Почему радиоволны могут огибать землю кратко

Обновлено: 05.07.2024

Электромагнитная волна – синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ. Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в длине волны. Электромагнитные волны, это по своей сути - направленный поток фотонов, которые способны переносить энергию (информацию) в пространстве со скоростью света. Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну.

Общие свойства радиоволн:

1) Дифракция - явление огибания препятствий. Наиболее сильно дифракция сказывается в случае, когда геометрические размеры препятствий соизмеримы с длиной волны.

2) Рефракция - явление искривления или преломления волн при распространении их в неоднородной среде.

3) Интерференция - явление взаимодействия (сложения) волн.

4) Отражение от токопроводящих поверхностей.


5) Поглощениесредой при распространении.
Дальность распространения электромагнитной волны зависит от ее частоты и мощности излучения. Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света 300 000 км/сек. В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света): f=c/ λ где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные "СДВ" – частотой 3 – 30 кГц, с длиной волны 100 - 10 км;
Длинные "ДВ" – частотой 30 – 300 кГц, с длиной волны 10 - 1 км;
Средние "СВ" – частотой 300 – 3000 кГц, с длиной волны 1000 - 100 метров;
Короткие "КВ" – частотой 3 – 30 МГц, с длиной волны 100 - 10 метров;
Ультракороткие "УКВ", включающие:
метровые "МВ" – частотой 30 – 300 МГц, с длиной волны 10 - 1 метра;
дециметровые "ДМВ" – частотой 300 – 3000 МГц, с длиной волны 10 - 1 дм;
сантиметровые "СМВ" – частотой 3 – 30 ГГц, с длиной волны 10 - 1 см;
миллиметровые "ММВ" – частотой 30 – 300 ГГц, с длиной волны 10 - 1 мм; субмиллиметровые"СММВ"– частотой300 – 6000 ГГц с длиной волны 1– 0,05мм;
Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами "СВЧ".

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).
Существует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее радиоволна распространяется.
Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.
Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.
Короткие волны распространяются "скачками", периодически отражаясь от ионосферы и земной поверхности, огибая земной шар.
Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна и они уходят в космическое пространство.
Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Для передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию - amplitude modulation, и обозначаются как - "АМ". Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит - frequency modulation, и обозначаются как - "FМ".

Ионосфера и ее свойства.

Под влиянием лучей Солнца, космических лучей и других факторов воздух ионизируется, т.е. часть атомов газов, входящих в состав воздуха, распадается на свободные электроны и положительные ионы. Ионизированный воздух оказывает сильное влияние на распространение радиоволн.

Для различных газов максимум ионизации получается на разной высоте. Ионизированный слой атмосферы - ионосфера- состоит из нескольких слоев .

На высоте 60. 80 км находится слой D, существующий только днем. Следующий слой Е располагается на высоте 90. 130 км. Еще выше находится слой F, имеющий ночью высоту 250. 350 км, а днем разделяющийся на два слоя: F1 - на высоте 180. 220 км и F2 - на высоте 220. 500 км.


Высота, толщина и проводимость ионизированных слоев различны в разное время суток и года вследствие изменения ионизирующего действия солнечных лучей. Чем больше ионизирующее действие солнечных лучей, тем больше проводимость и толщина ионизированных слоев и тем ниже они располагаются. Днем проводимость и толщина их больше, а высота над землей меньше, чем ночью. Летом проводимость и толщина ионосферных слоев больше, а высота меньше, чем зимой. Через каждые 11 лет на Солнце повторяется максимум солнечных пятен, являющихся мощными источниками ионизирующих излучений. В это время проводимость и толщина ионизированных слоев достигают максимума, и они располагаются ниже.

Системы внутренней и внешней связи.

На приборной доске пилотов между индикаторами PFD и MFD установлена цифровая аудиопанель Garmin GMA 1347. Она является неотъемлемой частью ком­плекса Garmin G 1000, связана с интегрированными блоками бортового радиоэлектронного оборудования GIA 63 по протоколу обмена цифровыми данными RS-232 и предназначен для:

- внешней симплексной, беспоисковой и бесподстроечной радиосвязи через две ОВЧ-радиостанции СОМ 1 и/или СОМ 2 и авиагарнитуры пилотов;

- повторного воспроизведения записываемой звуковой информации с выходов радио­станций СОМ 1или СОМ 2;

- для прослушивания опознавательных сигналов одного из наземных радиомаяков VOR, DME, NDB (приводных радиостанций) или курсового радиомаяка LOC системы по­садки ILS по выбору пилотов;

- прослушивания сигналов маркерных радиомаяков систем посадки или маршрутных маркерных радиомаяков (практически не используются) без выбора пилотов. Для большинства российских аэродромов пролёт дальнего маяка сопровождается звучанием прерывистого тона частотой 3000 Гц в виде серии двух тире в секунду, а пролёт ближнего - в виде серии шести точек в секунду;

- трансляции звуковых сигналов выбранных средств через кабинный громкоговори­тель с его приглушением на время включения микрофонов при ведении радиообмена;

- ручного включения режима совмещённой индикации пилотажной и другой важной информации на исправном дисплее в случае отказа одного из индикаторов PFD или MFD.


Кабинный громкоговоритель, а также микрофоны и головные телефоны авиагарнитур пилотов и двух пассажиров подключаются к аудиопанели. Громкоговоритель расположен на потолке кабины над пассажирскими креслами. Гнезда для подключения разъёмов четырёх авиагарнитур расположены на задней части центрального пульта между креслами пилотов.

На лицевой части аудиопанели расположены следующие органы управления:

- СОМ 1 MIC - клавиша для выбора радиостанции СОМ 1, через которую можно вести приём и передачу речевой информации от микрофона авиагарнитуры при нажатии кнопки РТТ на ручке управления одного из пилотов;

- СОМ 2 MIC - клавиша для выбора радиостанции СОМ 2, через которую можно вести приём и передачу речевой информации от микрофона авиагарнитуры при нажатии кнопки РТТ на ручке управления одного из пилотов;

- СОМ 3 MIC - клавиша не задействована;

- СОМ 3 - клавиша не задействована;

- TEL - клавиша не задействована;

- РА - клавиша для обращения к пассажирам при нажатии кнопки РТТ на ручке управления одного из пилотов. Если при этом нажата клавиша СОМ 1/2, то только 2-й пилот может обра­щаться к пассажирам через кабинный громкоговоритель;

- SPKR - клавиша для подключения кабинного громкого­ворителя. Через него транслируются сигналы выбранных радио­средств, а также сигналы, которые выдаются независимо от выбо­ра экипажа. При включении микрофонов на передачу кнопкой РТТ звук громкоговорителя приглушается;

- MKR/MUTE - клавиша, позволяющая временно отключить прослушивание сигналов пролетаемого маркерного маяка в тех случаях, когда, например, они мешают приёму информации от авиадиспетчера. При этом пилоты наблюдают сигнал маркерного маяка на дисплее PFD. Кроме того, клавиша позволяет прерывать прослушивание записанных речевых сигналов диспетчера;

-

Рис. 2.15. Лицевая часть аудиопанели
HI SENS - клавиша, которая при нажатии позволяет повы­сить чувствительность маркерного приёмника с 1000 мкВ до 200 мкВ, что необходимо для приёма сигналов маршрутных мая­ков на больших высотах полёта;

- AUX - клавиша не задействована. Она может быть ис­пользована при установке на самолёте дополнительных (Auxiliary) навигационных средств;

MAN SQ - клавиша, которая при её нажатии переключает ручки PILOT-0-PASS из режима регулировки громкости прослушивания в режим ручной (Manually) регулировки по­давителя шума (Squelch);

- PILOTи COPLT - клавиши, используемые для коммутации внутрисамолётной связи. В зависимости от сочетания включения этих клавиш возможны четыре режима внутрисамолётной связи:

- Включена только клавиша PILOT — 1-й пилот изолирован и может прослушивать только выбранные радиосредства, 2-й пилот и пассажиры могут общаться между собой.

- Включена только клавиша COPLT - 2-й пилот изолирован, 1-й пилот и пассажиры могут прослушивать выбранные радиосредства и общаться между собой.

- Обе клавиши PILOT и COPLT включены - 1-й и 2-й пилоты изолированы от пасса, жиров, могут общаться между собой и прослушивать выбранные радиосредства. Пассажиры могут общаться только между собой.

- Обе клавиши PILOT и COPLT выключены - и пассажиры, и пилоты могут общаться и прослушивать выбранные радиосредства;

- PILOT-0-PASS - сдвоенные ручки для регулировки громкости прослушивания 1-м пи­лотом (внутренняя) и 2-м пилотом и пассажирами (наружная). При этом слева и снизу от ручек подсвечивается надпись VOL. При включенной клавише MAN SQ - эти ручки соответственно позволяют регулировать также уровень подавителя шума. При этом справа и снизу от ручек подсвечивается надпись SQ. Переключение между режимами VOL и SQ в этом случае произ­водится последовательным нажатием внутренней малой ручки-кнопки;

- DISPLAY BACKUP - кнопка для переключения индикации дисплеев PFD и MFD в со­вмещённый режим при отказе одного из них. Кнопка должна быть нажата и при автоматиче­ском переходе в режим совмещённой индикации при мигании неисправного индикатора.

При нажатии клавиш аудиопанели и включении соответствующего режима начинает светиться сигнализатор в виде белого треугольника над клавишей (см. рис. 2.15).

Аудиопанель получает электропитание постоянным током напряжением 28 В от ши­ны AVIONIC BUS бортового радиоэлектронного оборудования (авионики) с защитой через автомат защиты AUDIO номиналом 5 А.

Вылет с отказавшей аудиопанелью запрещён. Под приборной доской слева располо­жен разъём для подключения дополнительного микрофона. Вместе с громкоговорителем он может быть использован левым пилотом вместо авиагарнитуры. Радиостанции СОМ 1 и СОМ 2 являются неотъемлемой частью интегрированного ком­плекса Garmin G 1000, встроены в блоки БРЭО G1A 63 и предназначены для:

- симплексной бесподстроечной командной радиосвязи в ОВЧ-диапазоне радиоволн. Двухсторонняя авиационная воздушная связь ведётся с авиадиспетчерами, с экипажами дру­гих ВС или диспетчерами производственных служб авиапредприятий;

- радиосвязи на международной аварийной частоте 121,500 МГц, например, при про­ведении поисково-спасательных работ.

Рис. 1. Внешний вид антенн ОВЧ радиостанций:

а - антенна радиостанции СОМ 1; б - антенна радиостанции СОМ 2

Радиостанции СОМ 1 и СОМ 2 идентичны и характеризуются следующими основными эксплуатационно-техническими показателями:

Диапазон рабочих частот, МГц 118,000-136,975

Шаг сетки частот, кГц 25 или 8,33 (по выбору экипажа)

Вид модуляции амплитудная (AM)

Средняя мощность передатчика, Вт 16

Напряжение электропитания, В 28 постоянного тока

Дальность действия, км 120 -130 при высоте полёта 1000 м

Чувствительность приёмника, мкВ 2,5

Радиостанция СОМ1 получает электропитание постоянным током напряжением 28 В от левой основной шины LH MAIN BUS с защитой через автомат защиты СОМ 1 номиналом 5А, а радиостанция СОМ 2 - от шины БРЭО AVIONIC BUS через автомат защиты СОМ г номиналом также 5 А.

Радиостанции не имеют собственных пультов управления. Все органы управления ра­диостанциями и индикаторы настройки сосредоточены в правой верхней части каждого из дисплеев - PFD и MFD (рис. 2.). Действие данных органов управления и индикаторов на­стройки одинаково, независимо от того, на каком дисплее они используются экипажем.


Рис. 2 Правая верхняя часть дисплеев PFD и MFD

При отказе аудиопанели или блоков цифровой обработки звуковых сигналов радистанция СОМ 1 работает без цифровой обработки сигналов и подключается непосредственной к авиагарнитуре 1-го пилота.

Ответ Марины Морской надо дополнить. Радиоволны способны огибать Землю посредством многократных отражений от ионосферы и от поверхности Земли. Понятно, что кажество такого сигнала, состоящего в основном их эха весьма невысокое. Попробуйте поймать на коротковолновом приемнике голоса из за океана и убедитесь в этом. Только надо найти приемник. Давно я таких не видел.

СОГЛАСО˜АНИЕ, вид подчинительной синтаксической связи, при которой зависимое слово уподобляется в выражении грамматических значений подчиняющему слову.

а почему бы и нет? Любые волны огибают препятствия в зависимости от размера препятствия и длины волны.

1. Будут огибать или нет - зависит от длины волны.
2. ДВ и СВ отражаются от ионосферы

КВ - не помню. УКВ и более короткие - не отражаются; проходят сквозь.

Что касается земного шара в целом, то он чрезвычайно велик даже по сравнению с наиболее длинными волнами, применяемыми в радио. Очень короткие волны, например метровые, вообще не заворачивают сколько-нибудь заметно за горизонт, т. е. за пределы прямой видимости. Чем волны длиннее, тем лучше они огибают поверхность земного шара, но и самые длинные из применяемых волн не могли бы. благодаря дифракции завернуть так сильно, чтобы обойти вокруг земного шара — от нас к антиподам. Если, тем не менее, радиосвязь осуществляется между любыми точками земного шара, причем на волнах самой различной длины, то это возможно не из-за дифракции, а по совсем другой причине, о которой мы скажем немного дальше.

Влияние физических свойств земной поверхности на распространение радиоволн связано с тем, что под воздействием этих волн в почве и в морской воде возникают электрические токи высокой частоты, наиболее сильные вблизи антенны передатчика. Часть энергии радиоволны расходуется на поддержание этих токов, выделяющих в почве или воде соответствующее количество джоулева тепла. Эти потери энергии (а значит, и ослабления волны из-за потерь) зависят, с одной стороны, от проводимости почвы, а с другой — от длины волны. Короткие волны затухают значительно сильнее, чем длинные. При хорошей проводимости (морская вода) высокочастотные токи проникают на меньшую глубину от поверхности, чем при плохой (почва) , и потери энергии в первом случае существенно меньше. В результате дальность действия одного и того же передатчика оказывается при распространении волн над морем значительно (в несколько раз) большей, чем при распространении над сушей.

image

Радиоволна

image

Длина волны(λ) — это расстояние между соседними гребнями волны.
Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.
Период(T) — время одного полного колебательного движения
Частота(v) — количество полных периодов в секунду

image

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

image

Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).

Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

image

Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).

Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

image

Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

image

Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).

Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM — FM

Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM — амплитудная модуляция

image


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

image

FM — частотная модуляция

Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины

Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

§ 15. генерация электромагнитных волн. принципы радиотелефонной связи

Модуляция позволяет передавать электромагнитные колебания звуковых частот на дальние расстояния без проводов, делая возможным радиотелефонную связь.

Колебательный контур, образованный их плоского конденсатора и катушки практически не излучает электромагнитных волн, так как электрическое поле конденсатора и магнитное поле катушки преимущественно сосредоточено внутри них. Поэтому такой контур называют закрытым.

Немецкий физик Г. Герц, впервые экспериментально доказавший существование электромагнитных волн, создал их с помощью вибратора, который состоял из двух половин - проволочных стержней (см. П на рис. 15а), к концам которых были присоединены большие и малые металлические шары. Воздушный зазор (З) между половинками вибратора был очень мал (рис. 15а). Вибратор представлял собой открытый колебательный контур, обкладками конденсатора которого были шары, а роль катушки играли прикреплённые к ним стержни. При замыкании ключа (К) с помощью повышающего трансформатора (Т) заряжались шары вибратора зарядами противоположных знаков, и в определенный момент в зазоре вибратора возникала электрическая искра. При искре в вибраторе возникали высокочастотные затухающие собственные колебания, а так как контур был открытым, то происходило излучение электромагнитных волн. Для регистрации электромагнитных волн Герц использовал незамкнутый контур (см. 2 на рис.15а), не соединённый с вибратором. Оказалось, что вслед за искрой между шариками контура вибратора 1 всегда следовала искра в контуре 2. Это доказывало существование электромагнитных волн.

Установлено, что энергия электромагнитных волн пропорциональна четвертой степени их частоты. Поэтому для радиотелефонной связи используются электромагнитные волны с частотой от 100 кГц до 10 ГГц, которые называют несущими частотами или волнами, а их амплитуду изменяют с частотой, соответствующей звуковым колебаниям (от 20 Гц до 20 кГц). Процесс наложения колебаний одной частоты на колебания другой называется модуляцией (рис. 15б). Радиоприёмник, настроенный на нужную несущую частоту, сначала усиливает колебания этой частоты, а потом выделяет из них колебания, соответствующие звуковым частотам. Этот процесс называют демодуляцией (рис. 15в), и он состоит из нескольких этапов: (1) – выпрямление электромагнитных колебаний несущей частоты и (2) – сглаживание пульсирующего сигнала.

На высоте 50 – 300 км над поверхностью Земли находится ионосфера – слой атмосферы, содержащий высокую концентрацию заряженных частиц. Радиоволны с длиной волны l > 10 м отражаются от ионосферы и поэтому могут огибать земной шар, что делает возможным радиосвязь на больших расстояниях. Радиоволны с l

Вопросы для повторения:

· Как происходит излучение и приём радиоволн?

· Что такое модуляция и демодуляция колебаний?

· Почему и какие радиоволны могут огибать Землю?


Рис. 15. (а) - схема опыта Герца по обнаружению электромагнитных волн; (б) – электромагнитные колебания несущей частоты (верх) и модулированные сигналом более низкой частоты (амплитудная модуляция); (в) - выпрямленные колебания (верх) и колебания низкой частоты после сглаживания высокочастотных пульсаций (низ).

РАСПРОСТРАНЕ́НИЕ РАДИОВО́ЛН, про­цес­сы пе­ре­да­чи элек­тро­маг­нит­ных волн ра­дио­диа­па­зо­на в про­стран­ст­ве от од­но­го мес­та к дру­го­му, в ча­ст­но­сти от пе­ре­дат­чи­ка к при­ём­ни­ку. В ес­теств. ус­ло­ви­ях Р. р. про­ис­хо­дит в разл. сре­дах – в ат­мо­сфе­ре, кос­мич. плаз­ме, в при­по­верх­но­ст­ном слое Зем­ли. Р. р. су­ще­ст­вен­но за­ви­сит от дли­ны вол­ны, ос­ве­щён­но­сти зем­ной ат­мо­сфе­ры Солн­цем, от трас­сы рас­про­стра­не­ния (вер­ти­каль­ная, на­клон­ная и др.) и от ря­да др. фак­то­ров.

Читайте также: