Может ли сохраняться механическая энергия системы на которую действуют внешние силы кратко

Обновлено: 28.06.2024

Прежде, чем говорить о сохранении энергии, рационально вспомнить что вообще такое энергия .

Здесь мы встречаемся с первым парадоксом. Никто до сих пор толком и не понял до конца, что такое энергия. Про это мы подробно писали в этом материале . Но более или менее доходчивое определение есть.

Энергия (в переводе с греческого мощь) это скалярная физическая величина, являющаяся мерой форм движения и взаимодействия материи или мерой перехода движения материи из одних форм в другие.

В целом-то, определение понятное и логичное. Нужно было каким-то образом описать, сколько "воздействия" один объект может передать другому. Для этого ввели данный термин.

В случае перехода к механике всё ещё проще . Нужно как-то охарактеризовать, сколько работы запасено в некоторой ситуации. Иначе не скажешь. Та самая висящая на веревке гиря прекрасный тому пример. Если веревку обрезать, то гиря может совершить работу. Значит, гиря обладает потенциальной энергией . Потенциальная энергия превратится впоследствии в кинетическую.

Вот полетел камень, происходит превращение энергии и работа совершается.

Теперь вернемся к закону сохранения механической энергии .

Мы помним, что выделяется энергия потенциальная и энергия кинетическая. Потенциальная энергия фигурирует всегда, когда есть ситуации, аналогичные подвешенной гире. Кинетическая энергия - это энергия движения и она тоже есть всегда, когда происходит механическое движение. Подвешенная гиря, которая была срезана и начала движение, обладает уже кинетической энергией.

Из этих нехитрых примеров следует, что при механических воздействия энергия может неограниченное количество раз превращаться одна в другую . Потенциальная энергия переходит в кинетическую, а кинетическая переходит в потенциальную .

Вист кирпич на веревке и обладает потенциальной энергией. Веревку отрезают, кирпич летит и потенциальная энергия практически полностью превратилась в кинетическую. Упал кирпич на балкон и вновь обладает потенциальной энергией. Ведь он и дальше притягивается к земле, даже этажом ниже своего прежнего расположения.

Когда речь идёт о механической энергии важно понимать, что всегда рассматривается сумма механической и потенциальной энергий.

Рассуждения же о превращении энергии одна в другую подталкивают к мысли, что на самом-то деле энергия не появляется и не пропадает. Она просто превращается из одной формы энергии в другую. И браво, коллеги, мы пришли к закону сохранения механической энергии .

Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не пропадает. Энергия лишь переходит из одного вида в другой или от одного тела к другому.

Как вы заметили, слово "механической" тут отсутствует. Этот закон справедлив не только для механики. Он работает во всей нашей вселенной . Во всех областях физики и во всех сферах нашей жизни. Но применительно к механике закон сохранения энергии учитывает преимущественно кинетическую энергию тела, потенциальную энергию тела и иногда ещё внутреннюю энергию тела (если происходит передача энергии движения в нагрев и т.п.)

Теперь посмотрим, как сформулирован закон сохранения механической энергии в книгах :

В замкнутой и консервативной системе тел полная механическая энергия сохраняется: ΔЕ = 0 или Е потенциальная 1 + Е кинетическая 1 = Е потенциальная 2 + Е кинетическая 2

Почему замкнутой ? Потому что если система не замкнутая, то она будет обмениваться энергией с другими участниками процесса и энергия в итоге рассеивается.

Скажем, запустили мы всем известные шарики для демонстрации закона сохранения импульса. Они качаются и передают друг другу энергию в одной замкнутой системе. Замкнутая система тут - это рама с нитями и сами шарики. Будь система не замкнутая, шарики должны были бы бить, скажем, по внешней стенке.

Почему консервативная и что это значит? Потому что если на систему воздействуют внешние силы, то они внесут свой вклад в процесс и уравнение, где общее изменение энергии равно нулю уже будет несправедливым.

Все действующие на систему внешние и внутренние непотенциальные силы не должны совершать работы, а все потенциальные силы должны быть стационарны. Это и будет консервативная система.

Следовательно, если рассматривать систему, где происходит механическое движение и подул ветер, который заставил тело получить внешнюю энергию, уже не консервативная. Модель движения автомобиля по дороге далеко не консервативная .

Правда тут возникает один интересный вопрос. Часто обозначенные выше обстоятельства воспринимаются как те, которые мешают работать закону сохранения энергии.

Обратите внимание, что закон сохранения энергии работает всегда . Вне зависимости от того, консервативная ли система и замкнутая ли она. Только вот записать тогда его в форме, привычной нам из школьного учебника уже не получится. Реальная картина будет намного сложнее. Приведенная формулировка закона сохранения механической энергии используется для упрощения ситуации.

Так, простой пример с падением срезанной с веревки гири на пол можно значительно усложнить. Гиря висела на веревке, обладала потенциальной энергией. Веревку отрезали. Потенциальная энергия должна была полностью передаться падающей гири и превратиться в кинетическую, но мы не учли, что была ещё веревка, которая тоже получила часть этой энергии. Пока гиря падала, она воздействовала на воздух и испытывала трение. Нагрелись воздух и гиря. При падении она частично сломала пол, на который упала и перешла во внутреннюю энергию. И пусть всё это значения с приставкой микро-, но реальная картина должна учитывать всё это. Именно поэтому прыгающий мяч рано или поздно остановится.

Отсюда было логично предложено упрощать подобные взаимодействия и рассматривать гипотетические консервативные и замкнутые системы .

конечно. Например - если внешние силы взимно компенсируются. Или действуют под прямым углом к скорости.

Например, если планета летает по кругу, на нее действует тяготение Солнца - а энергия не меняется (тут как раз сила ортогональна скорости)

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Для корректного отображения информации рекомендуем добавить наш сайт в исключения вашего блокировщика баннеров.


Для просмотра в натуральную величину нажмите на картинку

Идея нашего сайта - развиваться в направлении помощи ученикам школ и студентам. Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт, временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят за этим. И если сегодня вы попали на наш сайт и не нашли решения, то завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам - это из поисковых систем при наборе запроса, содержащего условие задачи


Физика — такая клевая наука, в которой ничего не исчезает бесследно. В том числе энергия. Вернее: особенно энергия. О том, куда она девается, если не бесследно — в этой статье.

О чем эта статья:

Энергия: что это такое

Поэтому давайте условимся здесь и сейчас, что энергия — это запас, который пойдет на совершение работы.

Энергия бывает разных видов: механическая, электрическая, внутренняя, гравитационная и так далее. Измеряется она в Джоулях (Дж) и чаще всего обозначается буквой E.

Механическая энергия

Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Она представляет собой совокупность кинетической и потенциальной энергии. Кинетическая энергия — это энергия действия. Потенциальная — ожидания действия.

Еще один примерчик: лыжник скатывается с горы. В самом начале — на вершине — у него максимальная потенциальная энергия, потому что он в режиме ожидания действия (ждущий режим 😂), а внизу горы он уже явно двигается, а не ждет, когда с ним это случится — получается, внизу горы кинетическая энергия.

Кинетическая энергия

Еще разок: кинетическая энергия — это энергия действия. Величина, которая очевиднее всего характеризует действие — это скорость. Соответственно, в формуле кинетической энергии точно должна присутствовать скорость.

Кинетическая энергия

Ек — кинетическая энергия [Дж]

m — масса тела [кг]

Чем быстрее движется тело, тем больше его кинетическая энергия. И наоборот — чем медленнее, тем меньше кинетическая энергия.

Задачка раз

Определить кинетическую энергию собаченьки массой 10 кг, если она бежала за мячом с постоянной скоростью 2 м/с.

Решение:

Формула кинетической энергии

Ответ: кинетическая энергия пёсы равна 20 Дж.

Задачка два

Найти скорость бегущего по опушке гнома, если его масса равна 20 кг, а его кинетическая энергия — 40 Дж

Решение:

Формула кинетической энергии

Ответ: гном бежал со скоростью 2 м/с.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Потенциальная энергия

В отличие от кинетической энергии, потенциальная чаще всего тем меньше, чем скорость больше. Потенциальная энергия — это энергия ожидания действия.

Например, потенциальная энергия у сжатой пружины будет очень велика, потому что такая конструкция может привести к действию, а следовательно — к увеличению кинетической энергии. То же самое происходит, если тело поднять на высоту. Чем выше мы поднимаем тело, тем больше его потенциальная энергия.

Потенциальная энергия деформированной пружины

Еп — потенциальная энергия [Дж]

k — жесткость [Н/м]

x — удлинение пружины [м]

Потенциальная энергия в поле тяжести

Еп = mgh

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g ≃ 9,8 м/с 2

Задачка раз

Найти потенциальную энергию рака массой 0,1 кг, который свистит на горе высотой 2500 метров. Ускорение свободного падения считать равным 9,8 м/с 2 .

Решение:

Формула потенциальной энергии Еп = mgh

Eп = 0,1 · 9,8 · 2500 = 2450 Дж

Ответ: потенциальная энергия рака, свистящего на горе, равна 2450 Дж.

Задачка два

Найти высоту горки, с которой собирается скатиться лыжник массой 65 кг, если его потенциальная энергия равна 637 кДж. Ускорение свободного падения считать равным 9,8 м/с 2 .

Решение:

Формула потенциальной энергии Еп = mgh

Переведем 637 кДж в Джоули.

637 кДж = 637000 Дж

Ответ: высота горы равна 1000 метров.

Задачка три

Два шара разной массы подняты на разную высоту относительно поверхности стола (см. рисунок). Сравните значения потенциальной энергии шаров E1 и E2. Считать, что потенциальная энергия отсчитывается от уровня крышки стола.


Задача для самопроверки

Решение:

Потенциальная энергия вычисляется по формуле: E = mgh

По условию задачи

Таким образом, получим, что

Закон сохранения энергии

В физике и правда ничего не исчезает бесследно. Чтобы это как-то выразить, используют законы сохранения. В случае с энергией — Закон сохранения энергии.

Закон сохранения энергии

Полная механическая энергия замкнутой системы остается постоянной.

Полная механическая энергия — это сумма кинетической и потенциальной энергий. Математически этот закон описывается так:

Закон сохранения энергии

Еполн. мех. — полная механическая энергия системы [Дж]

Еп — потенциальная энергия [Дж]

Ек — кинетическая энергия [Дж]

const — постоянная величина

Задачка раз

Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. Как изменится высота подъёма мяча при увеличении начальной скорости мяча в 2 раза?

Решение:

Должен выполняться закон сохранения энергии:

В начальный момент времени высота равна нулю, значит Еп = 0. В этот же момент времени Ек максимальна.

В конечный момент времени все наоборот — кинетическая энергия равна нулю, так как мяч уже не может лететь выше, а вот потенциальная максимальна, так как мяч докинули до максимальной высоты.

Это можно описать соотношением:

Разделим на массу левую и правую часть

Из соотношения видно, что высота прямо пропорциональна квадрату начальной скорости, значит при увеличении начальной скорости мяча в два раза, высота должна увеличиться в 4 раза.

Ответ: высота увеличится в 4 раза

Задачка два

Тело массой m, брошенное с поверхности земли вертикально вверх с начальной скоростью v0, поднялось на максимальную высоту h0. Сопротивление воздуха пренебрежимо мало. Чему будет равна полная механическая энергия тела на некоторой промежуточной высоте h?

Решение

По закону сохранения энергии полная механическая энергия изолированной системы остаётся постоянной. В максимальной точке подъёма скорость тела равна нулю, а значит, оно будет обладать исключительно потенциальной энергией Емех = Еп = mgh0.

Таким образом, на некоторой промежуточной высоте h, тело будет обладать и кинетической и потенциальной энергией, но их сумма будет иметь значение Емех = mgh0.

Задачка три

Мяч массой 100 г бросили вертикально вверх с поверхности земли с начальной скоростью 6 м/с. На какой высоте относительно земли мяч имел скорость 2 м/с? Сопротивлением воздуха пренебречь.

Решение:

Переведем массу из граммов в килограммы:

m = 100 г = 0,1 кг

У поверхности земли полная механическая энергия мяча равна его кинетической энергии:

На высоте h потенциальная энергия мяча есть разность полной механической энергии и кинетической энергии:

Ответ: мяч имел скорость 2 м/с на высоте 1,6 м

Переход механической энергии во внутреннюю

Внутренняя энергия — это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия. То есть та энергия, которая запасена у тела за счет его собственных параметров.

Часто механическая энергия переходит во внутреннюю. Происходит этот процесс путем совершения механической работы над телом. Например, если сгибать и разгибать проволоку — она будет нагреваться.

Или если кинуть мяч в стену, часть энергии при ударе перейдет во внутреннюю.

Задачка

Какая часть начальной кинетической энергии мяча при ударе о стену перейдет во внутреннюю, если полная механическая энергия вначале в два раза больше, чем в конце?

Решение:

В самом начале у мяча есть только кинетическая энергия, то есть Емех = Ек.

В конце механическая энергия равна половине начальной, то есть Емех/2 = Ек/2

Часть энергии уходит во внутреннюю, значит Еполн = Емех/2 + Евнутр

Ответ: во внутреннюю перейдет половина начальной кинетической энергии

Закон сохранения энергии в тепловых процессах

Чтобы закон сохранения энергии для тепловых процессов был сформулирован, было сделано два важных шага. Сначала французский математик и физик Жан Батист Фурье установил один из основных законов теплопроводности. А потом Сади Карно определил, что тепловую энергию можно превратить в механическую.

Вот что сформулировал Фурье:

При переходе теплоты от более горячего тела к более холодному температуры тел постепенно выравниваются и становятся едиными для обоих тел — наступает состояние термодинамического равновесия.

Таким образом, первым важным открытием было открытие того факта, что все протекающие без участия внешних сил тепловые процессы необратимы.

Дальше Карно установил, что тепловую энергию, которой обладает на­гретое тело, непосредственно невозможно превратить в механиче­скую энергию для производства работы. Это можно сделать, только если часть тепловой энергии тела с большей температурой передать другому телу с меньшей температурой и, следовательно, нагреть его до более высокой температуры.

Закон сохранения энергии в тепловых процессах

При теплообмене двух или нескольких тел абсолютное количество теплоты, которое отдано более нагретым телом, равно количеству теплоты, которое получено менее нагретым телом.

Математически его можно описать так:

Уравнение теплового баланса

Qотд — отданное системой количество теплоты [Дж]

Qпол — полученное системой количество теплоты [Дж]

Данное равенство называется уравнением теплового баланса. В реальных опытах обычно получается, что отданное более нагретым телом количество теплоты больше количества теплоты, полученного менее нагретым телом:

Это объясняется тем, что некоторое количество теплоты при теплообмене передаётся окружающему воздуху, а ещё часть — сосуду, в котором происходит теплообмен.

Чтобы разобраться в задачках, читайте нашу статью про агрегатные состояния вещества.

Задачка раз

Сколько граммов спирта нужно сжечь в спиртовке, чтобы нагреть на ней воду массой 580 г на 80 °С, если учесть, что на нагревание пошло 20% затраченной энергии.

Удельная теплота сгорания спирта 2,9 · 107 Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг · °С).

Решение:

При нагревании тело получает количество теплоты

где c — удельная теплоемкость вещества

При сгорании тела выделяется энергия

где q — удельная теплота сгорания топлива

По условию задачи нам известно, что на нагревание воды пошло 20% энергии, полученной при горении спирта.

Ответ: масса сгоревшего топлива равна 33,6 г.

Задачка два

Какое минимальное количество теплоты необходимо для превращения в воду 500 г льда, взятого при температуре −10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь. Удельная теплоемкость льда равна 2100 Дж/кг · ℃, удельная теплота плавления льда равна 3,3 · 10 5 Дж/кг.

Решение:

Для нагревания льда до температуры плавления необходимо:

Qнагрев = 2100 · 0,5 · (10 − 0) = 10 500 Дж

Для превращения льда в воду:

Qпл = 3,3 · 10 5 · 0,5 = 165 000 Дж

Таким образом, для превращения необходимо затратить:

Q = Qнагрев + Qпл = 10 500 + 165 000 = 175 500 Дж = 175,5 кДж

Ответ: чтобы превратить 0,5 кг льда в воду при заданных условиях необходимо 175,5 кДж тепла.

Читайте также: