Почему свободно падающее тело движется равноускоренно кратко

Обновлено: 16.05.2024

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря - падение в пустоте. Конечно, отсутствие сопротивления воздуха - это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения - ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля - не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения - на полюсах ( ≈ 9 , 83 м с 2 ) , а самое малое - на экваторе ( ≈ 9 , 78 м с 2 ) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение - прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h :

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = - g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Движение тела, брошенного вертикально вверх

Первый график - это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с . Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м .

Второй график - движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с . Максимальная высота подъема h = 5 м . Время подъема и время падения t п = 1 с .

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения - v 0 y . Движение вдоль оси O X - равномерное и прямолинейное, с начальной скоростью v 0 x .

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси О Х :

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y :

y 0 = 0 ; v 0 y = v 0 sin α ; a y = - g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука - баллистика.


1. Свободное падение — падение тел в безвоздушном пространстве под действием притяжения к Земле. Наблюдения свидетельствуют о том, что скорость свободно падающего тела увеличивается с течением времени. Поскольку на свободно падающее тело действует единственная сила — сила тяжести, то его ускорение постоянно, т.е. свободное падение — движение равноускоренное.

2. Опыт показывает, что все свободно падающие тела движутся с одинаковым ускорением. Так, если вертикально расположенную трубку, в которой находятся три тела, имеющие разную массу: пёрышко, кусочек пробки и дробинку, перевернуть, то эти тела будут падать на дно трубки. При этом, если в трубке есть воздух, то из-за сопротивления воздуха они упадут не одновременно: дробинка упадёт раньше всех, а пёрышко позже всех тел. Если же воздух из трубки откачать, то тела упадут на дно одновременно.

3. Ускорение свободного падения обозначатся буквой ​ \( g \) ​, оно имеет одинаковое для всех тел значение при одинаковых условиях. Для широты Москвы оно равно 9,81 м/с 2 или 10 м/с 2 .

Значение ускорения свободного падения зависит от географической широты местности. Это объясняется тем, что сила тяжести, действующая на данное тело на экваторе, меньше, чем сила тяжести, действующая на него на полюсе. Поэтому ускорение свободного падения на полюсе равно 9,83 м/с 2 , а на экваторе — 9,78 м/с 2 .

Ускорение свободного падения зависит от высоты тела над поверхностью Земли. Чем выше поднято тело, тем слабее оно притягивается к Земле, тем меньше ускорение свободного падения.

4. Уравнения зависимости от времени модуля скорости, пути и модуля перемещения свободно падающего тела с высоты ​ \( h \) ​ (рис. 23).


Уравнения зависимости от времени проекции скорости и координаты свободно падающего тела с некоторой высоты тела:

Знаки проекций зависят от направления оси координат и начала координат. В соответствии с рисунком

5. График зависимости модуля скорости от времени при свободном падении приведён на рисунке (рис. 24).


6. График зависимости проекции скорости от времени при свободном падении приведены на рисунке (ось Y направлена вертикально вверх) (рис. 25).


7. Тело, брошенное вертикально вверх, тоже движется равноускоренно с ускорением ​ \( g \) ​, которое направлено вертикально вниз. В этом случае, в отличие от свободного падения, скорость и ускорение движения направлены в противоположные стороны (рис. 26).


8. Уравнения зависимости от времени модуля скорости, пути и модуля перемещения тела, брошенного вертикально вверх с начальной скоростью ​ \( v_0 \) ​:​

\[ v=v_0-gt; l=v_0t-gt^2/2; s=v_0t-gt^2/2 \]

​Записанная формула зависимости пути от времени может быть использована только при движении тела в одну сторону (в данном случае вверх).

Уравнения зависимости от времени проекции скорости и координаты тела, брошенного вертикально вверх с начальной скоростью ​ \( v_0 \) ​ (ось Y направлена вертикально вверх): ​ \( v_y=v_+g_yt;y=y_0+v_t+g_yt^2/2 \) ​. Если тело брошено из начала координат, то ​ \( y_0=0 \) ​ и ​ \( y=v_0t-gt^2/2,v_y=v_0-gt \) ​.

9. График зависимости модуля скорости от времени при движении тела вертикально вверх приведён на рисунке (рис. 27).


ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Свободное падение — это

1) любое движение тела в безвоздушном пространстве
2) движение тела вертикально вверх в безвоздушном пространстве
3) падение тела в безвоздушном пространстве
4) падение тела в как безвоздушном пространстве, так и в воздухе

2. В трубке, из которой откачали воздух, одновременно с одной высоты начали падать три шарика: пенопластовый, пластилиновый и железный. Какой из шариков раньше коснется дна трубки?

1) пенопластовый
2) пластилиновый
3) железный
4) все шарики коснутся дна одновременно

3. Значение ускорения свободного падения зависит от

А. Массы тела.
Б. Широты местности.

Верными являются ответы:

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

4. Мяч падает с одинаковой высоты на поверхность Земли из состояния покоя на экваторе и на широте Москвы. В отсутствие сопротивления воздуха время падения мяча на экваторе

1) равно времени его падения на широте Москвы
2) больше времени его падения на широте Москвы
3) меньше времени его падения на широте Москвы
4) ответ может быть любым в зависимости от объёма

5. Мяч падает с одинаковой высоты на поверхность Земли из состояния покоя на экваторе и на широте Москвы. В отсутствие сопротивления воздуха скорость мяча у поверхности Земли на экваторе

1) равна его скорости на широте Москвы
2) больше его скорости на широте Москвы
3) меньше его скорости на широте Москвы
4) ответ может быть любым в зависимости от объёма

6. По какой формуле рассчитывается модуль скорости тела, брошенного вертикально вверх с поверхности Земли

1) ​ \( v=v_0+gt \) ​
2) \( v=v_0-gt \)
3) \( v=v_0+gt/2 \)
4) \( v=gt \)

7. Какой из приведённых ниже графиков является графиком зависимости модуля скорости от времени свободного падения тела?


8. Какой из приведённых ниже графиков является графиком зависимости от времени проекции скорости тела, брошенного вертикально вверх, достигшего верхней точки и затем упавшего на Землю?


9. Чему равен модуль скорости свободно падающего тела через 4 с после начала падения?

1) 0,4 м/с
2) 4 м/с
3) 40 м/с
4) 160 м/с

10. На какую высоту поднимется тело, брошенное вверх со скоростью 20 м/с?

1) 20 м
2) 10 м
3) 2 м
4) 1 м

11. Тело, брошенное вертикально вверх, долетело до верхней точки и начало падать вниз. Установите соответствие между величиной, приведенной в левом столбце, и характером её изменения, приведенном в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) модуль перемещения
Б) путь
B) координата относительно поверхности Земли

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. Два тела одновременно начали свободно падать в одном и том же месте Земли: одно с высоты ​ \( h_1 \) ​, другое — с высоты ​ \( h_2 \) ​. При этом ​ \( h_1​ . Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблице.

1) ускорение движения первого тела больше ускорения движения второго тела
2) ускорение движения первого тела равно ускорению движения второго тела
3) скорость падения на Землю второго тела равна скорости падения на Землю первого тела
4) скорость падения на Землю второго тела больше скорости падения на Землю первого тела
5) тела упадут на Землю одновременно

Часть 2

13. Определите время и координату места встречи двух тел, одно из которых надает на землю с высоты 100 м, а другое тело брошено с поверхности Земли вертикально вверх со скоростью 25 м/с.

Свободное падение тел.

Свободным падением называют падение тел в безвоздушном пространстве (вакууме) из состояния покоя (т. е. без начальной скорости) под действием притяжения Земли.

Падение тел является свободным лишь в том случае, когда на падающее тело действует только сила тяжести. Падение тел в воздухе можно приближенно считать свободным лишь при условии, что сопротивление воздуха мало и им можно пренебречь.

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ускорением.

В вакууме все тела независимо от их масс падают с одинаковым ускорением.

Ускорение свободного падения


При свободном падении все тела вблизи поверхности Земли независимо от их массы приобретают одинаковое ускорение, называемое ускорением свободного падения.

Вблизи поверхности Земли величина силы тяжести считается постоянной , поэтому свободное падение тела - это движение тела под действием постоянной силы. Следовательно, свободное падение - это равноускоренное движение.

В этом случае вместо ускорения а, в формулы для равноускоренного движения вводится ускорение свободного падения g =9,8м/с2.

В условиях идеального падения падающие с одинаковой высоты тела достигают поверхности Земли, обладая одинаковыми скоростями и затрачивая на падение одинаковое время.

При идеальном свободном падении тело возвращается на Землю со скоростью, величина которой равна модулю начальной скорости.

Время падения тела равно времени движения вверх от момента броска до полной остановки в наивысшей точке полета.

Только на полюсах Земли тела падают строго по вертикали. Во всех остальных точках планеты траектория свободно падающего тела отклоняется к востоку за счет силы Кариолиса, возникающей во вращающихся системах (т.е. сказывается влияние вращения Земли вокруг своей оси).

Движение с постоянным ускорением свободного падения

Движение с постоянным ускорением может быть как прямолинейным, так и криволинейным. Когда начальная скорость точки равна нулю или же направлена вдоль той же прямой, что и ускорение, то точка движется прямолинейно вдоль этой прямой. Если начальная скорость и ускорение не направлены по одной прямой, точка движется криволинейно.

Одним из больших разделов физики является кинематика. Она выясняет способы перемещения предметов без установления причин, их вызвавших. Если при движении сверху вниз объект не встречает сопротивление воздуха, говорят, что происходит свободное падение тела. При этом ещё в XVI веке было установлено, что какой бы предмет ни опускался, ускорение будет одно и то же, причём — равноускоренным.

Скорость свободного падения

Общие сведения

Основоположником создания учения о движении стал Аристотель. Он утверждал, что скорость падения тела зависит от его веса. Значит, тяжёлый предмет сможет долететь до Земли быстрее, чем лёгкий. Если же на объект не будут воздействовать какие-либо силы, его движение невозможно.

Галилео галилей

За дату рождения кинематики как науки можно принять 20 января 1700 года. В это время проходило заседание Академии наук, на котором Пьер Вариньона не только дал определения понятиям скорость, ускорение, но и описал их в дифференциальном виде. Уже после Ампер использовал для изучения процессов вариационное исчисление. Наглядные опыты провёл Лейбниц, а потом. профессор МГУ Н. А. Любимов смог продемонстрировать появление невесомости при свободном падении.

Под невесомостью понимают состояние тела, при котором силы взаимодействия с опорой, существующие из-за гравитационного притяжения, не оказывают никакого влияния. Такое положение имеет место, когда воздействующие на тело внешние силы можно охарактеризовать массовостью, например, тяготения.

Свободное падение тел

В этом случае силы поля сообщают всем частицам предмета в любом из его положений равные по модулю и направлению ускорения, либо при движении возникают одинаковые по модулю скорости всех частиц тела. Например, поступательное движение. Состояние невесомости особо ярко проявляется в начальный момент при падении тела в атмосфере. Это связано с тем, что сопротивление воздуха ещё невелико.

Таким образом, для существования свободного падения нужно выполнение как минимум двух условий:

  • малость или отсутствие сопротивления среды;
  • действие лишь одной силы тяжести.

Что интересно, движение вверх тоже считается свободным падением, несмотря на обратное интуитивное восприятие, поэтому траектория движения может иметь форму как участка параболы, так и отрезка прямой. Например, камень, брошенный с небольшой высоты или поверхности под любым углом.

Опыт Галилея

Падение относится к реальному движению. Любое взаимодействие с Землёй приводит к изменению скорости из-за чего возникает ускорение. В 1553 году итальянец Джованни Бенедетти заявил, что 2 тела с разной массой, но одинаковой формы, брошенные в одной среде за одинаковое время пролетят равные расстояния. Это утверждение нуждалось в доказательстве, так как противоречило общепринятому на тот момент времени пониманию процессов. В частности, высказываниям Аристотеля.

Галилео галилей опыты

Одним из экспериментаторов стал Галилей. Для проведения опыта учёному понадобилось:

Свободное падение

В своих работах Галилей рассуждал, что если связать верёвкой 2 тела разной тяжести, то с большим весом, по мнению Аристотеля, предмет будет лететь быстрее. Причём лёгкий объект начнёт замедлять падение тяжёлого. Но так как система в целом тяжелее, чем отдельно взятые тела, падать она должна быстрее самого тяжёлого тела. Другими словами, возникает противоречие, значит, предположение о влиянии веса на скорость падения неверно.

Сегодня эксперимент, подтверждающий доводы Галилея, может провести самостоятельно, пожалуй, каждый интересующийся. Такой опыт часто демонстрируют в средних классах общеобразовательной школы. Для этого нужно взять 2 трубки, длиной более метра и поместить в них 2 шарика разной массы. Затем создать внутри вакуум и одновременно их перевернуть. Если все условия соблюдены верно, то 2 тела опустятся на дно ёмкостей одновременно.

Если же опыт повторить не в вакууме, на шары будет действовать сила сопротивления, поэтому время падения уже не будет совпадать. Причём зависеть оно будет от формы предмета и его плотности.

Закон ускорения

Формула для свободного падения была выведена из выражения, определяющего силу тяжести: F = m * g. В соответствии с законом, падение предметов выполняется с одним и тем же ускорением вне зависимости от массы тела. По сути, это частный случай равноускоренного движения, обусловленное силой тяжести.

Для количественного анализа нужно ввести систему координат, взяв начало у поверхности Земли. Тогда можно рассмотреть падение тела массой m с высоты y0. Причём вращением планеты и сопротивлением воздушной среды нужно пренебречь.

Ускорение свободного падения формула

Дифференциальное уравнение будет иметь вид: my = - mg, где: g — ускорение свободного падения. Само же дифференцирование выполняется по времени. При заданных начальных условиях y = y0 и беря во внимание проекцию скорости на вертикальную ось после интегрирования, зависимость переменных от t примет вид:

Из полученных формул становится понятно, почему свободное падение не зависит от массы тела. При этом если начальная скорость будет равна нулю, то есть при падении предмету не сообщается импульс, текущее движение пропорционально времени, а пройденный путь определяется его квадратом.

Как показали эксперименты, если сопротивления воздуха нет, ускорение для любых летящих предметов по отношению к Земле составит 9,8 м / с 2 . Формулы, которые используются при расчёте величин, совпадают с выражениями, справедливыми для любого равноускоренного движения. Например, если тело падает без начальной скорости, его скорость можно найти по формуле: V 2 = g * t, а высоту падения определить так: h = (gt 2 / 2).

Свободное падение формула

Следует отметить, что при удалении предмета от Земли значение свободного движения уменьшается. Причём из-за формы планеты на экваторе оно будет составлять 9,78 м / с 2 , а с противоположной стороны — 9,832 м / с 2 . Чтобы определить значение в любом месте, используют нитяной маятник. Его период колебаний определяется по формуле: T = 2p√(l / g), где l — длина нити.

Значения силы тяжести также зависит от строения земной коры и содержащихся в недрах полезных ископаемых. С учётом этого рассчитываются гравитационные аномалии: Δg = g — gср. Например, если g > gcp, то с большой вероятностью в земле содержатся залежи железной руды, в ином случае — нефти или газа.

Решение задач

Свободно двигаться, то есть не испытывать действие сторонних сил, могут любые тела в вакууме. Но в реальности на них оказывается воздействие как атмосферными явлениями, так и сопротивлением среды. При решении задач учитывается только сила тяжести, а вот остальными явлениями пренебрегают, считая их ничтожно малыми.

Вот некоторые из типовых задач, используемые при обучении в среднеобразовательных школах:

Свободное падение задача

    Деревянная бочка падает с 30 метров. Какова будет её скорость перед столкновением с Землёй? Так как рассматривается свободное падение, для решения нужно использовать формулу: v 2 = 2 * g * h. Отсюда, v = √(2 * g * h) = (2 * 9,81 м / с 2 * 30 м) = 24,26 м/с.

Тело вылетает вертикально вверх со скоростью 45 м/с. Какой высоты оно достигнет перед изменением направления полёта и сколько для этого понадобится времени. Для начала следует записать формулу скорости: v = v0 — gt. Отсюда можно рассчитать время полёта: t = v0 / g = 45 / 9,8 = 4,6 c. Теперь можно определить максимальную высоту: h = vot — (gt 2 / 2) = 45 м / с * 4,6 с — 9,8 м / с 2 * (4,6 c) 2 / 2 = 207 м — 103,7 м = 103,3 м.

Камень летит со скоростью 30 м/с. Найти время, за которое он достигнет 25 метров. Система уравнений, описывающая движение, будет выглядеть так: h = v0t — (gt 2 / 2); 25 = 30t — 5t 2 . Полученные уравнения в системе называются квадратными, поэтому нужно выразить одно из другого и определить корни: t 2 — 6t + 5 = 0. В результате должно получиться время, равное одной секунде.

Рассмотренные задания довольно простые. Но есть и повышенной сложности, требующие не только знания формул, но и умения выполнять анализ. Вот одно из таких.

Мяч бросили с горки под углом к горизонту. Через время, равное t = 0,5 c он достигнет наибольшей высоты, а t2 = 2,5 он упадёт. Определить высоту горки, ускорение падения принять равное g = 10 м / с 2 . Скорость движущегося предмета можно представить в координатной плоскости x и y. В горизонтальном направлении сил, оказывающих воздействие, нет. Движение равномерное. Наибольшая высота будет достигнута при h = H + v0y * t1 — (gt 2 1 / 2).

Вертикальную составляющую можно вычислить, руководствуясь геометрическими принципами: v0y = v0 * sin (a). Учитывая, что h = (gt 2 / 2), для высоты горки можно записать: H = (g * (t 2 1 + t 2 2) / 2) — t1 * v0 sin (a). Так как gt1 = v0 sin (a), то рабочая формула примет вид: H = (g * (t 2 1 + t 2 2) / 2) — gt 2 1. После подстановки данных в ответе должна получиться высота равная 30 метров. Задача решена.

Читайте также: