Почему это поле называют электростатическим кратко

Обновлено: 04.07.2024

Электростати́ческое по́ле, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.

Электростатическое поле характеризуется напряженностью электрического поляЕ, которая является его силовой характеристикой: Напряженность электростатического поля показывает, с какой силой электростатическое поле действует на единичный положительный электрический заряд, помещенный в данную точку поля. Направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

Электростатическое поле является стационарным (постоянным), если его напряженность не изменяется с течением времени. Стационарные электростатические поля создаются неподвижными электрическими зарядами.

Электростатическое поле однородно, если вектор его напряженности одинаков во всех точках поля, если вектор напряженности в различных точках различается, поле неоднородно. Однородными электростатическими полями являются, например, электростатические поля равномерно заряженной конечной плоскости и плоского конденсатора вдали от краев его обкладок.

Одно из фундаментальных свойств электростатического поля заключается в том, что работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от траектории движения, а определяется только положением начальной и конечной точек и величиной заряда. Следовательно, работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. То есть электростатическое поле - это потенциальное поле, энергетической характеристикой которого является электростатический потенциал, связанным с вектором напряженности Е соотношением:

Для графического изображения электростатического поля используют силовые линии (линии напряженности) — воображаемые линии, касательные к которым совпадают с направлением вектора напряженности в каждой точке поля.

Для электростатических полей соблюдается принцип суперпозиции. Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности.

Всякий заряд в окружающем его пространстве создает электростатическое поле. Чтобы обнаружить поле в какой-либо точке, надо поместить в точку наблюдения точечный пробный заряд — заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).

Поле, создаваемое уединенным точечным зарядом q, является сферически симметричным. Модуль напряженности уединенного точечного заряда в вакууме с помощью закона Кулона можно представить в виде:

Закон Кулона, установленный при помощи созданных им крутильных весов (см. Кулона весы), — один из основных законов, описывающих электростатическое поле. Он устанавливает зависимость между силой взаимодействия зарядов и расстоянием между ними: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эту силу называют кулоновской, а поле — кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q ? раз (? — диэлектрическая проницаемость среды) меньше, чем в вакууме.

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда. Электрическое поле можно характеризовать значением потока вектора напряженности электрического поля, который можно рассчитать в соответствии с теоремой Гаусса. Теорема Гаусса устанавливает связь между потоком напряженности электрического поля через замкнутую поверхность и зарядом внутри этой поверхности. Поток напряженности зависит от распределения поля по поверхности той или иной площади и пропорционален электрическому заряду внутри этой поверхности.

Если изолированный проводник поместить в электрическое поле, то на свободные заряды q в проводнике будет действовать сила. В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, компенсирует полностью внешнее поле, т. е. установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в ноль: во всех точках внутри проводника Е = 0, то есть поле отсутствует. Силовые линии электростатического поля вне проводника в непосредственной близости к его поверхности перпендикулярны поверхности. Если бы это было не так, то имелась бы составляющая напряженности поля, вдоль поверхности провод­ника и по поверхности протекал бы ток. Заряды располагаются только на поверхности проводника, при этом все точки поверхности проводника имеют одно и то же значение потенциала. Поверхность проводника является эквипотенциальной поверхностью. Если в проводнике есть полость, то электрическое поле в ней также равно нулю; на этом основана электростатическая защита электрических приборов.

Если в электростатическое поле поместить диэлектрик, то в нем происходит процесс поляризации — процесс ориентации диполей или появление под воздействием электрического поля ориентированных по полю диполей. В однородном диэлектрике электростатическое поле вследствие поляризации (см. Поляризация диэлектриков) убывает в ? раз.

Электрический заряд, помещенный в некоторую точку пространства, изменяет свойства данного пространства. То есть заряд порождает вокруг себя электрическое поле. Электростатическое поле – особый вид материи.

Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность

Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.

Если на пробный заряд, действуют силы со стороны нескольких зарядов, то эти силы по принципу суперпозиции сил независимы, и результирующая этих сил равна векторной сумме сил. Принцип суперпозиции (наложения) электрических полей: Напряженность электрического поля системы зарядов в данной точке пространства равна векторной сумме напряженностей электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:


Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).


Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).

Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.

Потенциал - скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ - потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают [φ] = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:

Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.

Электрическим полем называют одну из сторон электромагнитного поля, характеризующуюся воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и не зависящей от ее скорости.

Электростатическое поле – это частный вид электрического поля. Оно создается совокупностью электрических зарядов, неподвижных в пространстве (по отношению к наблюдателю) и неизменных во времени.

Электрический заряд является одной из основных характеристик частиц и тел, определяющей их взаимодействие с внешним электромагнитным полем, а также их взаимосвязь с собственным электромагнитным полем.

Существует наименьший электрический заряд, который называется элементарным электрическим зарядом (заряд протона и электрона).

Электрический заряд бывает положительным и отрицательным.

Под электрическим зарядом тела понимают скалярную величину, равную алгебраической сумме элементарных электрических зарядов в этом теле.

При рассмотрении поля в веществе различают свободные заряды и связанные заряды.

Единицей электрического заряда является (в СИ) кулон (Кл).

Взаимодействие между неподвижными электрическими зарядами описывается законом Кулона.

Электростатическое поле представляет собой один из видов материи, возникающий вокруг любого неподвижного заряженного тела.

Оно проявляется в том, что передаёт действие одних наэлектризованных тел на другие, т.е. неподвижные электрические заряды вызывают в окружающем пространстве какие–то физические изменения, приводящие к тому, что на всякий другой заряд, помещённый на некотором расстоянии от рассматриваемого, действует сила. Взаимодействие двух зарядов заключается в том, что один из зарядов создаёт в окружающем его пространстве электрическое поле и это поле действует на другой заряд с определённой силой.

Эта сила, например, для двух точечных зарядов определяется законом Кулона:

где – источник поля, а – заряд, находящийся на расстоянии r от него;

– диэлектрическая проницаемость среды, которая показывает во сколько раз сила взаимодействия электрических зарядов в данной среде меньше, чем в вакууме.

Так как в одной и той же точке поля на разные по величине заряды действуют разные силы, то сила не может быть характеристикой поля.

Электрическое поле описывается двумя главными характеристиками напряжённостью и потенциалом. Из закона Кулона (1) следует, что сила F, действующая на заряд q, помещённый в данную точку электростатического поля, пропорциональна величине заряда.

Действительно, сама сила зависит от величины и знака заряда, и не может служить характеристикой поля. Но отношение силы к заряду уже не зависит от величины заряда q и характеризует только электрическое поле в данной точке:

где r – расстояние от заряда Q, создающего поле, до точки поля, напряжённость в которой определяется.

Напряжённостью Е электрического поля в какой–либо точке поля называют силу, в которой поле действует на единичный положительный заряд, помещённый в эту точку поля. Направление напряжённости совпадает с направлением действия силы: . Напряжённость является силовой характеристикой электрического поля.

Поле, напряжённость которого во всех точках имеет одинаковую величину и направление, называется однородным. Единицей напряжённости электрического поля является В/м.

Если поле созданj положительным точечным зарядом Q, то вектор напряжённости направлен вдоль силовой линии – от заряда. Если отрицательным – к заряду.

Работа перемещения электрического заряда q в электрическом поле не зависит от формы пути перемещения, а определяется начальной и конечной точками перемещения и пропорциональна величине заряда. Следовательно, потенциальная энергия W заряда есть функция только координат и величины заряда q. Отношение потенциальной энергии заряда к величине заряда уже не зависит от величины заряда и характеризует электрическое поле в данной точке. Потенциальную энергию, которой обладает единичный положительный электрический заряд, помещённый в какую–либо точку поля, называют потенциалом поля в этой точке.

Работа перемещения электрического заряда q в электрическом поле равняется произведению величины переносимого заряда на разность потенциалов начальной и конечной точек пути:

Потенциальная энергия заряда в какой–либо точке электрического поля равна работе, которую совершают силы поля при перемещении единичного положительного заряда из этой точки в бесконечно удалённую, т.е. за пределы электрического поля, где потенциал поля принимается равным нулю. Потенциал поля точечного заряда определяется по формуле:

Потенциал – энергетическая характеристика электрического поля. Как и всякая энергия, потенциал поля есть величина скалярная. Потенциал и напряжение измеряются в вольтах.

Электрическое поле можно задать, указав для каждой точки величину и направление вектора . Совокупность этих векторов образует поле вектора напряжённости электрического поля. Электрическое поле можно представить наглядно с помощью линий напряжённости. Линии напряжённости проводятся таким образом, чтобы касательная к ним в каждой точке совпадала с направлением вектора . Линии напряжённости называются также силовыми линиями электрического поля.

Так как напряжённость поля в любой точке имеет вполне определённое направление, то силовые линии не могут пересекаться между собой. Они выходят из положительного заряда и входят в отрицательный заряд. Силовые линии поля положительного точечного заряда изображены на рис. 1.




Потенциал электрического поля является функцией координат. Но во всех реальных случаях можно выделить совокупность таких точек, потенциалы которых одинаковы. Геометрическое место точек с одинаковым потенциалом называется эквипотенциальной поверхностью. Пересекаясь с плоскостью, такая поверхность образует эквипотенциальную линию.

Из сказанного следует:

а) работа перемещения заряда вдоль эквипотенциальной поверхности равна нулю;

б) силовые линии в любой точке поля перпендикулярны к эквипотенциальной поверхности в этой точке;

в) поле стремится перемещать положительный заряд в направлении уменьшения потенциала, а отрицательный заряд в направлении возрастания потенциала. Рис.2.

Из теории электростатического поля следует, что:

где dn – отрезок нормали к двум соседним эквипотенциальным линиям и .

Целью работы является изучение качественной картины плоского электростатического поля, создаваемого двумя металлическими электродами в слабопроводящей среде.

Электростатическое поле представляет собой один из видов материи, возникающий вокруг любого неподвижного заряженного тела.

Оно проявляется в том, что передаёт действие одних наэлектризованных тел на другие, т.е. неподвижные электрические заряды вызывают в окружающем пространстве какие–то физические изменения, приводящие к тому, что на всякий другой заряд, помещённый на некотором расстоянии от рассматриваемого, действует сила. Взаимодействие двух зарядов заключается в том, что один из зарядов создаёт в окружающем его пространстве электрическое поле и это поле действует на другой заряд с определённой силой.

Эта сила, например, для двух точечных зарядов определяется законом Кулона:

где – источник поля, а – заряд, находящийся на расстоянии r от него;

– диэлектрическая проницаемость среды, которая показывает во сколько раз сила взаимодействия электрических зарядов в данной среде меньше, чем в вакууме.

Так как в одной и той же точке поля на разные по величине заряды действуют разные силы, то сила не может быть характеристикой поля.

Электрическое поле описывается двумя главными характеристиками напряжённостью и потенциалом. Из закона Кулона (1) следует, что сила F, действующая на заряд q, помещённый в данную точку электростатического поля, пропорциональна величине заряда.

Действительно, сама сила зависит от величины и знака заряда, и не может служить характеристикой поля. Но отношение силы к заряду уже не зависит от величины заряда q и характеризует только электрическое поле в данной точке:

где r – расстояние от заряда Q, создающего поле, до точки поля, напряжённость в которой определяется.

Напряжённостью Е электрического поля в какой–либо точке поля называют силу, в которой поле действует на единичный положительный заряд, помещённый в эту точку поля. Направление напряжённости совпадает с направлением действия силы: . Напряжённость является силовой характеристикой электрического поля.

Поле, напряжённость которого во всех точках имеет одинаковую величину и направление, называется однородным. Единицей напряжённости электрического поля является В/м.

Если поле созданj положительным точечным зарядом Q, то вектор напряжённости направлен вдоль силовой линии – от заряда. Если отрицательным – к заряду.

Работа перемещения электрического заряда q в электрическом поле не зависит от формы пути перемещения, а определяется начальной и конечной точками перемещения и пропорциональна величине заряда. Следовательно, потенциальная энергия W заряда есть функция только координат и величины заряда q. Отношение потенциальной энергии заряда к величине заряда уже не зависит от величины заряда и характеризует электрическое поле в данной точке. Потенциальную энергию, которой обладает единичный положительный электрический заряд, помещённый в какую–либо точку поля, называют потенциалом поля в этой точке.

Работа перемещения электрического заряда q в электрическом поле равняется произведению величины переносимого заряда на разность потенциалов начальной и конечной точек пути:

Потенциальная энергия заряда в какой–либо точке электрического поля равна работе, которую совершают силы поля при перемещении единичного положительного заряда из этой точки в бесконечно удалённую, т.е. за пределы электрического поля, где потенциал поля принимается равным нулю. Потенциал поля точечного заряда определяется по формуле:

Потенциал – энергетическая характеристика электрического поля. Как и всякая энергия, потенциал поля есть величина скалярная. Потенциал и напряжение измеряются в вольтах.

Электрическое поле можно задать, указав для каждой точки величину и направление вектора . Совокупность этих векторов образует поле вектора напряжённости электрического поля. Электрическое поле можно представить наглядно с помощью линий напряжённости. Линии напряжённости проводятся таким образом, чтобы касательная к ним в каждой точке совпадала с направлением вектора . Линии напряжённости называются также силовыми линиями электрического поля.

Так как напряжённость поля в любой точке имеет вполне определённое направление, то силовые линии не могут пересекаться между собой. Они выходят из положительного заряда и входят в отрицательный заряд. Силовые линии поля положительного точечного заряда изображены на рис. 1.

Потенциал электрического поля является функцией координат. Но во всех реальных случаях можно выделить совокупность таких точек, потенциалы которых одинаковы. Геометрическое место точек с одинаковым потенциалом называется эквипотенциальной поверхностью. Пересекаясь с плоскостью, такая поверхность образует эквипотенциальную линию.

Из сказанного следует:

а) работа перемещения заряда вдоль эквипотенциальной поверхности равна нулю;

б) силовые линии в любой точке поля перпендикулярны к эквипотенциальной поверхности в этой точке;

в) поле стремится перемещать положительный заряд в направлении уменьшения потенциала, а отрицательный заряд в направлении возрастания потенциала. Рис.2.

Из теории электростатического поля следует, что:

где dn – отрезок нормали к двум соседним эквипотенциальным линиям и .

Целью работы является изучение качественной картины плоского электростатического поля, создаваемого двумя металлическими электродами в слабопроводящей среде.

Читайте также: