Почему у рыб холодная кровь кратко

Обновлено: 02.07.2024

Ну, короче, так.
Теплокровность и холоднокровность зависит от обмена веществ. У рыб, земноводных и гадов обмен "замедленный". У птиц и зверей - "высокий". Отсюда и теплота тела (крови) . Рыба живёт в воде. Теплоотдача в воду оч. большая, но рыба холоднокровное животное и, поэтому легко переносит охлаждение. А вот водные звери (киты, ластоногие) имеют толстый слой жира. Иначе переохлаждение. Таким образом, если когда нибудь человеку пересадят жабры, это будет китообразный или моржеобразный монстр.
Если бы человек был холоднокровный, все процессы в организме проходили бы медленно. И, вроде бы хорошо, не чувствовали бы холод и жару, в воде сидели бы сутками и т. д. и т. п. НО! Зимой спячка, так как холодно. Ну и мыслительные процессы проходили бы намного медленнее. 2 + 2 = 4 решали бы целый день.

Потому что нам надо много энергии и мы в тёплых местах живём.А рыбы в холодной воде и мало двигаются.

Почему у рыб кровь холодная , я не знаю ,а вот то что есть люди с такой кровью - это точно. в переносном смысле слова конечно.

почему рыбам в холодной воде не холодно

На изменение температуры окружающей среды организм человека и других млекопитающих животных реагирует достаточно остро. Если она повышается, то нам становится жарко, а если понижается, то – холодно. Между тем, на земле существует много живых существ, которые не мерзнут никогда, например, спокойно плавающие подо льдом рыбы.

Ответ на вопрос, почему рыбам не холодно в холодной воде, можно дать очень краткий: потому, что они холоднокровные или, по-другому, пойкилотермные животные. В отличие от человека и зверей температура их крови и тела всегда равна температуре среды, в которой они в данный момент находятся. Их организм, благодаря более медленному обмену веществ и отсутствию внутреннего тепла, просто не испытывает дискомфорта, когда вода, в которой они плавают, становится холодной.

Более того, рыбам не только не холодно в холодной воде, они умудряются не замерзать даже тогда, когда она остывает до минусовой температуры и начинает превращаться в лед. Как выяснили ученые, рыбья кровь содержит особые белки, называемые гликопротеинами, которые препятствуют замерзанию жидкостей лучше любого антифриза, специально для этого созданного.

image

Когда Рустед провел изучение рыбины, он понял, что ее кровь практически бесцветна — нигде не было ни капли красного. Ее жабры тоже были странными: окрашенные в белый цвет, они по консистенции напоминали йогурт, если можно привести такое сравнение. У той же трески жабры красные, как и у большинства других рыб. Все благодаря большому количеству кровеносных сосудов, которыми пронизан этот орган. У белокровных рыб сеть сосудов вообще гуще, чем у обычных рыб, в особенности, в жабрах.

Отсутствие эритроцитов в крови? Как это возможно?

В жабрах, как известно, кровь насыщается кислородом, после чего кислород разносится по всему телу. Поэтому какого бы цвета рыба бы ни была, ее жабры должны быть красными, или хотя бы темными — а не полностью белыми, как у странной рыбы из Антарктики.


Изначально ученые решили, что отсутствие гемоглобина — это адаптация к сверхнизким температурам и богатой кислородом переохлажденной воде в этом регионе. И действительно, кислорода в воде региона обитания рыбы очень много — он усваивается чуть ли не сам по себе. Зачем, спрашивается, рыбе эти кровяные тельца, когда кислород и так без проблем поступает в жабры? И специалисты пришли к выводу, что это все эволюционные изменения, позволившие рыбе приспособиться к экстремальным температурам.

Этому виду удалось выжить несмотря ни на что благодаря ряду обстоятельств. Ледяная рыба живет в Южном Ледовитом океане, омывающем Антарктику. Течения блокируют регион от попадания сюда более теплой воды. По этой причине вода здесь всегда холодная. Ее температура составляет от 1,5 градусов Цельсия летом до — 1,8 градусов Цельсия зимой (как известно, морская и океаническая вода замерзают при температурах, значительно ниже нуля).

И рыбам пришлось выработать специальный белок-незамерзайку, который предохраняет животных от формирования ледяных кристаллов в их крови во время падения температуры воды ниже нуля. 16 видов рыб в Антарктике относятся к семейству Channichthyidae, которое, в свою очередь, является частью Notothenioidei. Причем среди всех прочих нототениевых, только у этой рыбы нет гемоглобина в крови. Кстати, ледяная рыба и нототениевые преобладают в Южном ледовитом океане — они составляют 35% от всех видов рыб и формируют 90% биомассы в регионе.

Наряду с гемоглобином, белокровки в ходе эволюции утеряли и миоглобин, который переносит кислород в мышцах скелета.

Но Кристин О'Брайен из Аляскинского университета в Фэрбенксе с коллегами решили проверить предположение об адаптационных изменениях ледяных рыб. В результатах исследования ученые указали, что у ледяной рыбы более крупное сердце и кровеносные сосуды, чем у других нототеноидных рыб. Несмотря на то, что кровь циркулирует по сосудам ледяной рыбы более активно, поскольку она лишена красных кровяных телец, рыбе приходится прокачивать огромные объемы крови, чтобы доставить достаточное количество кислорода ко всем тканям и органам.

В результате ледяная рыба, по подсчетам ученых, тратит в два раза больше энергии на процесс кровообращения, чем ее родственники. На работу сердца в состоянии покоя у обычной арктической рыбы уходит около 5% энергии, которое тратится всем организмом. У ледяной же рыбы этот показатель возрастает вплоть до 22%. Некоторые органы прозрачной рыбы пронизаны более густой сетью кровеносных сосудов, чем у других рыб. В частности, это касается глаз ледяной рыбы.

Как видим, это вряд ли можно назвать выгодным адаптационным приобретением, направленным на экономию энергии. Ее уходит, наоборот, больше, чем у видов рыб с красной кровью. Вот увеличение сердца и расширение сети кровеносных сосудов да, уже является следствием эволюционного процесса, позволившего этой странной рыбе выжить. Экономия энергии выполняется благодаря наличию других механизмов. Например, почечных телец у рыбы нет. Удаление ядовитых веществ у ледяной рыбы выполняют особые секреторные клетки почечных канальцев.

Кроме того, у ледяных рыб более высокий объем митохондрий при их аналогичном другим родственным видам рыб количестве. В митохондриальных мембранах белокровок более высокое соотношение липидов к белкам. Вероятно, это связано со специфическим белком регулятором биогенеза митохондрий PGC-1α*. PGC-1α является транскрипционным коактиватором и центральным звеном образования митохондрий в клетках. Недавно открыто, что PGC-1α регулирует состав и функции отдельных митохондрий и их окислительный метаболизм. Повышение окислительного метаболизма связано с повышенной работой PGC-1α, что сопровождается увеличением активных форм кислорода (АФК) в митохондриях. Но этот белок является и мощным регулятором удаления АФК, потому что высокий уровень PGC-1α запускает экспрессию многочисленных ферментов-антиоксидантов.

Большую часть времени белокровкам приходится проводить неподвижно. Кислород из воды эти рыбы могут усваивать и через кожу.

Лед в крови — и никаких проблем

Так вот, при охлаждении вод океана в этом регионе погибло большое количество видов животных, которые не смогли приспособиться и выработать специальные белки-антифриз или же приспособиться к похолоданию каким-либо иным способом. Те виды, кто смог это сделать, выжили.

У той же ледяной рыбы в крови образуются кристаллы льда — это смертельно для многих других видов животных, но только не для этого вида. Дело в том, что специальный белок не дает уже появившимся льдинкам стать центром кристаллизации, что привело бы к полному замерзанию рыбы. Кровь и межклеточная жидкость остаются жидкими. Именно эта особенность позволяет ледяной рыбе хорошо себя чувствовать у Южного полюса.

Белок-антифриз носит название AFGP (antifreeze glycoprotein). Вероятно, он произошел от панкератической трипсиногеноподобной протеазы. Белок способен связываться с микроскопически малыми кристаллами льда, предотвращая их рост.

Белокровки (так еще называют ледяную рыбу) полностью замерзают лишь при — 6 градусах Цельсия.

Человек создает белокровкам проблемы

image

Глобальное потепление климата Земли приводит к тому, что воды Южного ледовитого океана становятся более теплыми и кислыми. Пищи для белых рыб (как правило, это детрит, появляющийся в воде во время таяния паковых льдов) становится меньше. Белокровки более чувствительны к изменениям климата, чем их родственники с красной кровью. Ихтиологи считают, что этот вид рыб может существовать только в холодной воде в полярных регионах и только при определенном диапазоне температур. В любых других регионах особенности ледяной рыбы приведут к ее быстрой гибели.

Аквариумистика — аквариум новичкам, аквариум любителям, аквариум профессионалам

Самое читаемое
Самое читаемое

Пищеварительная система рыб. Строение и функции
Кровеносная система рыб. Органы кроветворения и кровообращения
Шкала общей жесткости воды

Холоднокровные (температура тела зависит от температуры окружающей среды) животные, рыбы, имеют замкнутую кровеносную систему, представленную сердцем и сосудами. В отличие от высших животных рыбы имеют один круг кровообращения (за исключением двоякодышащих и кистёперых).

Krove

Сердце у рыб двухкамерное: состоит из предсердия, желудочка, венозной пазухи и артериального конуса, поочерёдно сокращающихся своими мускульными стенками. Ритмично сокращаясь, оно движет кровь по замкнутому кругу.

По сравнению с наземными животными, сердце рыб очень мало и слабо. Его масса обычно не превышает 0,33–2,5%, в среднем 1 % массы тела, тогда как у млекопитающих оно достигает 4,6%, а у птиц — 10–16%.
Слабое у рыб и кровяное давление.
Рыбы имеют и малую частоту сокращений сердца: 18–30 ударов в минуту, но при низких температурах она может уменьшиться до 1–2; у рыб, переносящих вмерзание в лед зимой, пульсация сердца в этот период вообще прекращается.
Кроме этого, рыбы имеют малое количество крови по сравнению с высшими животными.

Но все это объясняется горизонтальным положением рыбы в окружающей среде (нет необходимости выталкивать кровь наверх), а также жизнью рыбы в воде: в среде, в которой сила земного притяжения сказывается намного меньше чем на воздухе.

0006555

Кровь от сердца оттекает по артериям, а к сердцу — по венам.

Из предсердия она выталкивается в желудочек, затем в артериальный конус, а затем в большую брюшную аорту и доходит до жабр, в которых происходит газообмен: кровь в жабрах обогащается кислородом и освобождается от углекислого газа. Красные клетки крови рыб — эритроциты содержат гемоглобин, связывающий в жабрах кислород, а в органах и тканях — углекислый газ.
Способность гемоглобина в крови рыб извлекать кислород у разных видов различна. Быстро плавающие, живущие в богатых кислородом проточных водах рыбы имеют клетки гемоглобина, обладающие большой способностью к вязке кислорода.

Богатая кислородом артериальная кровь имеет яркий алый цвет.

После жабр кровь по артериям попадает в головной отдел и дальше в спинную аорту. Проходя по спинной аорте, кровь доставляет кислород к органам и в мускулатуру туловища и хвоста. Спинная аорта тянется до конца хвоста, от нее по пути крупные сосуды отходят к внутренним органам.

Обедненная кислородом и насыщенная углекислым газом венозная кровь рыбы имеет тёмно-вишнёвый цвет.

Отдав кислород органам и собрав углекислый газ, кровь по крупным венам идёт к сердцу и предсердию.

Организм рыбы имеет свои особенности и в кроветворении:

Многие органы могут образовывать кровь: жаберный аппарат, кишечник (слизистая), сердце (эпителиальный слой и эндотелий сосудов), почки, селезёнка, сосудистая кровь, лимфоидный орган (скопления кроветворной ткани – ретикулярного синцития — под крышей черепа).
В периферической крови рыбы могут находиться зрелые и молодые эритроциты.
Эритроциты, в отличие от крови млекопитающих, имеют ядро.

Кровь рыбы имеет внутреннее осмотическое давление.

На настоящий момент установлено 14 систем групп крови рыб.

0015-025-Krovenosnaja-sistema-ryb

При проведении паразитологического исследования рыб, кровь, а также органы кровообращения берут на анализ.

Рыбы - низшие челюстноротые первичноводные позвоночные. Известно около 33 тысяч видов рыб. Им посвящен самостоятельный раздел биологии - ихтиология (от греч. ichthys - рыба и logos - слово).

Первые челюстноротые рыбы появились в ордовике, хрящевые рыбы - на рубеже силура и девона, около 420 млн. лет назад. Рыбы обитают как в пресных, так и в соленых водах. Надкласс рыбы подразделяется на два класса: костные и хрящевые рыбы.

Класс рыбы, акула и рыба прилипала

Общими признаками всех рыб является наличие обтекаемой формы тела, жизнь в воде. Тело подразделяется на голову, туловище и хвост. Хорошо развиты органы чувств: зрения, обоняния, слуха, осязания, равновесия.

Ароморфозы рыб

Рыбы отличаются от предшествующих эволюционных форм новыми, прогрессивными чертами строения, которые повысили их уровень организации. Давайте их перечислим.

    Появление челюстей и черепа

У рыб первая пара жаберных дуг видоизменяется в челюсти. С помощью челюстей охота становится более эффективной, а питание - разнообразным.

У рыб появляется череп - костное вместилище головного мозга и органов чувств, которое надежно защищает эти структуры нервной системы.

Челюсти рыб

Образуются предшественники конечностей, плавники, парные придатки тела, обособленные от туловища и головы, приводимые в движение мускульной силой.

Плавники рыб

У рыб хорда редуцируется, на ее месте формируется позвоночник. У хрящевых рыб позвоночник в течение всей жизни имеет хрящевое строение, а у костных рыб позвоночник окостеневает: он представлен костной тканью.

Позвоночник рыбы

Обратите особое внимание, что в скелете хрящевых ганоидов (осетровых рыб) хорда сохраняется на всю жизнь.

Костные рыбы

Костные рыбы - процветающий класс, весьма многочисленный: к ним относятся около 95% современных рыб. Сюда входят важнейшие подклассы, которые мы разберем: хрящекостные, двоякодышащие и кистеперые рыбы.

  • Осетрообразные - осетр, стерлядь, белуга
  • Карпообразные - карась, сазан, лещ, толстолобик
  • Лососеобразные - форель, лосось, семга
  • Трескообразные - треска, минтай, хек
  • Окунеобразные - окунь, судак, скумбрия, ставрида

Для большинства костных рыб характерен костный скелет, наличие жаберных крышек, прикрывающих жабры. Жаберные лепестки расположены непосредственно на жаберных дугах, имеется плавательный пузырь. Оплодотворение наружное.

Большинство видов костных рыб (90%) относятся к костистым рыбам. Для большей части костистых рыб характерно непрямое развитие (с метаморфозом).

Осетр

Данный класс будет рассмотрен нами на примере типичного представителя - речного окуня.

    Покровы, опорно-двигательная система

Форма тела обтекаемая, рыбообразная, за счет чего снижается трение о воду. Поверхность тела покрыта налегающими друг на друга (подобно черепице) чешуйками.

У большинства видов чешуя ктеноидная (от греч. ktéis - гребень и éidos - вид) - снабжена зубцами или шипами, или циклоидная (от греч. kykloeides — кругообразный, круглый) - с гладким закругленным задним краем.

Ктеноидная и циклоидная чешуя рыб

В коже находится множество желез, которые секретируют слизь, покрывающущю все тело рыбы, благодаря чему снижается трение о воду. Из-за слизи пойманную рыбу тяжело удержать в руках, она выскальзывает.

Плавники - органы движения рыб. Плавники бывают как парные (грудные, брюшные), так и непарные (спинной, хвостовой, анальный).

Плавники окуня

Череп - вместилище головного мозга, окружает его со всех сторон. Характерно наличие рострума (от лат. rostrum - клюв) - передней вытянутой части черепа рыб.

Позвоночник состоит из двух отделов: туловищного и хвостового. В центре каждого позвонка имеется отверстие. Прилегая друг к другу, отверстия позвонков вместе соединяются в единый спинномозговой канал, в котором лежит спинной мозг.

Скелет грудных плавников соединен с позвоночником костями плечевого пояса, в отличие от скелета брюшных плавников, который не сочленяется с позвоночником. Имеются жаберные крышки, снаружи прикрывающие жаберные щели (у хрящевых рыб жаберные крышки отсутствовали, 5 жаберных щелей открывались каждая в отдельности наружу.)

Скелет рыбы

Полость тела вторичная (целом).

Мышечная система сегментируется, что выражается в возникновении отдельных (дифференцированных) мышечных пучков. Наиболее ярким примером дифференцировки являются мышцы ротового аппарата и парных плавников.

Мышцы рыбы

Состоит из ротовой полости, глотки, продолжающейся в пищевод, желудка, толстого и тонкого кишечника. У многих рыб в ротовой полости имеются язык и острые зубы, расположенные на челюстях. Зубы предназначены не для механического измельчения пищи, а в основном для схватывания и удержания добычи. Слюнные железы отсутствуют, имеются вкусовые рецепторы.

В просвет тонкой кишки рыб открываются протоки пищеварительных желез, печени и поджелудочной железы, а также желчного пузыря. Спиральный клапан в кишечнике (характерный для хрящевых рыб) отсутствует, общая площадь всасывания увеличивается за счет слепо оканчивающихся выростов кишечника - пилорических придатков.

Пищеварительная система рыбы

Глотка тесно связано не только с пищеварительной, но и с дыхательной системой: здесь располагается жаберный аппарат рыб. С помощью жабр они приспособились забирать из воды растворенный в ней кислород и насыщать им кровь, откуда кислород поступает ко внутренним органам и тканям.

Процесс дыхания осуществляется благодаря тому, что вода через ротовое отверстие попадает в глотку. Вследствие движений жаберной крышки вода из ротоглоточной полости втягивается в боковую жаберную полость, омывая жабры. В результате газообмена в кровь рыбы поступает кислород, а углекислый газ покидает ее и растворяется в воде.

Дыхательная система рыбы

Жабры состоят из жаберной дуги, на которой расположены жаберные тычинки и лепестки. Жаберные тычинки направлены в сторону ротоглоточной полости и препятствуют проникновению частиц пищи в жабры (цедильная функция). Жаберные лепестки направлены наружу и оплетены густой сетью кровеносных сосудов - капилляров, в которых и происходит газообмен.

Как и хрящевые, костные рыбы имеют один круг кровообращения. Сердце двухкамерное, состоит из одного предсердия и одного желудочка. Запомните, что в сердце у рыб кровь венозная. Она накачивается сердцем в жабры, где происходит ее насыщение кислородом, после чего кровь становится артериальной.

Артериальная кровь направляется к внутренним органам и тканям, движется кровь внутри сосудов: кровеносная система замкнутого типа.

Кровеносная система рыбы

Состоит из парных лентовидных туловищных почек (мезонефрос, или первичная почка.) Располагаются они по бокам туловища. От почек начинаются мочеточники, сливающиеся между собой и образующие расширение - мочевой пузырь.

Моча, содержащая побочные продукты обмена веществ, выводится из организма рыбы через анальное отверстие у самок, через мочеполовое отверстие - у самцов .

Выделительная система рыбы

У всех хордовых нервная система трубчатого типа. Головной мозг состоит из продолговатого, среднего мозга, мозжечка, промежуточного и переднего мозга.

Развитие одних и тех же отделов у разных классов хордовых неодинаково, что мы с вами отчетливо увидим по мере изучения данного раздела. Я рекомендую вам обратить на данную тему особое внимание.

Относительно других классов хордовых головной мозг у рыб слабо развит: кора переднего мозга отсутствует, вместо нее поверхность мозга покрыта эпителием. Наибольшего развития достигает средний мозг - главный координирующий центр.

Также хорошо выражен (развит) мозжечок, который отвечает за координацию движений и ориентацию тела в пространстве. Это связано со сложными перемещениями рыбы, которая "парит как птица" только не в воздушной, а в водной среде. От головного мозга берут начало 10 пар черепно-мозговых нервов.

Головной мозг окуня

Органы чувств рыбы представлены особым образованием - боковой линией, тянущейся в виде канала вдоль всего тела с обоих боков. Чувствительные клетки (невромасты) органа боковой линии реагируют на изменения направления и скорости тока воды вблизи рыбы. С помощью нее рыба чувствует направление и скорость течения воды.

Боковая линия в разрезе

У рыб впервые возникает специализированный орган слуха - внутреннее ухо. С помощью него они способны различать звуки, ориентируясь в водной среде. Состоит внутреннее ухо из трех полукружных канальцев, верхнего и нижнего мешочков. Иногда внутреннее ухо соединяется с плавательным пузырем (сомовые, карповые), за счет чего слух у таких рыб более развит.

Внутреннее ухо у рыбы

Органы зрения приспособлены к водной среде: хрусталик имеет шарообразную форму. Роговица плоская, аккомодация (настройка глаза на наилучшее видение объекта) происходит только благодаря перемещению хрусталика.

Рыбы хорошо видят лишь на близком расстоянии. Имеются органы вкуса на коже и нижней челюсти, а также органы обоняния, открывающиеся в ротовую полость.

Орган зрения рыбы

Рыбы раздельнополы. Половые железы самцов - семенники, самок - единственный яичник. Оплодотворение наружное, происходит в воде: самка выметывает икру (яйцеклетки), а самец выделяет в воду сперматозоиды, которые сливаются с яйцеклетками. С течением времени из икры развиваются молодые особи.

Рыба откладывает икру

Развитие у большинства рыб (костистые рыбы) непрямое, с метаморфозом. Запомните, что процесс выметывания икры и ее последующего оплодотворения называется нерест, он носит сезонный характер. У пресноводных рыб нерест происходит весной, в это время строго запрещена ловля рыбы.

Нерест у рыб

Плавательный пузырь

Этот орган характерен исключительно для костных рыб: у хрящевых рыб (акулы, скаты) он отсутствует. Плавательный пузырь представляет собой воздушный мешок, заполненный смесью газов: азотом, кислородом, углекислым газом.

Плавательный пузырь рыбы

  • Гидростатическую - помогает занять рыбе в толще воды определенное положение. Так при расширении пузыря рыба всплывает, а при его уменьшении - опускается на дно.
  • Дыхательную - способен выполнять функцию легких
  • Барорецепторную - воспринимает изменения давления
  • Акустическую - воспринимает звуки, играет роль аналогичную уху

При заполнении газом пузырь расширяется: это меняет удельный вес рыбы, он понижается и рыба всплывает. Обратная схема происходит при уменьшении пузыря. Но откуда появляется газ, которым наполняется пузырь, если рыба обитает в воде? Отвечая на этот вопрос, отметим, что все рыбы делятся на два типа: открытопузырные и закрытопузырные.

Открытопузырные и закрытопузырные рыбы

У открытопузырных рыб плавательный пузырь сообщается с пищеварительной системой. Они в течение всей жизни поднимаются к поверхности воды и заглатывают воздух, по мере необходимости они могут освобождаться от газов, выдавливая их через глотку, а затем рот в окружающую среду. К таким рыбам относятся сельдеобразные, щукообразные, карпообразные, двоякодышащие.

Закрытопузырные рыбы имеют пузырь, не сообщающийся с пищеварительной трубкой. Газы в него поступают благодаря газовой секреции: они переходят из растворенного (в крови) состояния в газообразное, заполняя пузырь. Когда пузырь уменьшается газы вновь растворяются в крови, возвращаясь в кровеносное русло. К таким рыбам относятся: трескообразные, окунеобразные, кефалеобразные.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: