Почему первый закон ньютона называют законом инерции кратко

Обновлено: 04.07.2024

По закону инерции, материальная точка сохраняет свою скорость при отсутствии воздействия на него внешних сил или при уравновешивании действия этих сил.

С явлением инерции мы сталкиваемся ежедневно, поэтому необходимо знать её положительные и отрицательные свойства. При ловле мяча нужно отступать по траектории движения, смягчая удар. Иначе можно получить травму. При торможении транспорта необходимо постараться продолжить движение по прежней траектории, чтобы избежать столкновения с деталями транспорта.

До принятия закона инерции древнегреческий учёный Аристотель и его последователи считали, что тело не может двигаться с постоянной скоростью без постоянного воздействия внешних сил.

Первым отверг такие представления Галилео Галилей. Он предположил, что в результате взаимодействий любого тела с другими телами происходят изменения скорости его движения. При отсутствии действия других тел скорость тела не изменяется ни по модулю, ни по направлению.

При отсутствии внешних воздействий тело может не только покоиться, но и двигаться прямолинейно и равномерно.

После прекращения воздействий тело движется равномерно и прямолинейно по касательной к первоначальной траектории движения.

Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения.

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Был долго этот мир глубокой тьмой окутан
Да будет свет, и тут явился Ньютон.

Но сатана недолго ждал реванша -
Пришел Эйнштейн, и стало все как раньше.

(Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.


Второй закон Ньютона

Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.



Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света .

Существует более универсальная формулировка данного закона, так называемый дифференциальный вид.


В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

Третий закон Ньютона

В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

Формула, выражающая третий закон Ньютона:


Другими словами, третий закон Ньютона - это закон действия и противодействия.


Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.


Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните - любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему "Законы Ньютона".

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Законы динамики Ньютона (классическая динамика) имеют ограниченную область применимости. Они справедливы для макроскопических тел, движущихся со скоростями, много меньшими, чем скорость света в вакууме.

Формулировка первого закона Ньютона (он также известен как закон инерции ):

Первый закона Ньютона Существуют такие системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела или действие этих тел скомпенсировано.

В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.

Инерция Явление сохранения скорости движения тела при отсутствии внешних воздействий или при их компенсации называется инерцией. Поэтому первый закон Ньютона называют законом инерции.

Если равнодействующая всех сил, действующих на данное тело равна нулю, то тело движется равномерно и прямолинейно или не движется вовсе. В реальности добиться равенства нулю равнодействующей силы невозможно. Но можно пренебречь некоторыми действиями и выбрать такой участок движения, когда скорость тела существенно не меняется.

Впервые закон инерции был сформулирован Галилео Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения.

ИСО инерциальные системы отсчета - это системы отсчета, в которых выполняется 1-й закон Ньютона.

Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины – инертную массу тела и силу.

Масса

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения.

Сравнение масс двух тел.

В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг).

Масса любого тела может быть определена на опыте путем сравнения с массой эталона ( \( m_> = 1 \text \) ). Пусть \( m_1 = m_> = 1 \text \) . Тогда

Масса тела – скалярная величина. Опыт показывает, что если два тела с массами \( m_1 \) и \( m_2 \) соединить в одно, то масса \( m \) составного тела оказывается равной сумме масс \( m_1 \) и \( m_2 \) этих тел:

Это свойство масс называют аддитивностью.

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной, имеет модуль, направление и точку приложения.

Векторная сумма всех сил, действующих на тело, называется равнодействующей силой.

Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным.

Существует 4 основных типа взаимодействия:

  • гравитационное,
  • электромагнитное,
  • сильное,
  • слабое.

Все взаимодействия являются проявлениями этих основных типов.

Примеры сил: сила тяжести, сила упругости, вес тела, сила трения, выталкивающая (архимедова) сила, подъемная сила.

Что такое сила? Сила — мера воздействия одного тела на другое.

Сила — векторная величина. Сила характеризуется:

  • модулем (абсолютной величиной);
  • направлением;
  • точкой приложением.

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F0, с которой эта пружина при фиксированном растяжении действует на прикрепленное к ней тело, называют эталоном силы. Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы \( \vec \) и эталонной силы \( \vec \) остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю \( \vec \) = \( \vec \) .

если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю

Сравнение силы \( \vec \) с эталоном. \( \vec \) = \( \vec \)

Если измеряемая сила \( \vec \) больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно. В этом случае измеряемая сила равна \( \vec < 2 F_0 >\) . Аналогично могут быть измерены силы \( \vec < 3 F_0 >\) , \( \vec < 4 F_0 >\) и т. д.

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно

Сравнение силы \( \vec \) с эталоном. \( \vec \) = \( \vec \)

Измерение сил, меньших \( \vec \)

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно

Сравнение силы \( \vec \) с эталоном. \( \vec \) = \( \vec \cos ( \alpha ) \)

Эталонная сила в Международной системе единиц называется Ньютон(Н) .

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с2

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами. Сила измеряется по растяжению динамометра.

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Первый закон Ньютона с точки зрения современных представлений можно сформулировать так: существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО).

Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета.

Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов.

Следует отметить что понятие инерциальной системы отсчета — абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

Читайте также: