От чего зависит полная энергия колеблющегося тела кратко

Обновлено: 07.07.2024

Рассмотрим превращения энергии, которые происходят при гармонических колебаниях в консервативной системе на примере пружинного маятника. Так как пружинный маятник мы считаем консервативной системой, то механическая энергия ее постоянна:

Проверим справедливость выражения (1),) непосредственным суммированием выражений для кинетической и потенциальной энергии рассматриваемого маятника.

Уравнение колебаний маятника запишем в виде:

где $x$ - смещение груза маятника по оси X. В таком случае изменение кинетической энергии груза, совершающего колебания на напружине равна:

Потенциальна энергия пружинного маятника равна: потенциальной энергии упругодеформированной пружины и потенциальной энергии груза в поле тяжести Земли:

Суммируем правые части выражений (3) и (4), получим:

Из формулы (5) мы видим, что неизменная суммарная энергия колебательной системы равна потенциальной ее энергии в точках максимального отклонения от положения равновесия (при $x=\pm A$). Энергия $E$ равна кинетической энергии при прохождении грузом положения равновесия, скорость груза равна:

В ходе взаимных превращений потенциальная и кинетическая энергии гармонически колеблются с одинаковой амплитудой, равной $\frac$ находятся в противофазе друг с другом, частота их колебаний равна $2<\omega >_0$.

И так, выражения (7) и (8) показывают, что кинетическая и потенциальная энергии колебательной системы совершают гармонические колебания вокруг их общего значения $\frac$ с удвоенной частотой 2$<\omega >_0$, тогда как полная энергия системы остается постоянной. Она связана с амплитудой колебаний как:

Энергия колебательных систем с одной степенью свободы

Все, что сказано для пружинного маятника можно применить , для любых механических колебаний систем с одной степенью свободы. Мгновенное положение такой системы можно определить, используя один параметр, который называют обобщенной координатой ($q$), например, угла поворота или смещения по оси координат. При этом величина $\dot=\frac$ называется обобщённой скоростью.

Потенциальная энергия в таких обозначениях примет вид:

где $\alpha ,\ \beta $ - параметры системы. Полная энергия системы в нашем случае равна:

обобщенная координата совершает гармонические колебания с частотой:

Примеры задач на полную энергию колебаний

Задание. Какова полная энергия колебаний материальной точки массы $m=0,02$ кг, если она совершает колебания по закону: $x=0,1)(м)\ >?$ Потерь энергии в колебательной системе нет.

Решение. Полную энергию гармонических колебаний, которые описаны гармоническим законом $x(t)=0,1)(м)\ >$, зная, что это постоянная величина найдем как:

Из уравнения колебаний $x(t)$ мы видим, что:

Ответ. $E=1,58\cdot ^$Дж.

Задание. Груз на упругой пружине (рис.1) совершает колебания по оси X. Амплитуда колебаний равна $A=6\cdot ^м$. Какова полная энергия колебаний груза, если коэффициент упругости пружины равен $k=500$ $\frac$? Считайте, что диссипации энергии в системе нет.

Полная энергия колебаний, пример 1

Решение. Колебания груза на упругой пружине можно считать гармоническими. По условию потерь энергии нет, следовательно, полная энергия нашего пружинного маятника сохраняется и является постоянной величиной, которую найдем как:

Смотря что колеблиется, в общем, если скорость это гармонические колебания, то полная энергия будет равна сумме потенциальной и кинетической или максимуму любой из них, рассмотрим кинетическую, тогда
E=m*v*v/2, где v=v0*sin(wt+ф), если x=x0*cos(wt+ф), то
v=dx/dt=-x0*w*sin(wt+ф), откуда v0=-x0*w
Тогда максимальная энергия
E=0.5*m*w^2*x0^2
x0 - это амплитуда колебаний, w - частота
Получается что полная энергия зависит от:
массы
амплитуды
частоты
В свою очеред частота в зависимости от рода колебаний может зависеть например от жёсткости пружины, если это физический маятник или от длины нити - математический маятник

Колеблющееся тело обладает кинетической и потенциальной энергией.

Кинетическая энергия колеблющейся материальной точки с массой m вычисляется по формуле (1.29) с учетом (3.11):

Потенциальная энергия материальной точки, совершающей колебания под действием упругой силы вычисляется по формуле (1.32) с учетом (3.9) и (3.7)

Полная энергия гармонических колебаний равна

Учитывая, что получим

Из формулы (3.15) следует, что полная энергия при гармонических колебаниях не зависит от времени, т. е. остается постоянной. Следовательно, выполняется закон сохранения механической энергии.

Второй важный вывод: энергия при гармонических колебаниях пропорциональна квадрату амплитуды и квадрату частоты.

Векторная диаграмма

При рассмотрении многих вопросов, в частности, при сложении колебаний одинакового направления и частоты бывает удобно гармоническое колебание представить в виде векторной диаграммы. Векторная диаграмма строится следующим образом: надо изобразить вектор, длина которого равна амплитуде, угол наклона к оси абсцисс равен начальной фазе. Если привести этот вектор во вращение с угловой скоростью ω0, равной круговой частоте колебаний, то проекция его конца на выбранную ось будет изменяться по гармоническому закону.

На рис. 3.3 представлена векторная диаграмма для гармонического колебания

в момент времени t = 0.

Метод векторных диаграмм удобен при сложении колебаний одинаковой частоты.

Тема: ФИЗИКА КОЛЕБАНИЙ .Сложение колебаний.

3. КОЛЕБАНИЯ 3.1.5. Энергия гармонических колебаний 3.1.6. Векторная диаграмма 3.1.7. Сложение гармонических колебаний одинакового направления и одинаковой частоты Задания и вопросы для самоконтроля

Энергия гармонических колебаний

Колеблющееся тело обладает кинетической и потенциальной энергией.

Кинетическая энергия колеблющейся материальной точки с массой m вычисляется по формуле (1.29) с учетом (3.11):

Потенциальная энергия материальной точки, совершающей колебания под действием упругой силы вычисляется по формуле (1.32) с учетом (3.9) и (3.7)

Полная энергия гармонических колебаний равна

Учитывая, что получим

Из формулы (3.15) следует, что полная энергия при гармонических колебаниях не зависит от времени, т. е. остается постоянной. Следовательно, выполняется закон сохранения механической энергии.

Второй важный вывод: энергия при гармонических колебаниях пропорциональна квадрату амплитуды и квадрату частоты.

Векторная диаграмма

При рассмотрении многих вопросов, в частности, при сложении колебаний одинакового направления и частоты бывает удобно гармоническое колебание представить в виде векторной диаграммы. Векторная диаграмма строится следующим образом: надо изобразить вектор, длина которого равна амплитуде, угол наклона к оси абсцисс равен начальной фазе. Если привести этот вектор во вращение с угловой скоростью ω0, равной круговой частоте колебаний, то проекция его конца на выбранную ось будет изменяться по гармоническому закону.

На рис. 3.3 представлена векторная диаграмма для гармонического колебания

в момент времени t = 0.

Метод векторных диаграмм удобен при сложении колебаний одинаковой частоты.

Вычислим энергию тела массой m, совершающего гармонические колебания с амплитудой А и круговой частотой ω (рис. 1.1).


Потенциальная энергия U тела, смещенного на расстояние х от положения равновесия, измеряется той работой, которую произведет возвращающая сила , перемещая тело в положение равновесия.

, отсюда , или

Кинетическая энергия


Заменив в (1.5.2) и сложив почленно уравнения (1.5.2) и (1.5.3), получим выражение для полной энергии:


, или

Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания.

В случае свободных незатухающих колебаний полная энергия не зависит от времени, поэтому и амплитуда А не зависит от времени.

Из (1.5.2) и (1.5.3) видно, что и потенциальная U, и кинетическая K энергия пропорциональны квадрату амплитуды А 2 .

Рассмотрим колебания груза под действием сил тяжести (рис. 1.4).


Из рис. 1.4 и из формул (1.5.2) и (1.5.3) видно, что U и K изменяются периодически (при свободных незатухающих колебаниях). Однако период изменения энергии в два раза меньше, чем период изменения смещения скорости и ускорения. Это значит, что и кинетическая, и потенциальная энергия изменяются с частотой, которая в два раза превышает частоту смещения гармонического колебания. За время одного полного колебания U и K дважды достигают своих максимальных значений и дважды обращаются в нуль. Связано это с тем, что и U, и K пропорциональны квадрату косинуса и синуса фазы колебаний.


Максимум потенциальной энергии (1.5.2) .

Максимум кинетической энергии , но когда и наоборот. На рис. 1.5 представлены графики зависимости х, U и K от времени t.



При колебаниях, совершающихся под действием потенциальных (консервативных) сил, происходит переход кинетической энергии в потенциальную и наоборот, но их сумма в любой момент времени постоянна.

На рис. 1.6 приведена кривая потенциальной энергии.


Горизонтальная линия соответствует определенному значению полной энергии: Расстояние от этой линии до кривой равно кинетической энергии, а движение ограничено значениями х, заключенными в пределах от + А до – А. Эти результаты полностью согласуются с полным решением уравнения движения.

Читайте также: