Почему сопротивление сплавов больше чем чистых металлов кратко

Обновлено: 04.07.2024

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

Читать также: Фото лесоруба с бензопилой

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.


Какое сопротивление меди и алюминия

Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.

Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.

В электротехнике значение имеют 2 термина:

  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
  • Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.

Вам это будет интересно Особенности мощности постоянного тока



Алюминиевые кабели востребованы не меньше медных

Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект. Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов
Чистые металлы 104 ρ (ом·см) Чистые металлы 104 ρ (ом·см)
Серебро 0,016 Хром 0,131
Медь 0,017 Тантал 0,146
Золото 0,023 Бронза 1) 0,18
Алюминий 0,029 Торий 0,18
Дюралюминий 0,0335 Свинец 0,208
Магний 0,044 Платинит 2) 0,45
Кальций 0,046 Сурьма 0,405
Натрий 0,047 Аргентан 0,42
Марганец 0,05 Никелин 0,33
Иридий 0,063 Манганин 0,43
Вольфрам 0,053 Константан 0,49
Молибден 0,054 Сплав Вуда 3) 0,52 (0°)
Родий 0,047 Осмий 0,602
Цинк 0,061 Сплав Розе 4) 0,64 (0°)
Калий 0,066 Хромель 0,70-1,10
Никель 0,070
Кадмий 0,076 Инвар 0,81
Латунь 0,08 Ртуть 0,958
Кобальт 0,097 Нихром 5) 1,10
Железо 0,10 Висмут 1,19
Палладий 0,107 Фехраль 6) 1,20
Платина 0,110 Графит 8,0
Олово 0,113
Таблица удельное сопротивление изоляторов
Изоляторы ρ (ом·см) Изоляторы ρ (ом·см)
Асбест 108 Слюда 1015
Шифер 108 Миканит 1015
Дерево сухое 1010 Фарфор 2·1015
Мрамор 1010 Сургуч 5·1015
Целлулоид 2·1010 Шеллак 1016
Бакелит 1011 Канифоль 1016
Гетинакс 5·1011 Кварц _|_ оси 3·1016
Алмаз 1012 Сера 1017
Стекло натр 1012 Полистирол 1017
Стекло пирекс 2·1014 Эбонит 1018
Кварц || оси 1014 Парафин 3·1018
Кварц плавленый 2·1014 Янтарь 1019

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Чистые металлы t (°С) Удельное сопротивление, 104 ρ (ом·см)
Висмут -200 0,348
Золото -262,8 0,00018
Железо -252,7 0,00011
Медь -258,6 0,00014 1
Платина -265 0,0010
Ртуть -183,5 0,0697
Свинец -252,9 0,0059
Серебро -258,6 0,00009
Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы Т (°К) RT/R0
Алюминий 77,7 1,008
20,4 0,0075
Висмут 77,8 0,3255
20,4 0,0810
Вольфрам 78,2 0,1478
20,4 0,0317
Железо 78,2 0,0741
20,4 0,0076
Золото 78,8 0,2189
20,4 0,0060
Медь 81,6 0,1440
20,4 0,0008
Молибден 77,8 0,1370
20,4 0,0448
Никель 78,8 0,0919
20,4 0,0066
Олово 79,0 0,2098
20,4 0,0116
Платина 91,4 0,2500
20,4 0,0061
Ртуть 90,1 0,2851
20,4 0,4900
Свинец 73,1 0,2321
20,5 0,0301
Серебро 78,8 0,1974
20,4 0,0100
Сурьма 77,7 0,2041
20,4 0,0319
Хром 80,0 0,1340
20,6 0,0533
Цинк 83,7 0,2351
20,4 0,0087

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

c (%) NH4Cl NaCl ZnSO4 CuSO4 КОН NaOH H2SO4
5 10,9 14,9 52,4 52,9 5,8 5,1 4,8
10 5,6 8,3 31,2 31,3 3,2 3,2 2,6
15 3,9 6,1 24,1 23,8 2,4 2,9 1,8
20 3,0 5,1 21,3 2,0 3,0 1,5
25 2,5 4,7 20,8 1,9 3,7 1,4

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.

Состав и структура железа

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Электрические свойства металлов характеризуются электропроводностью и обратным ей свойством – электрическим сопротивлением. Хорошей электропроводностью и соответственно невысоким электрическим сопротивлением обладает серебро, медь, алюминий. Наименьшую величину электрического сопротивления среди технических металлов имеет медь (1,67·10 -4 Ом · м). У алюминия оно в 1,6, а у железа в 5,8 раза больше. Электропроводность и температурный коэффициент электросопротивления у твердых растворов ниже, чем у чистых металлов

Из электрических свойств основными считают удельную электропроводность или обратную ей величину – удельное сопротивление r (Ом×м) и температурный коэффициент удельного сопротивления ТКr

Наряду с чистыми металлами, на практике часто используют металлические сплавы. Получение сплава можно в некоторой степени считать введением примеси в металл, при котором концентрация атомов примеси соизмеряется с концентрацией основного вещества. При этом теряется смысл в разделении вещества на примесь и основу. Удельное сопротивление сплава должно быть всегда больше, чем удельное сопротивление отдельных компонент, так как происходит взаимообусловленное нарушение периодичности кристаллических структур. В отличие от чистых металлов, остаточная составляющая удельного сопротивления сплава может во много раз температуронезависимую составляющую.

Для простоты рассмотрим сплавы, содержащие два компонента А и В. для сплавов типа физического раствора температуронезависимая остаточная составляющая достаточно хорошо описывается параболической зависимостью Нортгейма:


где ХА и ХВ – атомные доли компонентов А и В в сплаве; С – константа, зависящая от природы сплава.

Сплавы имеют значительно более высокие значения удельного сопротивления, чем чистые металлы. С другой стороны, сплавы термостабильнее чистых металлов, то есть, их ТКr существенно ниже. Оба этих свойства можно использовать для изготовления резисторов – проволочных и плёночных.

вопрос 56. Расчет теплообмена при турбулентном течении в пограничном слое: аналогия Рейнольдса

Аналогия Рейнольдса — аналогия между переносом тепла и трением.

Рассмотрим уравнения движения и теплопереноса (при условии, что пользуемся приближением пограничного слоя и отсутствует градиент давления):



Обезразмерим их соответственно множителями и , где l — характерный размер задачи:



Решив эти уравнения, получим выражения для нарастания динамического и теплового пограничных слоёв:



Отсюда следует, что


Применительно к газам это соотношение указывает на отсутствие большой разницы между толщиной теплового и динамического пограничных слоёв. Полученные соотношения иногда также называют аналогией Рейнольдса, однако, их стоит рассмотреть глубже. Запишем безразмерный коэффициент трения в следующем виде:



где — местное касательное напряжение на стенке. Сопоставляя это соотношение с соотношениями для числа Нуссельта, получаем


Это выражение и есть суть аналогии Рейнольдса.

В инженерной практике вместо числа Нуссельта часто используется число Стантона, величина которого также пропорциональна коэффициенту теплопередачи. Пользуясь теми же соотношениями, можно получить, что


Таким образом, можно сделать вывод о том, что без трения нет теплообмена. Для пластины поток тепла можно выразить следующей формулой:


С ростом потока массы пропорционально возрастает величина теплового потока, однако сопротивление трения повышается пропорционально квадрату скорости, т. е. при такой интенсификации теплообмена его эффективность по отношению к гидравлическим потерям понижается.





Возрастает величина теплового потока при повышении плотности и теплоёмкости. Для реализации этого воздействия можно использовать вещества с высоким значением произведения (вода, жидкие металлы), а также повышать давление газовой среды.

Наиболее распространенным способом интенсификации теплообмена является повышение коэффициента трения или общего гидравлического сопротивления теплообменного устройства. Для этого на поверхности, на которой происходит теплообмен, выполняются неровности и выступы.

вопрос 57. Электрический ток. Характеристики тока. Уравнение непрерывности. Законы стационарного тока: Закон Ома, Джоуля-Ленца.

Электрическим током называется упорядоченное движение заряженных частиц, в процессе которого происходит перенос электрического заряда.

Электрические свойства металлов характеризуются электропроводностью и обратным ей свойством – электрическим сопротивлением. Хорошей электропроводностью и соответственно невысоким электрическим сопротивлением обладает серебро, медь, алюминий. Наименьшую величину электрического сопротивления среди технических металлов имеет медь (1,67·10 -4 Ом · м). У алюминия оно в 1,6, а у железа в 5,8 раза больше. Электропроводность и температурный коэффициент электросопротивления у твердых растворов ниже, чем у чистых металлов

Из электрических свойств основными считают удельную электропроводность или обратную ей величину – удельное сопротивление r (Ом×м) и температурный коэффициент удельного сопротивления ТКr

Наряду с чистыми металлами, на практике часто используют металлические сплавы. Получение сплава можно в некоторой степени считать введением примеси в металл, при котором концентрация атомов примеси соизмеряется с концентрацией основного вещества. При этом теряется смысл в разделении вещества на примесь и основу. Удельное сопротивление сплава должно быть всегда больше, чем удельное сопротивление отдельных компонент, так как происходит взаимообусловленное нарушение периодичности кристаллических структур. В отличие от чистых металлов, остаточная составляющая удельного сопротивления сплава может во много раз температуронезависимую составляющую.

Для простоты рассмотрим сплавы, содержащие два компонента А и В. для сплавов типа физического раствора температуронезависимая остаточная составляющая достаточно хорошо описывается параболической зависимостью Нортгейма:


где ХА и ХВ – атомные доли компонентов А и В в сплаве; С – константа, зависящая от природы сплава.

Сплавы имеют значительно более высокие значения удельного сопротивления, чем чистые металлы. С другой стороны, сплавы термостабильнее чистых металлов, то есть, их ТКr существенно ниже. Оба этих свойства можно использовать для изготовления резисторов – проволочных и плёночных.

вопрос 56. Расчет теплообмена при турбулентном течении в пограничном слое: аналогия Рейнольдса

Аналогия Рейнольдса — аналогия между переносом тепла и трением.

Рассмотрим уравнения движения и теплопереноса (при условии, что пользуемся приближением пограничного слоя и отсутствует градиент давления):



Обезразмерим их соответственно множителями и , где l — характерный размер задачи:



Решив эти уравнения, получим выражения для нарастания динамического и теплового пограничных слоёв:



Отсюда следует, что


Применительно к газам это соотношение указывает на отсутствие большой разницы между толщиной теплового и динамического пограничных слоёв. Полученные соотношения иногда также называют аналогией Рейнольдса, однако, их стоит рассмотреть глубже. Запишем безразмерный коэффициент трения в следующем виде:



где — местное касательное напряжение на стенке. Сопоставляя это соотношение с соотношениями для числа Нуссельта, получаем


Это выражение и есть суть аналогии Рейнольдса.

В инженерной практике вместо числа Нуссельта часто используется число Стантона, величина которого также пропорциональна коэффициенту теплопередачи. Пользуясь теми же соотношениями, можно получить, что


Таким образом, можно сделать вывод о том, что без трения нет теплообмена. Для пластины поток тепла можно выразить следующей формулой:


С ростом потока массы пропорционально возрастает величина теплового потока, однако сопротивление трения повышается пропорционально квадрату скорости, т. е. при такой интенсификации теплообмена его эффективность по отношению к гидравлическим потерям понижается.


Возрастает величина теплового потока при повышении плотности и теплоёмкости. Для реализации этого воздействия можно использовать вещества с высоким значением произведения (вода, жидкие металлы), а также повышать давление газовой среды.

Наиболее распространенным способом интенсификации теплообмена является повышение коэффициента трения или общего гидравлического сопротивления теплообменного устройства. Для этого на поверхности, на которой происходит теплообмен, выполняются неровности и выступы.

вопрос 57. Электрический ток. Характеристики тока. Уравнение непрерывности. Законы стационарного тока: Закон Ома, Джоуля-Ленца.

Электрическим током называется упорядоченное движение заряженных частиц, в процессе которого происходит перенос электрического заряда.

По той же причине, по которой у сплава темп плавления всегда ниже чем темп плавления любого компонента - спав - сложный твердый раствор.. . электронам сложнее бегать!

Удельное сопротивление зависит от параметров кристаллической решетки (от силы связей, расстояния между узлами, формы решетки, количества свободных зарядов) . Ну а раз у каждого материала своя решетка, значит и удельное сопротивление будет разное.

Наряду с чистыми металлами, на практике часто используют металлические сплавы. Получение сплава можно в некоторой степени считать введением примеси в металл, при котором концентрация атомов примеси соизмеряется с концентрацией основного вещества. При этом теряется смысл в разделении вещества на примесь и основу. Из изложенного выше, нетрудно догадаться, что удельное сопротивление сплава должно быть всегда больше, чем удельное сопротивление отдельных компонент, так как происходит взаимообусловленное нарушение периодичности кристаллических структур. В отличие от чистых металлов, остаточная составляющая удельного сопротивления сплава может во много раз температуронезависимую составляющую.

Чистый металл имеет регулярную структуру - кристаллическую решётку. Сплав состоит из смеси разных кристаллических решёток и регулярность структуры нарушена. Вот и получается больше помех для электронов.

Цели работы: измерение сопротивлений объемных и тонкопленочных резисторов; исследование зависимостей удельных электрических сопротивлений и их температурных коэффициентов от температуры и состава резистивных материалов, а также зависимостей термоЭДС термопар от разностей температур контактов.
1.1. Основные понятия и определения

К основным электрическим характеристикам проводниковых материалов относят удельное сопротивление ρ и температурный коэффициент удельного сопротивления αρ.

Наилучшими проводниками электрического тока являются металлы, механизм протекания тока в которых заключается в коллективном движении свободных электронов под действием приложенного электрического поля.

Интенсивность рассеяния определяет среднюю длину свободного пробега электрона и, в конечном счете, значение удельного сопротивления проводника, которое может быть выражено следующим образом:


где m – масса электрона; u – средняя скорость теплового движения; e – заряд электрона; n0 – концентрация свободных электронов; λ – средняя длина свободного пробега.

Относительное изменение удельного сопротивления при изменении температуры на один кельвин называют температурным коэффициентом удельного сопротивления:


Для многих двухкомпонентных сплавов значение остаточного сопротивления от состава хорошо описывается параболической зависимостью


где xA, xB - атомные доли компонента в сплаве.

В микроэлектронике широко применяются в качестве различных элементов схем тонкие металлические пленки. Для сравнительной оценки проводящих свойств пленки пользуются сопротивлением квадрата поверхности R0 = /d, где  - удельное сопротивление слоя толщиной d.

Термоэлемент, составленный из двух различных проводников, образующих замкнутую цепь, называют термопарой. Если цепь разорвать в произвольном месте, то на концах разомкнутой цепи появятся термоэлектродвижущая сила. В относительно небольшом температурном интервале термоЭДС пропорциональна разности температур контактов:
U = T (t2 - t1).
Описание установки

Измерение сопротивления исследуемых проводников и термоЭДС термопар производится с помощью мультиметра, постоянно подключенного к испытательному стенду. Все исследуемые образцы расположены в корпусе стенда; резисторы R1, R2, R3 и один из спаев каждой из трех термопар помещены в общий термостат. Подключение образцов к измерительному прибору осуществляется нажатием соответствующей контактной кнопки на лицевой панели стенда. Маркировка кнопок соответствует маркировке образцов.

Обработка результатов.
1.Расчет удельного сопротивления металлических проводников

где R - сопротивление образца; S - площадь поперечного сечения; l - длина проводника.

где R - сопротивление образца; b - ширина резистивного слоя; L - длина пленки.

Где R и l - температурные коэффициенты сопротивления и линейного расширения

Значение производной dR/dt найти путем графического дифференцирования зависимости R(t) с помощью функции ЛИНЕЙН.
Медь

График зависимости температурного коэффициента удельного сопротивления исследуемых материалов от температуры:

6. Расчет удельного сопротивления сплавов Cu-Ni

где xNi - содержание никеля в сплаве в относительных долях по массе.

Коэффициент С находят путем подстановки значения удельного сопротивления константана и соответствующего ему содержания никеля

Вывод: на основании результатов проделанных мной экспериментов я рассчитал удельные сопротивления группы металлов (см. таблицу в п.1), полученные мной величины приблизительно равны табличным, что говорит о верности моих расчетов и правильности проведения экспериментов.

При рассмотрении графиков п. 2-4 видно, что сопротивление меди и никеля растет вместе с температурой линейно. Это вызвано увеличением тепловых колебаний узлов кристаллической решетки. Константан является медно-никелевым сплавом (Cu около 59%, Ni 39-41%, Mn 1-2%), а для сплавов этого типа изменение проводимости дополнительно обуславливается возрастанием концентрации носителей заряда при повышении температуры.

Контрольные вопросы

1. Почему металлы обладают высокой электрической проводимостью?

Потому что их электроны, которые находятся на последнем уровне очень слабо связаны с атомо. Они свободно могут перемещаться по всему объёму металла.

2. Чем обусловлено возрастание удельного сопротивления металлов при нагревании?

электронный газ в металлах находится в вырожденном состоянии.

Поэтому концентрация электронов и их средняя энергия практически не зависят от температуры, но с повышением температуры увеличивается амплитуда колебаний атомов в узлах кристаллической решетки, что приводит к более интенсивному рассеянию электронов в процессе их направленного движения. Соответственно уменьшается средняя длина свободного пробега и возрастает удельное сопротивление.

3. Почему удельное сопротивление металлических сплавов типа твердых растворов выше, чем у чистых металлов, являющихся компонентами сплава?

Чистые отожженные металлы имеют менее деформированную кристаллическую решетку, поэтому для них характерны большие значения λ и, следовательно, малая величина ρ

4. Почему металлические сплавы обладают меньшим температурным

коэффициентом удельного сопротивления, чем чистые металлы?

температурный коэффициент удельного сопротивления обратно зависит от удельного сопротивления металла или сплава. Т.к. металлические сплавы обладают большим удельным сопротивлением по сравнению с чистым металлом (см. вопрос 3), то, соответственно, их температурный коэффициент удельного сопротивления будет меньшим, чем в случае чистого металла

5. При каких условиях возникает термоэлектродвижущая сила?

При наличии разности температур спаев в цепи с термоэлемен­том появляется термоэлектродвижущая сила (термо-ЭДС), кото­рая состоит из трех составляющих.

Первая составляющая термо-ЭДС обусловлена диффузией носителей заряда от нагретого спая к тепловыделяющему спаю.

Вторая составляющая термо-ЭДС – это следствие темпера­турной зависимости контактной разности потенциалов. Если оба спая термоэлемента имеют одну и ту же температуру, то контакт­ные разности потенциалов на этих спаях равны, направлены в противоположные стороны и не дают результирующей ЭДС. Если же температуры спаев термоэлемента различны, то значения контактной разности потен­циалов на спаях будут также различны. Тогда в цепи термоэлемента появляется вторая составляющая термо-ЭДС с той же полярностью, что и первая составляющая.

Удельное сопротивление сплавов определяется в основном наличием примесей и нарушением структуры входящих в них металлов. При этом атомы одного металла входят в кристаллическую решетку другого. На рис. 4.2 представлена зависимость удельного сопротивления сплава двух металлов, образующих друг с другом твердый раствор. Эта зависимость наглядно иллюстрирует отмеченные выше явления. [1]

Зависимость удельного сопротивления сплава двух металлов, образующих друг с другом твердый раствор, от изменения содержания каждого из них в пределах от нуля до 100 % представлена графически на фиг. Обычно при этом наблюдается определенная закономерность и для изменения ТКр: относительно высокими значениями температурного коэффициента удельного сопротивления обладают чистые металлы, а у сплавов ТКр меньше и даже может достигать небольших отрицательных значений ( фиг. [2]

Увеличение содержания марганца повышает удельное сопротивление сплава , но резко ухудшает его механические свойства. Использование выплавленного алюминия не рекомендуется: при повторном использовании резко снижается его пластичность. [3]

По сравнению с никелем удельное сопротивление сплава никеля с железом в три раза больше, что позволяет упростить конструкцию чувствительного элемента и повысить ее надежность. Характеристики этого сплава не одинаковы от партии к партии, в связи с чем необходимо применять индивидуальную градуировку. [5]

По оси ординат отложены величины, пропорциональные концентрации растворенного металла ( разница между удельным сопротивлением сплава и удельным сопротивлением чистого щелочного металла), по оси абсцисс - падение напряжения. По наклону прямой на логарифмическом графике определяют коэффициент электродиффузии К. [7]

Как уже указывалось, примеси н нарушения правильной структуры металлов увеличивают их удельное сопротивление. Зависимость удельного сопротивления сплава двух металлов, образующих друг с другом твердый раствор, от изменения содержания каждого из них в пределах от 0 до 100 % представлена на рнс. [9]

Зависимость удельного сопротивления от состава в твердых сплавах выражается двумя правилами. Правило Нордгейма гласит, что удельное сопротивление сплава должно быть приблизительно пропорционально произведению молярных долей двух компонентов; по правилу Линде скорость увеличения сопротивления с повышением концентрации в разбавленных сплавах должна быть пропорциональна квадрату разницы валентности компонентов. [10]

Сплавы хрома, алюминия и железа могут обладать высокой нагревостойкостью при повышенном содержании хрома ( до 65 %) и тщательном удалении из состава углерода. По мере увеличения содержания хрома растет удельное сопротивление сплава , однако волочение проволоки становится затруднительным. Так, из сплава, содержащего 20 % хрома, может прокатываться проволока диаметром не менее 0 3 мм, а из сплавов с содержанием 25 % Сг - проволока диаметром не менее 6 мм. Хромоалюминиевые сплавы выпускаются четырех типов. Однако механическая обработка большинства сплавов этого типа затруднена ввиду его хрупкости. Хромоалюминиевые сплавы применяются в основном для мощных нагревательных элементов. [11]

Третья особенность электропроводности металлов также связана с правилом Маттиссена. Эта особенность заключается в том, что удельное сопротивление сплава всегда выше, чем удельное сопротивление металлов, составляющих этот сплав. [13]

Для этого на массивный ротор из оптимального сплава СМ-19 был надет тонкий экран из магнитно-мягкой стали. Удельное электрическое сопротивление стали мало отличается от удельного сопротивления сплава , а цг стали примерно на порядок выше. Толщина экрана выбрана по глубине проникновения зубцовых гармоник первого порядка и равна йэ 0 8 мм. Для сравнения приведены добавочные потери, Вт, при базовом короткозамкнутом роторе и двухслойном роторе с массивным цилиндром из сплава СМ-19 и с медными торцевыми кольцами. [15]

Читайте также: