Может ли температура насекомых быть выше окружающей среды если да то в каких случаях кратко

Обновлено: 06.07.2024

Насекомые не имеют постоянной температуры тела, т. е. относятся к пойкилотермным организмам. Непрерывно образующаяся в теле под влиянием жизнедеятельности и окислительных процессов тепловая энергия непрерывно теряется, т. е. отдается внешней среде в результате излучения, конвекции и теплопроводности; это образование тепла в организме обозначается понятием теплопродукции, а потеря его — теплоотдачей. Соотношение между теплопродукцией и теплоотдачей и определяет уровень тепла в организме, т.е. температуру тела. Очевидно, это соотношение не является постоянным.

Источники теплопродукции у насекомых:

1) внутренняя (эндогенная) теплопродукция – обмен веществ в организме и связанные с ним окислительные процессы, которые сопровождаются выделением тепловой энергии;

2) теплопродукция внешнего происхождения (экзогенная) – внешняя среда, именно лучистая энергия солнца или нагретый им воздух, либо искусственно созданное тепло закрытых помещений, в которых живут те или иные насекомые.

Температура тела насекомых, находящихся в покое и не подвергающихся облучению солнцем, примерно равна температуре окружающей воздушной среды. При облучении такого насекомого солнцем температура тела быстро и резко возрастает — на 10°С и более в течение немногих минут; при помещении этого же насекомого в тень его температура столь же быстро падает до температуры окружающей среды. Тело насекомых весьма чувствительно к воздействию тепла среды и солнечных лучей, т. е. энергично поглощает внешнее тепло и лучистую энергию солнца; вместе с тем телу насекомых свойственна и очень интенсивная теплоотдача. Эти тепловые свойства насекомого определяются рядом причин и прежде всего малыми размерами их тела; благодаря этому поверхность тела сильно увеличена по отношению к массе тела, что сильно увеличивает поверхность нагрева, с одной стороны, и лучеиспускания — с другой.

Существенную роль играют также пигменты кутикулы и ее теплопроводность; установлено, что богатая меланинами темноокрашенная кутикула способствует более быстрому и сильному нагреванию тела солнечными лучами и вместе с тем темноокрашенные насекомые быстрее остывают в темноте. Существенно и то обстоятельство, что большинство насекомых лишено на теле термоизолирующего покрова в виде волосков.

Температурные границы активности насекомых находятся примерно в пределах 10-45°С, тогда как физиологический оптимум ограничен более узкими пределами 25-38°С. Достижение этого оптимума обеспечивается регуляцией температуры тела разными способами. Основной способ — это терморегуляция через поведение, т. е. путем изменения активности и местоположения, а иногда и позы самого насекомого. При перегревании тела насекомые переходят с освещенных солнцем или сильно нагретых мест в затененные или более прохладные места, где температура тела снижается до более приемлемого уровня; и, наоборот, при недостатке тепла происходит передвижение на освещенные солнцем или в более теплые места. Так, некоторые виды в жаркие часы дня забираются под различные укрытия — под камни, кучи травы и пр.; этой особенностью поведения пользуются при сборе и учете численности таких насекомых и разработке мер борьбы с ними. Очень характерное поведение свойственно стадным саранчовым.

Другой способ терморегуляции — изменение мышечной активности. Так, ночные насекомые, благодаря интенсивному лёту, имеют более высокую температуру тела, нежели температура воздуха; благодаря этому активная жизнедеятельность ночных насекомых возможна и при таких температурах, когда неактивные особи находятся в состоянии холодового оцепенения. То же самое наблюдается и при активном полете дневных насекомых в условиях прохладной погоды. В целом интенсивный лёт насекомых обеспечивает повышение их температуры тела до 30-40°С и более и делает их в это время в сущности теплокровными организмами. Медоносная пчела может регулировать температуру воздуха в ульях; пчелы поднимают ее при холодной погоде путем усиленных движений крыльев.

Некоторое значение в регуляции температуры тела может иметь и испарение воды; таким путем возможно снижение температуры тела в жаркой среде. Наконец, нельзя не учитывать в терморегуляции и деятельности трахейной системы; трахейная вентиляция тела ослабляет возможность его перегрева, а наличие воздушных мешков устраняет эту возможность даже при интенсивной мышечной работе во время полета насекомого.




Насекомые не имеют постоянной температуры тела, т. е. относятся к пойкилотермным организмам. Непрерывно образующаяся в теле под влиянием жизнедеятельности и окислительных процессов тепловая энергия непрерывно теряется, т. е. отдается внешней среде в результате излучения, конвекции и теплопроводности; это образование тепла в организме обозначается понятием теплопродукции, а потеря его — теплоотдачей. Соотношение между теплопродукцией и теплоотдачей и определяет уровень тепла в организме, т.е. температуру тела. Очевидно, это соотношение не является постоянным.

Источники теплопродукции у насекомых:

1) внутренняя (эндогенная) теплопродукция – обмен веществ в организме и связанные с ним окислительные процессы, которые сопровождаются выделением тепловой энергии;

2) теплопродукция внешнего происхождения (экзогенная) – внешняя среда, именно лучистая энергия солнца или нагретый им воздух, либо искусственно созданное тепло закрытых помещений, в которых живут те или иные насекомые.

Температура тела насекомых, находящихся в покое и не подвергающихся облучению солнцем, примерно равна температуре окружающей воздушной среды. При облучении такого насекомого солнцем температура тела быстро и резко возрастает — на 10°С и более в течение немногих минут; при помещении этого же насекомого в тень его температура столь же быстро падает до температуры окружающей среды. Тело насекомых весьма чувствительно к воздействию тепла среды и солнечных лучей, т. е. энергично поглощает внешнее тепло и лучистую энергию солнца; вместе с тем телу насекомых свойственна и очень интенсивная теплоотдача. Эти тепловые свойства насекомого определяются рядом причин и прежде всего малыми размерами их тела; благодаря этому поверхность тела сильно увеличена по отношению к массе тела, что сильно увеличивает поверхность нагрева, с одной стороны, и лучеиспускания — с другой.

Существенную роль играют также пигменты кутикулы и ее теплопроводность; установлено, что богатая меланинами темноокрашенная кутикула способствует более быстрому и сильному нагреванию тела солнечными лучами и вместе с тем темноокрашенные насекомые быстрее остывают в темноте. Существенно и то обстоятельство, что большинство насекомых лишено на теле термоизолирующего покрова в виде волосков.

Температурные границы активности насекомых находятся примерно в пределах 10-45°С, тогда как физиологический оптимум ограничен более узкими пределами 25-38°С. Достижение этого оптимума обеспечивается регуляцией температуры тела разными способами. Основной способ — это терморегуляция через поведение, т. е. путем изменения активности и местоположения, а иногда и позы самого насекомого. При перегревании тела насекомые переходят с освещенных солнцем или сильно нагретых мест в затененные или более прохладные места, где температура тела снижается до более приемлемого уровня; и, наоборот, при недостатке тепла происходит передвижение на освещенные солнцем или в более теплые места. Так, некоторые виды в жаркие часы дня забираются под различные укрытия — под камни, кучи травы и пр.; этой особенностью поведения пользуются при сборе и учете численности таких насекомых и разработке мер борьбы с ними. Очень характерное поведение свойственно стадным саранчовым.

Другой способ терморегуляции — изменение мышечной активности. Так, ночные насекомые, благодаря интенсивному лёту, имеют более высокую температуру тела, нежели температура воздуха; благодаря этому активная жизнедеятельность ночных насекомых возможна и при таких температурах, когда неактивные особи находятся в состоянии холодового оцепенения. То же самое наблюдается и при активном полете дневных насекомых в условиях прохладной погоды. В целом интенсивный лёт насекомых обеспечивает повышение их температуры тела до 30-40°С и более и делает их в это время в сущности теплокровными организмами. Медоносная пчела может регулировать температуру воздуха в ульях; пчелы поднимают ее при холодной погоде путем усиленных движений крыльев.

Некоторое значение в регуляции температуры тела может иметь и испарение воды; таким путем возможно снижение температуры тела в жаркой среде. Наконец, нельзя не учитывать в терморегуляции и деятельности трахейной системы; трахейная вентиляция тела ослабляет возможность его перегрева, а наличие воздушных мешков устраняет эту возможность даже при интенсивной мышечной работе во время полета насекомого.

Маян Амирова

2021 (О). 25.Насекомые относятся к пойкилотермным животным, то есть температура их тела зависит от температуры окружающей среды. Однако, в некоторых случаях температура тела насекомого может превышать температуру окружающей среды. В каких случаях это возможно? Укажите не менее пяти случаев.
Элементы ответа:
1)Разогревание тела в результате работы мышц во время полёта (или перед полетом)
2) Разогревание за счёт аккумулирования солнечного тепла (разогревание на солнце)
3)Разогревание за счет питания тёплой пищей (кровь, свежий навоз)
4) Разогревание за счёт сбивания множества особей в комок в холодное время( нахождение в ульях или муравейниках).
5)Нахождение в гниющих остатках.
6)Тёмная окраска тела.
7)Образование тепла в процессе обмена веществ (при расщеплении пищи).

Среди электрических обогревателей, которые мы используем в быту, наиболее популярными сейчас становятся инфракрасные нагреватели. Они очень широко рекламируются в Интернете и в газетах. Говорят, что они намного эффективнее масляных радиаторов и тепловентиляторов. Меньше потребляют энергии, не сжигают кислород и т.д. Главное – они совершенно не вредные, никакого отрицательного воздействия на организм человека не оказывают. Далее

Одна моя знакомая отказывается есть пищу, которую кто-то разогрел в микроволновой печи. Всему виной - страшилки в Интернете. Далее

При приготовлении сырого мяса, особенно, домашней птицы, рыбы и яиц необходимо помнить, что только нагревание до надлежащей температуры убивают вредные бактерии. Далее

451 градус по Фаренгейту. Это название знаменитой книги Рэя Брэдбери. На языке оригинала звучит так: ‘Fahrenheit 451: The Temperature at which Book Paper Catches Fire, and Burns’. Действительно ли при этой температуре начинают гореть книги? Далее

насекомое

Кто только не населяет планету Земля! Если задуматься, люди – это может быть самый умный, но наверное, и самый малочисленный отряд. Вот, например, насекомые – это значительно более распространенный и многообразный класс живых существ. В процессе длительной эволюции насекомые приспособились к определенным условиям жизни.

Тепловой обмен считают основным и ведущим энергетическим процессом в отношениях организма и среды. Температура определяет состояние тел и все важнейшие явления природы. Характерно, что насекомые — пойкилотермные (холоднокровные) животные.

У насекомых температура тела и все происходящие в нем химические реакции зависят от температуры окружающей среды, от поглощения и отражения лучистой энергии солнца покровами тела.

Основное значение температуры в жизни насекомых отразилось в бесконечном разнообразии их внешнего облика — величине, форме, окраске. Мелкие насекомые имеют менее постоянную температуру тела, чем крупные.

Температуру тела хорошо сохраняет густой волосяной покров, а различная скульптура кожных покровов (бугорки, шипики, гребни) способствует усилению теплоотдачи. Окраска покровов тела имеет огромное значение в регулировании температуры тела насекомого. В прохладном и влажном климате насекомые имеют обычно темную окраску (черная, коричневая или темно-серая), в сухом и жарком — более светлую (белая, желтая, оранжевая, светло-серая). Серебристые или золотистые волоски усиливают отражение сильных потоков лучей. Экспериментально доказано, что светлая форма поглощает больше тепла и меньше влаги, а темная (например, у озимой совки) при более низких температурах — меньше, что объясняет явление сезонного диморфизма. Температура влияет на пигментацию и цвет обусловлен условиями метаболизма.

Если насекомое находится в состоянии покоя, то вследствие испарения с поверхности тела, температура его на 2-3 °С ниже окружающей. При работе мышц (в полете) температура резко повышается. Например, у летящей азиатской саранчи при 30-37 °С температура тела на 17-20 °С выше, а у сидящей не поднимается выше температуры, окружающей среды. Теплоотдача регулируется через испарение воды с поверхности тела и при дыхании.

Активность насекомых ограничена определенными температурными границами: верхним и нижним порогом развития. Большинство насекомых осенью впадают в оцепенение — анабиоз (замедление жизненных функций в результате охлаждения). При достижении некоторого нижнего температурного предела, критической точки (-12 °С), начинается процесс затвердевания соков насекомого, при котором происходит освобождение скрытой энергии, и температура тела насекомого быстро, скачкообразно повышается почти до 0 °С. Повышение температуры тела — это последняя защитная реакция организма, которая может спасти его от гибели. После этого начинается замерзание соков тела и при снижении температуры до уровня, при котором произошло освобождение скрытого тепла, наступает смерть насекомого. Температурную зону, лежащую между критической точкой (-12 °С) и точкой гибели насекомого, называют зоной анабиоза.

Верхний порог развития насекомых не превышает 40 °С. Выше этого предела насекомые также впадают в тепловое оцепенение (диапаузу), что является гарантийной адаптацией вида. Температура 52 °С является летальной, т. е. насекомое гибнет, так как коллоиды белков свертываются.

Активная жизнь насекомых протекает при температуре 10-35 °С. Наиболее благоприятна температура 26 °С, при которой скорость развития средняя, плодовитость максимальная, а смертность минимальная. Оптимальная температура непостоянна, зависит от комплекса действующих факторов в сочетании с температурой.

С повышением температуры ускоряются все процессы метаболизма. Например, божья коровка при температуре 27 °С развивается около 16 дней, а при температуре 22 °С — 30 дней.

Выявлены случаи оживления насекомых после полного замерзания их соков и, следовательно, почти полного прекращения обмена веществ. Например, гусениц лугового мотылька и древоточца пахучего помещали в температуру до минус 190 °С, после чего насекомых оживляли. Погибали только клетки жирового тела, а мышечные и трахейные клетки не нарушались.

Сохранить жизнь при замерзании можно только при постепенном замораживании, когда соки тела превращаются в стеклообразное аморфное вещество без образования кристалликов льда. Процесс образования некристаллического вещества называют витрификацией. При нем не происходит перестройки молекулярных рядов, поэтому возможно оживление. Это явление (витрификация) было изучено на яичном белке, протоплазме, простейших, желатине и других веществах.

Гибель насекомого под воздействием низких температур обусловлена образованием кристаллов льда в тканях их тела, т. е. нарушением клеточной структуры, что ведет к необратимым физиологическим изменениям.

Переохлаждение соков играет физиологически защитную роль против кристаллизации воды. Уровень холодостойкости зависит от содержания воды в организме и физиологического состояния организма, от соотношения в нем связанной и свободной воды.

Таким образом, температура оказывает прямое и косвенное влияние на жизнь насекомых. Температура определяет плодовитость, продолжительность стадии развития, прожорливость, подвижность, смертность.

Системы, регулирующие температуру у насекомых, изучены лучше, чем у других беспозвоночных, с одной стороны, очевидно, в результате того, что у насекомых имеются многообразные терморегуляторные возможности. С другой стороны, это определяется несомненной простотой в содержании насекомых, что упрощает экспериментальные условия при проведении опытов. Большинство насекомых эндотермны. Однако некоторые виды насекомых, такие как бражники, пчелы и шмели могут в период подготовки к полету проявлять поведение, напоминающее эндотермных существ.

У всех видов насекомых развиты сложно функционирующие терморецепторы, расположенные на туловище, антеннах и конечностях. Кроме того, обнаружены чувствительные к температуре клетки в торакальных ганглиях. Так, к примеру, в условиях охлаждения второго и третьего торакальных сегментов у моли (Hyalophora) наблюдается прекращение ритмических движений мускулатуры, обеспечивающей полет насекомого. Вместо координированных движений отмечаются хаотичные подергивания, сопровождающиеся скрежетом (типа свиста) и напоминающие по своему характеру мышечную дрожь у плацентарных существ и птиц. Если грудные ганглии вновь согреть до оптимальной температуры, то, несмотря на низкую температуру окружающей среды, у моли прекращается мышечная дрожь и предпринимаются попытки взлететь.

Терморецепторы эндотермных насекомых, к которым, например относятся мухи и цикады, участвуют в координации терморегуляторного поведения. Насекомые лишь тогда проявляют двигательную активность ее и температура тела возрастает до I7-20T. В ночные часы они впадают в оцепенение, из которого выходят, когда температура воздуха после подъема солнца начинает повышаться. Различные виды кузнечиков располагают свое тело поперек направления солнечных лучей, что позволяет им в большей степени воспринимать энергию солнца и в течение короткого времени поднять температуру тела выше температуры окружающей среды. В течение дня они изменяют положение своего тела и, таким образом, регулируют теплопоглощение и теплоотдачу. Изменение температуры тела в течение дня позволяет кузнечикам развивать максимальную двигательную активность.

Эндотермные насекомые увеличивают перед полетом свою теплолопродукцию за счет ритмических сокращений летательной мускулатуры, в связи с чем температура во всей области грудной стенки и особенно, летательной мускулатуры, повышается"- Обычно при этом сокращаются одновременно обе группы летательной мускулатуры (сгибатели и разгибатели). Крылья при этом почти не движутся, или эти движения минимальны. В таких случаях температура грудной клетки достигает 40-41°С, что происходит за счет теплопродукции во время сокращений мускулатуры. Во время полета температура тела насекомых может лежать в широкой области окружающих температур - у шмелей она поддерживается на уровне от 10 до 25°С. Это возможно в результате того, что насекомые способны изменять как свою теплопродукцию, так и теплоотдачу. Чешуекрылые, бабочки, к примеру, переходят за счет соответствующего изменения положения крыльев от активного полета к скольжению и продукции при этом меньшего количества тепла.

Грудная клетка эндотермных насекомых за счет толстого, многочисленного волосяного покрова хорошо изолирована. Как только температура их грудной клетки превышает 40°С, сосуды кровеносной системы спины начинают ритмически сокращаться и перемещать холодную кровь из брюшной в грудную полость; температура груди за счет этого снижается. Прежде, чем кровь возвратится в сосуды спины, она на своем пути проходит через открытые участки тела, где охлаждается окружающей температурой, что также приводит к снижению температуры грудной клетки. Некоторые виды насекомых увеличивают теплоотдачу за счет возрастания испарения воды с внутренних или внешних поверхностей тела. Такой вид теплоотдачи может привести к нарушению содержания воды в организме. Только кровососущие насекомые, такие, к примеру, как муха цеце, могут кратковременно и эффективно испарять воду. Через расширенное трахеальное отверстие они увеличивают отдачу воды в виде пара и снижают за счет испарения температуру тела на 1,6°К ниже температуры окружающей среды.

При увеличении окружающей температуры насекомые вынуждены неоднократно прерывать свой полет, поскольку, несмотря на наличие многочисленных защитных механизмов, они не могут избежать перегревания организма. Во время покоя температура их тела снижается за счет незначительной теплопродукции и за счет большого температурного градиента между организмом и окружающей средой, что позволяет им вскоре вновь продолжить свой полет.

При низкой температуре окружающей среды повышенная теплоотдача в воздух (конвекция) во время полета так возрастает, что температура тела, несмотря на максимальную теплопродукцию, снижается. В этом случае насекомые также прерывают свой полет. За счет повторяющихся жужжаний они поднимают температуру своего тела до того уровня, при котором вновь становится возможным полет.

Успех полета пчел и шмелей во время поиска пищи зависит от температуры окружающей среды. Шмели начинают свои поиски уже при температуре воздуха от 5 до 10°С. Во время остановок на цветке они могут охлаждаться так сильно, что без дополнительных взмахов крыльями не могут вновь стартовать. При более высокой окружающей температуре (до 20°С) они покидают цветок, прежде чем температура их тела снизится ниже критического уровня. Небольшое расстояние на территории между цветами способствует успешному полету. При увеличении расстояния полета между двумя цветками температура тела шмеля может так повышаться, что даже при низкой температуре окружающей среды во время остановки на цветке она не всегда достигает оптимального уровня.

1. Может ли температура тела насекомых быть выше температуры окружающей?

2. Как можно объяснить совпадение формы нек.

Цветов или формы его частей у насекомых?


1. Температура тела насекомых быть выше температуры окружающей но в довольно редких случаях.

Как правило температура тела насекомых зависит от температуры окружающей среды.

Вообще критическая отметка это 60°С.

Это температурная граница при превышении которой начинается коагуляция белков.

В природе имеются случаи когда температура тела насекомых превышает температуру окр.

Например азиатская саранча в полете имеет температуру на на 10 - 15°С выше температуры среды которая составляет 37°С.

Однако в покое у саранчи температура ниже этой отметки

Эволюционно это стало возможным для оптимального протекания процесса опыления.

Цветок привлекает насекомое и имеет большие шансы для опыления.

Самец опыляя цветок думает что это самка).


К биологическим факторам окружающей человека среды относят : 1) солнечное излучение 2)температуру 3) воду 4) насекомых?

К биологическим факторам окружающей человека среды относят : 1) солнечное излучение 2)температуру 3) воду 4) насекомых.


ПЖЖЖЖ Части тела Рака, Паука, Насекомого?

ПЖЖЖЖ Части тела Рака, Паука, Насекомого.


Какие части тела характерны для насекомых?

Какие части тела характерны для насекомых?


В цветке какого растения температура обычно гораздо выше чем в окружающей среде?

В цветке какого растения температура обычно гораздо выше чем в окружающей среде.


Животные, температура тела которых не зависит от температуры окружающей среды, называются ?

Животные, температура тела которых не зависит от температуры окружающей среды, называются .


Почему температура в соцветиях выше , чем температура окружающего воздуха?

Почему температура в соцветиях выше , чем температура окружающего воздуха?


Почему температура в соцветиях выше , чем температура окружающего воздуха?

Почему температура в соцветиях выше , чем температура окружающего воздуха?


Как называются животные, у которых температура тела зависит от температуры окружающей среды?

Как называются животные, у которых температура тела зависит от температуры окружающей среды?


Какая зависимость наблюдается между температурой тела и окружающей средой?

Какая зависимость наблюдается между температурой тела и окружающей средой?


Почему температура в соцветиях выше, чем температура окружающего воздуха?

Почему температура в соцветиях выше, чем температура окружающего воздуха.


Промотор называется этот участок.


Форма тела червя - круглая. Окрас червя - краснобурого цвета. Строение червя : Передний конец 1)тела задниий конец тела 2)поясок 3)щетинки 4)слизь 5)сегменты Кожа червя влажная, с помощью нее ему легче передвигаться, а щетинки он использует в качес..


Нельзя точно сказать, потому что каждый ген содержит разное соотношение экзонов и интронов. Для этого белка будет содержать чуть более 900 нуклеотидов, соотвественно в ДНК будет > = 900 пар оснований 1 аминокислота - 3 нуклеотида 560 аминокислот - 1..


Размножение — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни. Для организмов, обладающих клеточным строением, в основе всех форм размножения лежит деление клетки. Разные с..


Дикая редька, пастушья сумка имеют стержневые корни, сетчатое жилкование листьев и две семядоли в семенах. По таким признакам их относят к классу двудольных. , цвтки дикой редьки и пастушьей сумки сходны между собой. Чашечка их цветков состоит из ..


1. Там и там холодно. В тундре есть растительность, а в арк. Пустыне нет - лед. 2. Северный олень (травоядный) , полярная сова (хищник) , лемминг ( насекомоядная) 3. Ягель медленно растет. Всего несколько миллиметров в год. Если олени съедают н..



1)Предмет изучения биологии - все проявления жизни. Строение и функции живых существ и их природных сообществ, распространение, происхождение и развитие, связи друг с другом и с неживой природой. 2)Из соображения безопастности и выживания : какие п..


Императорский пингвин - Царство : Животные Тип : Хордовые Класс : Птицы Отряд : Пингвинообразные Семейство : Пингвиновые Род : Императорские пингвины Вид : Императорский пингвин Антарктический пингвин - Царство : Животные Тип : Хордовые Класс : Птицы..


Экологическая изоляция— изоляция вследствие экологического разобщения. Популяции живут на общей территории, но в различных местах обитания и поэтому друг с другом не встречаются. В горах обычны два вида традесканции : один на скалистых вершинах, др..

© 2000-2022. При полном или частичном использовании материалов ссылка обязательна. 16+
Сайт защищён технологией reCAPTCHA, к которой применяются Политика конфиденциальности и Условия использования от Google.

Читайте также: