теперь представим, что мы взяли рамку с током и поместили её в магнитное поле . Рамка с током представляет собой проводник, который оказался в магнитном поле. Пропускаем через рамку ток и поле начинает воздействовать с некоторой силой на этот проводник . Если рамка замкнутая, то ток меняет в ней свой направление.

Получается, что на рамке формируется вращающий момент . Ведь когда направление тока в проводнике меняется, меняется и направление вектора силы, воздействующей со стороны магнитного поля.

Если разместить рамку правильно, то появится именно крутящий момент. Если нет - поле будет гнуть рамку. Наша задача "снять" крутящий момент. Для этого рамку нужно правильно расположить или увеличить количество рамок. Тогда одна из них обязательно попадет в нужное положение.

Кстати, это магнитное поле формируется неподвижными постоянными магнитами статора двигателя .

Вращающаяся часть будет называться ротором или якорем . Неподвижная на корпусе - статором. Приведенная модель является рабочей моделью двигателя постоянного тока . В реальной схеме всё организовано точно также, только якорь имеет множество таких рамок внутри своей конструкции. Полезно прочитать эту статью .

Но есть одно несчастье. Подключи мы такую модель к источнику переменного напряжения , и получим не равномерное движение, а постоянные рывки. Всё дело в том, что переменный ток постоянно меняет своё направление .

Направление сил, воздействующих на ротор, тоже будет меняться.

В случае с электродвигателями переменного тока конструкция строится немного иначе .

Обмотка располагается не на роторе, а на статоре. Пропуская через обмотку статора электрический ток, мы получим пульсирующее магнитное поле . Ток, как и в примере выше, меняет своё направление. Ведь намотка выполнена тоже как рамка. И потому актуальна картинка про смену направления электрического тока. Магнитное поле тоже будет направлено в разные стороны .

Если в такое поле поместить магнитик или ротор особой конфигурации (колесо для грызуна, в котором индуцируется ток сам) опять получим описываемый ранее эффект и крутящий момент . Только обмоток нужно много, чтобы "толкались" они одна за другой. Тогда оно будет пульсировать и подпихивать наш якорь. Получили опять вращающий момент. Вуаля!

ИТ1_1_2

В проводнике, по которому пропущен ток, возникает . Оно взаимодействует с постоянного магнита. Проводник либо наружу, либо внутрь.

Вставьте пропущенные слова


На рис.1.1 тока в проводниках ,на рис. 1.2 ток в проводниках течет , а на рис. 1.3 ток в проводниках течет .

Для чего, главным образом, необходим коллектор в электродвигателе?

для подведения тока к ротору

для соединения многих катушек в роторе

для переключения направления тока в обмотках ротора

Почему на промышленных электродвигателях в статоре не используют постоянные магниты.

они очень тяжёлые

им трудно придать нужную форму

они не создают достаточного сильного магнитного поля

материал для постоянных магнитов сложно обрабатывать

На каком явлении основана работа электродвигателя?

на явлении силового взаимодействия намагниченных тел: их отталкивании или притяжении друг к другу

на проявлении магнитных свойств у проводников, по которым течёт электрический ток

+

2 Смотреть ответы Добавь ответ +10 баллов


Ответы 2

+

XIV – начало XVI века – период политической раздробленности. Япония – единое государство, но без единого правителя. Император реальной власти не имел. Японские князья (даймё) усилили свою власть в провинциях, создали самостоятельные княжества и не подчинялись ни императору, ни сёгуну. Самураи подчинялись только своим князьям.
Но в этом государстве были сильны традиции и совершались религиозные обряды

Принцип работы электродвигателей

Принцип работы электродвигателей. Основные понятия.

Магнетизм

Наиболее характерное магнитное явление - притяжение магнитом кусков железа - известно со времен глубокой древности. Ещё одной очень важной особенностью магнитов является наличие у них полюсов: северного (отрицательного) и южного (положительного). Противоположные полюса притягиваются, а одинаковые - отталкиваются друг от друга.


Магнетизм

Магнитное поле

Магнитное поле можно условно изобразить линиями в виде магнитного потока, движущегося от северного полюса к южному. В некоторых случаях определить, где северный, а где южный полюс, достаточно сложно.

Электромагнетизм

Вокруг проводника, при пропускании по нему электрического тока, создаётся магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы для магнетизма и электромагнетизма.


магнитное поле вокруг проводника

Магнитное поле вокруг проводников можно усилить, если намотать их на катушку со стальным сердечником. Когда проводник намотан на катушку, все линии магнитного потока, образуемого каждым витком, сливаются и создают единое магнитное поле вокруг катушки.


магнитное поле вокруг катушки

Чем больше витков на катушке, тем сильнее магнитное поле. Это поле имеет такие же характеристики, что и естественное магнитное поле, а, следовательно, у него тоже есть северный и южный полюса.

Вращение вала электродвигателя обусловлено действием магнитного поля. Основные части электродвигателя: статор и ротор.

Ротор:

Подвижная часть электродвигателя, которая вращается с валом электродвигателя, двигаясь вместе с магнитным полем статора.

Статор:

Неподвижный компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.


электродвигатель

Вращение под действием магнитного поля

Преимуществом магнитных полей, которые создаются токопроводящими катушками, является возможность менять местами полюса магнита посредством изменения направления тока. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.

Одинаковые полюса магнитов отталкиваются друг от друга, противоположные полюса - притягиваются. Можно сказать, что это свойство используется для создания непрерывного движения ротора с помощью постоянной смены полярности статора. Ротором здесь, является магнит, который может вращаться.


смена полюсов магнита при изменении направления тока

Чередование полюсов с помощью переменного тока

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Переменный ток - AC

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.


Вращающееся магнитное поле с помощью трёхфазного питания

Трёхфазный переменный ток

Трёхфазное питание - это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

Смена полюсов

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.


Смена полюсов

Для наглядности мы заменили ротор вращающимся магнитом, а статор - катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе - B1 и B2 , а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая - южным. Таким образом, если A1 - северный полюс, то A2 - южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.


Обмотки фаз

Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.


число полюсов

Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Вращение ротора

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.


Вращение ротора в сторону вращения магнитного поля

Индукция

Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.


поляризация ротора

Индукция

В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.

В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция - это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).


Магнитное поле ротора

Принцип действия электродвигателей

Индукционные электродвигатели состоят из ротора и статора.

Токи в обмотках статора создаются фазовым напряжением, которое приводит в движение индукционный электродвигатель. Эти токи создают вращающееся магнитное поле, которое также называется полем статора. Вращающееся магнитное поле статора определяется токами в обмотках и количеством фазных обмоток.

Вращающееся магнитное поле формирует магнитный поток. Вращающееся магнитное поле пропорционально электрическому напряжению, а магнитный поток пропорционален электрическому току.

Вращающееся магнитное поле статора движется быстрее ротора, что способствует индукции токов в обмотках проводников роторов, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставляет ротор вращаться. Принципы действия индукционного электродвигателя представлены на иллюстрациях справа.

Таким образом, ротор и статор являются наиболее важными составляющими индукционного электродвигателя переменного тока. Они проектируются с помощью САПР (системы автоматизированного проектирования). Далее мы подробнее поговорим о конструкции ротора и статора.


Магнитный поток через статор


магнитный поток через ротор


вращающий момент

Статор элетродвигателя

Статор - это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.


Статор

Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью - из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.


статор электродвигателя

Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры - класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.

Ротор элетродвигателя


беличье колесо - короткозамкнутый ротор

При вращении статора магнитное поле движется перпендикулярно обмоткам проводников ротора; появляется ток. Этот ток циркулирует по обмоткам проводников и создаёт магнитные поля вокруг каждого проводника ротора. Так как магнитное поле в статоре постоянно меняется, меняется и поле в роторе. Это взаимодействие и вызывает движение ротора. Как и статор, ротор изготовлен из пластин электротехнической стали. Но, в отличие от статора, с обмотками из медной проволоки, обмотки ротора выполнены из литого алюминия или силумина, которые выполняют роль проводников.


Обмотки проводников ротора

Асинхронные электродвигатели

Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).

Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.

Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.

Читайте также: