Почему с увеличением частоты индуктивное сопротивление увеличивается а емкостное уменьшается кратко

Обновлено: 04.07.2024

Эпос . В этническом произведении часто судьбы героев переплетаются с событиями национальной или мировой истории .

"Семь раз отмерь, один раз отрежь", заставляет обдумывать свои действия. Принимать более правильные и взвешанные решения. Смысл этой мудрости заключается в том, что прежде надо думать, а потом делать или не делать. К огда школьник решает на контрольной задачу (для более точного ответа следует несколько раз перерешать её, хорошо вдуматься, а не писать ответ с бухты барахты.

Ответ:

1.Желание в утолении жажды или чувства голода (для любых продуктов питания).

2.Желание в любое время добраться из пункта А в пункт Б (для автомобилей).

3.Желание устранить боль (для лекарственных препаратов).

4.Желания охладить воздух в жару (для кондиционеров).

5.Потребитель хочет приобрести:здоровье, уверенность, время, более лучший внешний вид, комфорт, отдых, удовольствие.

6.Потребитель хочет себя защитить от: дискомфорта, боли, рисков, беспокойства, смущения, сомнений.

7.Потребитель хочет сэкономить: время, деньги, нервы.

8.Потребитель хочет быть: эффективным, современным, успешным, влиятельным, признанным, услышанным, замеченным, отблагодаренным, частью конкурентной социальной группы.

9.Потребитель также хочет: выразить свою индивидуальность и совершенствовать ,улучшать себя.

10.Желание привязать себя к определённому профессиональному сообществу может служить мотивом к приобретению специализированных книг.

Емкостное и индуктивное сопротивление в цепи переменного тока

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он оказывает бесконечно большое сопротивление, поскольку постоянный ток просто не может пройти через диэлектрик между обкладками, так как диэлектрик по определению не проводит постоянный электрический ток.

Конденсатор разрывает цепь постоянного тока. Но если тот же конденсатор включить теперь в цепь переменного тока, то окажется, что ее конденсатор будто бы и не разрывает полностью, он просто попеременно заряжается и разряжается, то есть электрический заряд движется, и ток во внешней цепи поддерживается.

Опираясь на теорию Максвелла, в этом случае можно сказать, что переменный ток проводимости внутри конденсатора все же замыкается, только в данном случае - током смещения. Значит конденсатор в цепи переменного тока выступает неким сопротивлением конечной величины. Такое сопротивление называется емкостным.

Емкостное и индуктивное сопротивление в цепи переменного тока

Практика давно показала, что величина переменного тока, текущего через провод, зависит от формы этого провода и от магнитных свойств среды вокруг него. При прямом проводе ток будет наибольшим, а если этот же провод свернуть в катушку с большим количеством витков, то величина тока окажется меньше.

А если в ту же катушку еще и ввести ферромагнитный сердечник, то ток еще сильнее уменьшится. Следовательно проводник оказывает переменному току не только омическое (активное) сопротивление, но еще и некое дополнительное сопротивление, зависящее от индуктивности проводника. Данное сопротивление называется индуктивным.

Его физический смысл состоит в том, что изменяющийся ток в проводнике, обладающем некой индуктивностью, инициирует в этом проводнике ЭДС самоиндукции, стремящуюся препятствовать изменениям тока, то есть стремящуюся уменьшить ток. Это равносильно увеличению сопротивления проводника.

Емкостное сопротивление в цепи переменного тока

Емкостное сопротивление в цепи переменного тока

Для начала поговорим более подробно о емкостном сопротивлении. Допустим, что конденсатор емкостью С подключен к источнику синусоидального переменного тока, тогда ЭДС этого источника будет описываться следующей формулой:

ЭДС источника

Падением напряжения на соединительных проводах пренебрежем, так как оно обычно очень мало, а при необходимости его можно будет рассмотреть отдельно. Примем сейчас, что напряжение на обкладках конденсатора равно напряжению источника переменного тока. Тогда:

Напряжение на обкладках конденсатора

В любой момент времени заряд на конденсаторе зависит от его емкости и от напряжения между его обкладками. Тогда для данного известного источника, о котором говорилось выше, получим выражение для нахождения заряда на обкладках конденсатора через напряжение источника:

Заряд на обкладках конденсатора

Пусть за бесконечно малое время dt заряд на конденсаторе изменяется на величину dq, тогда по проводам от источника к конденсатору потечет ток I, равный:

Ток

Амплитудное значение тока окажется равно:

Амплитудное значение тока

Тогда окончательное выражение для тока будет иметь вид:

Ток

Перепишем формулу для амплитуды тока в следующем виде:

Амплитудное значение тока

Данное соотношение есть закон Ома, где величина обратная произведению угловой частоты на емкость играет роль сопротивления, и по сути являет собой выражение для нахождения емкостного сопротивления конденсатора в цепи синусоидального переменного тока:

Емкостное сопротивление конденсатора

Значит емкостное сопротивление обратно пропорционально угловой частоте тока и емкости конденсатора. Легко понять и физический смысл данной зависимости.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще изменяется направление тока в этой цепи, тем в конце концов больший суммарный заряд проходит за единицу времени через поперечное сечение проводов, соединяющих конденсатор с источником переменного тока. Значит ток пропорционален произведению емкости и угловой частоты.

Для примера выполним расчет емкостного сопротивления конденсатора электроемкостью 10 мкф для цепи синусоидального переменного тока с частотой 50 Гц:

Расчет емкостного сопротивления конденсатора

Если бы частота была 5000 Гц, то тот же самый конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока опережает фазу напряжения на пи/2 (90 градусов). А значит максимум тока во времени существует всегда на четверть периода раньше, чем максимум напряжения. Таким образом на емкостном сопротивлении ток опережает напряжение на четверть периода по времени или на 90 градусов по фазе.

Напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах

Давайте поясним физический смысл данного явления. В самый первый момент времени конденсатор полностью разряжен, поэтому самое малое приложенное к нему напряжение уже перемещает заряды на пластинах конденсатора, создавая ток.

По мере того как конденсатор заряжается, напряжение на его обкладках увеличивается, оно препятствует дальнейшему притоку заряда, поэтому ток в цепи уменьшается невзирая на дальнейший рост прикладываемого к обкладкам напряжения.

Значит, если в начальный момент времени ток был максимальным, то когда напряжение достигнет своего максимума через четверть периода, ток прекратится вовсе.

В начале периода ток максимален а напряжение минимально и начинает нарастать, но через четверть периода напряжение достигает максимума, но ток к этому моменту уже упал до нуля. Вот и получается опережение током напряжения на четверть периода.

Индуктивное сопротивление в цепи переменного тока

Индуктивное сопротивление в цепи переменного тока

Теперь вернемся к индуктивному сопротивлению. Допустим, что через катушку, обладающую индуктивностью, течет переменный синусоидальный ток. Его можно выразить так:

Ток

Ток обусловлен приложенным к катушке переменным напряжением. Значит на катушке возникнет ЭДС самоиндукции, которая выражается следующим образом:

ЭДС самоиндукции

Снова пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть приложенное к катушке переменное напряжение в каждый момент времени полностью уравновешивается возникающей ЭДС самоиндукции, равной ему по величине, но противоположной по направлению:

ЭДС

Тогда имеем право записать:

ЭДС

Поскольку амплитуда приложенного к катушке напряжения равна:

Амплитуда приложенного к катушке напряжения

ЭДС

Выразим максимальный ток следующим образом:

Ток

Это выражение по сути является законом Ома. Величина равная произведению индуктивности на угловую частоту играет здесь роль сопротивления, и представляет собой ни что иное, как индуктивное сопротивление катушки индуктивности:

Индуктивное сопротивление катушки индуктивности

Так, индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, через данную катушку пропускаемого.

Это объясняется тем, что индуктивное сопротивление обусловлено влиянием ЭДС самоиндукции на напряжение источника, - ЭДС самоиндукции стремится уменьшить ток, а значит сносит в цепь сопротивление. Величина ЭДС самоиндукции, как известно, пропорциональна индуктивности катушки и скорости изменения тока через нее.

Для примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, которая включена в цепь с частотой тока 50 Гц:

Расчет индуктивного сопротивления

Если бы частота бала 5000 Гц, то сопротивление этой же катушки оказалось бы равно приблизительно 31400 Ом. Напомним, что омическое сопротивление провода катушки составляет обычно единицы Ом.

Изменения тока через катушку и напряжения на ней, происходят в разных фазах

Из приведенных выше формул очевидно, что изменения тока через катушку и напряжения на ней, происходят в разных фазах, причем фаза тока всегда меньше чем фаза напряжения на пи/2. Следовательно максимум тока наступает на четверть периода позже наступления максимума напряжения.

На индуктивном сопротивлении ток отстает от напряжения на 90 градусов из-за тормозящего действия ЭДС самоиндукции, которая препятствует изменению тока (и нарастанию, и убыванию), вот почему максимум тока наблюдается в цепи с катушкой позднее максимума напряжения.

Совместное действие катушки и конденсатора

Если включить в цепь переменного тока последовательно катушку с конденсатором, то напряжение на катушке будет опережать напряжение на конденсаторе по времени на половину периода, то есть на 180 градусов по фазе.

Емкостное и индуктивное сопротивление называются реактивными сопротивлениями. На реактивном сопротивлении энергия не расходуется как на активном. Энергия накапливаемая в конденсаторе периодически возвращается обратно к источнику, когда электрическое поле в конденсаторе исчезает.

Так же и с катушкой: пока магнитное поле катушки создается током, энергия в ней на протяжении четверти периода накапливается, а в следующую четверть периода возвращается к источнику. В данной статье речь шла о синусоидальном переменном токе, для которого данные положения выполняются строго.

В цепях синусоидального переменного тока катушки индуктивности с сердечниками, называемые дросселями, традиционно используются для ограничения тока. Их преимущество перед реостатами в том, что энергия не рассеивается в огромном количестве в форме тепла.

Автор: Евгений Живоглядов.
Дата публикации: 31 марта 2015 .
Категория: Статьи.

Если в цепь постоянного тока включить конденсатор (идеальный – без потерь), то в течение короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, соответствующего напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи или бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. Если включить конденсатор к переменному напряжению сети, то в течение первой четверти периода, когда напряжение сети будет возрастать (рисунок 1), конденсатор будет заряжаться.

Рисунок 1. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимума, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле:


где q – количество электричества, протекающее по цепи.

Из электростатики известно:

где C – емкость конденсатора; u – напряжение сети; uC – напряжение на обкладках конденсатора.

Окончательно для тока имеем:


Из последнего выражения видно, что, когда максимально (положения а, в, д), i также максимально. Когда (положения б, г на рисунке 1), то i также равно нулю.


Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное. В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд. Из рисунка 1 видно, что ток в цепи с емкостью в своих изменениях опережает по фазе на 90° напряжение на обкладках конденсатора.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Поскольку мы отметили выше, что скорость изменения тока пропорциональна угловой частоте ω, из формулы


получаем аналогично, что скорость изменения напряжения также пропорциональна угловой частоте ω и для действующего значения тока имеем

Обозначая закона Ома, мы можем получить ток для цепи переменного тока, содержащей емкость:


Напряжение на обкладках конденсатора

Та часть напряжения сети, которая имеется на конденсаторе, называется емкостным падением напряжения, или реактивной слагающей напряжения, и обозначается UC.

Емкостное сопротивление xC, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 1. Определить емкостное реактивное сопротивление конденсатора емкостью 5 мкФ при разных частотах сетевого напряжения. Расчет емкостного сопротивления произведем при частоте 50 и 40 Гц:

при частоте 50 Гц:

активной мощности для рассматриваемой цепи:

Так как в цепи с емкостью ток опережает напряжение на 90°, то

Поэтому активная мощность также равна нулю, то есть в такой цепи, как и в цепи с индуктивностью, расхода мощности нет.

На рисунке 2 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.

Кривая мгновенной мощности в цепи с емкостью

Рисунок 2. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту прохождения напряжения на нем через максимум, можно определить по формуле:


В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без потерь.

Источник: Кузнецов М. И., "Основы электротехники" - 9-е издание, исправленное - Москва: Высшая школа, 1964 - 560 с.

Почему емкостное сопротивление уменьшается с увеличением частоты переменного тока, индуктивное сопротивление - увеличивается?


Потому, что емкостное это R = 1 / WC, а индуктивное R = WL, где W - частота переменного тока.


К амперметру на номинальный ток 5А, сопротивлением 0, 10 Ом подключения шунт, сопротивлением 0, 010Ом?

К амперметру на номинальный ток 5А, сопротивлением 0, 10 Ом подключения шунт, сопротивлением 0, 010Ом.

Каков верхний предел измерении амперметра с шкетом.


Определите общее сопротивление цепи?

Определите общее сопротивление цепи.


Ученые установили, что с увеличением влажности воздуха уменьшается возможность кожи испарять пот с поверхности тела человека?

Ученые установили, что с увеличением влажности воздуха уменьшается возможность кожи испарять пот с поверхности тела человека.

Однако если влажность воздуха уменьшается , то испарение пота увеличивается .

Объяснил , где человеку труднее переносить жару : в местах с влажным климатом или в местах с сухим климатом.


Преимущество электрической энергии переменного тока?

Преимущество электрической энергии переменного тока.


Объясните принцип действия генератора переменного тока?

Объясните принцип действия генератора переменного тока.


Определить напряжение на зажимах нагревательного прибора с сопротивлением R = 44 Ом, если сила тока в нем 1 = 5А помогите решить?

Определить напряжение на зажимах нагревательного прибора с сопротивлением R = 44 Ом, если сила тока в нем 1 = 5А помогите решить.


Мобилизация, насыщение, сопротивление, истощение?

Мобилизация, насыщение, сопротивление, истощение.


Перечислите основные системы переменного тока?

Перечислите основные системы переменного тока.


Определите эквивалентное сопротивление цепи и ток на каждом резисторе если R1 = R2 = R3 = 9 oM , R4 = 2 oM, U = 15B?

Определите эквивалентное сопротивление цепи и ток на каждом резисторе если R1 = R2 = R3 = 9 oM , R4 = 2 oM, U = 15B.


Электрическое сопротивление человеческого тела 3000 ом какой ток проходит через него если человек находится под напряжением 220в?

Электрическое сопротивление человеческого тела 3000 ом какой ток проходит через него если человек находится под напряжением 220в.

Читайте также: