Кто разработал клеточную теорию кратко

Обновлено: 05.07.2024


Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений и мира животных, в котором клетка рассматривается в качестве общего структурного элемента растительных и животных организмов.

Содержание

Общие сведения

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден, Теодор Шванн и Рудольф Вирхов сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные положения клеточной теории

Современная клеточная теория включает следующие основные положения:

    — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.
  1. Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ. клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

  1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см.ниже).
  2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.
  3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
  4. Клетки многоклеточных тотипотенты, т. е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к диференцировке.

История

XVII век

XVIII век

XIX век

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

В 1831 году Роберт Браун описывает ядро и высказывает предположение, что оно является составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

В 1837 г. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения.


Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

  • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры — клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма — это тоже клетки, вполне сравнимые с клетками хряща и хорды.
  • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
  • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка — это комочек протоплазмы с содержащимся внутри ядром.

Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
  • Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
  • Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей как растениям, так и животным. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Клетки эпителия

Раковые клетки человека HeLa. Ядро (особенно ДНК) подсвечено голубым цветом. Клетки в центре и справа находятся в интерфазе. Клетка слева находится в процессе митоза.

Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Клеточная теория

Биология

Клеточная теория — это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов. Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный (более трехсот лет) период накопления наблюдений о строении различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с усовершенствованием различных оптических методов исследований и расширением их применения.

Основные положения клеточной теории

Наблюдения Гука

Открытие Левенгука

Позднее А. Левенгук(1680) открыл мир одноклеточных организмов и впервые увидел клетки животных (эритроциты). Позднее клетки были вновь описаны животных, но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка. Прогресс в изучении микроанатомии клетки связан с развитием микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое – протоплазма. В протоплазме был открыт постоянный компонент клетки — ядро.

Клеточная теория Шванна и Шлейдена

Клеточная теория

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужила главным фундаментом для развития таких дисциплин как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя за более чем сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток.

Постулаты клеточной теории

В настоящее время клеточная теория постулирует следующее:

1. Клетка — элементарная единица живого: вне клетки нет жизни.

2. Клетки сходны (гомологичны) по строению и по основным свойствам.

3. Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала (ДНК): клетка от клетки.

4. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

Клетка — элементарная единица живого

Что такое клетка

Что же такое клетка, какое ей можно дать общее определение? Из школьного курса известно, что разнообразные клетки имеют совершенно несходную морфологию, их внешний вид и величины значительно расходятся. Действительно, что общего между звездчатой формой некоторых нервных клеток, шаровидной формой лейкоцита и трубкообразной формой клетки эндотелия. Такое же разнообразие форм встречается и среди микроорганизмов. Поэтому мы должны находить общность живых объектов не в их внешней форме, а в общности их внутренней организации.

Среди живых организмов встречаются два типа организации клеток. К наиболее простому типу строения можно отнести клетки бактерий и синезеленых водорослей (цианобактерий), к более высокоорганизованному — клетки всех остальных живых существ, начиная от низших растений и кончая человеком.

Прокариотические и эукариотические клетки

Принято называть клетки бактерий и синезеленых водорослей прокариотическими (доядерными клетками), а клетки всех остальных представителей живого — эукариотическими (собственно ядерными), потому что у последних обязательной структурой служит клеточное ядро, отделенное от цитоплазмы ядерной оболочкой. Клетки прокариот сильно отличаются от клеток эукариот: они не только не имеют оформленного ядра, но и не имеют многих органоидов (митохондрий, лизосом, аппарата Гольджи и так далее). Более подробно об этих различиях мы поговорим на соответствующем уроке. А пока что разберемся с тем, что объединяет эти организмы и почему же все-таки клетки всего живого сходны по строению.

Несмотря на четкие морфологические отличия, и прокариотические и эукариотические клетки имеют много общего, что и позволяет отнести их к одной, клеточной, системе организации живого. И те и другие одеты плазматической мембраной, обладающей сходной функцией активного переноса веществ из клетки и внутрь ее; синтез белка у них происходит на рибосомах; сходны и другие процессы, такие, как синтез РНК и репликация ДНК, похожи и биоэнергетические процессы. Исходя из вышесказанного, клетке можно дать общее определение.

Клетка - определение

Клетка — это ограниченная активной мембраной упорядоченная структурированнаясистема биополимеров и их макромолекулярных комплексов, участвующих вединой совокупности метаболических и энергетических процессов,осуществляющих поддержание и воспроизведение всей системы в целом.

У многоклеточных организмов часть клеток утрачивает свойство размножаться, но они остаются клетками до тех пор, пока способны осуществлять синтетические процессы, регулировать транспорт веществ между клеткой и средой, использовать для этих процессов энергию. Есть примеры безъядерных клеток (эритроциты млекопитающих, некоторые мышечные клетки моллюсков), это скорее не собственно клетки, а их остатки — одетые мембраной участки цитоплазмы с ограниченными функциональными потенциями.

Одно время первый постулат клеточной теории подвергался многочисленным нападкам и критике. Некоторые авторы указывали, что в многоклеточных организмах, особенно у животных, кроме клеток существуют и межклеточные, промежуточные вещества, которые тоже, казалось бы, обладали свойствами живого. Однако было показано, что межклеточные вещества (так называемое основное вещество и волокна соединительной ткани) представляют собой не самостоятельные образования, а продукты активности отдельных групп клеток.

Гомологичность клеток

Это обобщение, сделанное еще Т. Шванном, нашло свое подтверждение и развитие в современной цитологии, использующей новые достижения техники, такие, как электронный микроскоп. Гомологичность строения клеток наблюдается внутри каждого из типов клеток: прокариотическом и эукариотическом. Хорошо известно разнообразие клеток как бактериальных, так и высших организмов. Такое одновременное сходство строения и разнообразие форм определяются тем, что клеточные функции можно грубо подразделить на две группы: обязательные и факультативные. Обязательные функции, направленные на поддержание жизнеспособности самих клеток, осуществляются специальными внутриклеточными структурами.

Та же картина наблюдается и для эукариотических клеток. При изучении клеток растений и животных бросается в глаза разительное сходство не только в микроскопическом строении этих клеток, но и в деталях строения их отдельных компонентов. У эукариот, как и у прокариот, клетки отделены друг от друга или от внешней среды активной плазматической мембраной, которая может принимать участие в выделении веществ из клетки и построении внеклеточных структур, что особенно выражено у растений. У всех эукариотических клеток от низших грибов до позвоночных всегда имеется ядро, принципиально сходное по построению у разных организмов. Строение и функции внутриклеточных структур также в принципе определяются гомологичностью общеклеточных функций, связанных с поддержанием самой живой системы (синтез нуклеиновых кислот и белков, биоэнергетика клетки и т.д.).

Одновременно мы видим и разнообразие клеток даже в пределах одного многоклеточного организма. Например, по форме мало похожи друг на друга такие клетки, как мышечная или нервная. Современная цитология показывает, что различие клеток связано со специализацией их функций, с развитием особых функциональных клеточных аппаратов. Так, если рассматривать мышечную клетку, то в ней кроме общеклеточных структур (мембранные системы ретикулума, аппарат Гольджи, рибосомы и др.) встречаются в большом количестве фибриллярные компоненты, обеспечивающие специальную функциональную нагрузку, характерную для этой клетки.

Структурное разнообразие клеток многоклеточного организма можно объяснить отличием их специальных функций, осуществляющихся данной клеткой как бы на фоне общих, обязательных клеточных функций. Другими словами, гомологичность в строении клеток определяется сходством общеклеточных функций, направленных на поддержание жизни самих клеток и на их размножение. Разнообразие же в строении клеток многоклеточных организмов — результат функциональной специализации.

Клетка от клетки

Размножение прокариотических и эукариотических клеток происходит толькопутем деления исходной клетки, которому предшествует воспроизведение еегенетического материала (редупликация ДНК).

Всякая клетка от клетки

У эукариотических клеток единственно полноценным способом деления является митоз (или мейоз при образовании половых клеток). При этом образуется специальный аппарат клеточного деления — клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы, до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических (как растительных, так и животных) клеток.

Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот.

Клетка и многоклеточный организм

Роль отдельных клеток в многоклеточном организме подвергалась неоднократному обсуждению и критике и претерпела наибольшие изменения. Т. Шванн представлял себе многогранную деятельность организма как сумму жизнедеятельности отдельных клеток. Действительно, какую бы сторону деятельности целого организма мы ни брали, будь то реакция на раздражение или движение, иммунные реакции, выделение и многое другое, каждая из них осуществляется специализированными клетками. Клетка — это единица функционирования в многоклеточном организме.

Но клетки объединены в функциональные системы, в ткани и органы, которые находятся во взаимной связи друг с другом. Поэтому нет смысла в сложных организмах искать главные органы или главные клетки. Многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом. Специализация частей многоклеточного единого организма, расчлененность его функций дают ему большие возможности приспособления для размножения отдельных индивидуумов, для сохранения вида.

Клетка в многоклеточном организме

В итоге можно сказать, что клетка в многоклеточном организме — это единица функционирования и развития. Кроме того, первоосновой всех нормальных и патологических реакций целостного организма является клетка. Действительно, все многочисленные свойства и функции организма выполняются клетками. Когда в организм попадают чужеродные белки, например бактериальные, то развивается иммунологическая реакция. При этом в крови появляются белки — антитела, которые связываются с чужими белками и их инактивируют.

Эти антитела представляют собой продукты синтетической активности определенных клеток-плазмацитов. Но чтобы плазмациты начали вырабатывать специфические антитела, необходимы работа и взаимодействие целого ряда специализированных клеток-лимфоцитов и макрофагов. Другой пример, простейший рефлекс — слюноотделение в ответ на предъявление пищи. Здесь проявляется очень сложная цепь клеточных функций: зрительные анализаторы (клетки) передают сигнал в кору головного мозга, где активируется целый ряд клеток, передающих сигналы на нейроны, которые посылают сигналы к разным клеткам слюнной железы, где одни клетки вырабатывают белковый секрет, другие выделяют слизистый секрет, третьи, мышечные, сокращаясь, выдавливают секрет в протоки, а затем в полость рта. Такие цепи последовательных функциональных актов отдельных групп клеток можно проследить на множестве примеров функциональных отправлений организма.

Жизнь нового организма начинается с зиготы — клетки, получившейся в результате слияния женской половой клетки (ооцита) со спермием. При делении зиготы возникает клеточное потомство, которое также делится, увеличивается в числе и приобретает новые свойства, специализируется, дифференцируется. Рост организма, увеличение его массы есть результат размножения клеток и выработки ими разнообразных продуктов (например, вещества кости или хряща).

Подводя итог рассмотрению современного состояния клеточной теории, нужно сказать, что именно клетка является единицей развития многоклеточных, единицей их строения, функционирования и единицей патологических изменений организма.



Сочинение на тему: Теория Раскольникова и жизнь.


  • Возникновение определения
  • Дальнейшее развитие знаний
  • Основные положения
  • Теория М. Шлейдена и Т. Шванна
  • Современный взгляд
  • Основания учения о клетках

Клеточная теория

Возникновение определения

Первый микроскоп

Внешний вид микроскопа и его практическое использование были подтверждены мыслями Гука, и исследование получило развитие. Ещё в 1670-х годах итальянский доктор Мальпенса и английский натуралист Дрю описали различные формы фибробластов в растениях. В то же время изобретатель микроскопа Левенгук исследует мир одноклеточных организмов — микробов, инфузорий, амёб. Будучи творческим человеком, ученый-создатель впервые изобразил их на своих рисунках.

Учёные XVII века фактически представили, что клетки — это пустоты в бесконечной массе растительной ткани. Не было никакого существенного прогресса в этом направлении в XVIII веке. Но затем следует отметить работу немецкого учёного Ф. Вольфа, который пытался сравнить растения и животных.

Первые попытки проникнуть во внутреннюю вселенную клеток были предприняты в девятнадцатом веке, чему способствовали разработка улучшенных микроскопов и наличие ахроматических линз. Например, учёные Линк и Молденгауэр отметили независимые стенки в клетках, которые затем стали называть мембранами. А в 1830 году ботаник Роберт Броун впервые описал ядро клетки как значительную её часть.

Дальнейшее развитие знаний

Во второй половине XVII в. изучение клетки и её структуры находится в центре интересов, а также повышено внимание к отдельной науке — цитологии.

Клеточная биология — раздел, изучающий фибробласты, которые являются основными функциональными единицами живых организмов и могут самостоятельно осуществлять все жизненные процессы. В отличие от целых клеток, ни одна из их отдельных частей не может жить самостоятельно.

Основные положения клеточной теории

Знание структуры и функционирования фибробластов являются фундаментальными для биологических наук. В частности, область включает вопросы, связанные со строительством клетки, её функцией, физиологией, жизненным циклом, нарушениями и смертью.

Фибробласты могут различаться между собой в зависимости от уровня сложности их построения, однако каждый из них имеет все химические и физические компоненты, которые необходимы для роста и разделения, и, следовательно, для жизни. Клетки разных организмов имеют значительные различия: как морфологические, так и биохимические.

Они могут быть отдельным одноклеточным организмом — одна часть выполняет все жизненно важные функции — или быть элементом (отдельные клетки адаптированы к определённым действиям). Клеточная конструкция не содержит вирусов — органические молекулы, построенные из белков, и нуклеиновые кислоты не проявляют признаков жизни вне клеток-хозяев и, согласно современным систематическим взглядам, не классифицируются как живые организмы.

Совершенствование методов и обнародование исследования позволило учёным повысить знания о строении и функционировании клеток:

Изучение клетки

  • определить взаимосвязь строения и функционирования некоторых органелл и фибробластов в целом;
  • понять, что любая клетка демонстрирует все качества, присущие организмам (растёт, размножается, обменивается веществами и энергией, является несколько подвижной, может адаптироваться к изменению и т. д. );
  • выяснить, что у органелл нет возможности показать эти качества отдельно;
  • выявить, что животные, грибы и растения имеют одинаковую структуру и функции с органеллами.

Все клетки взаимосвязаны и работают совместно, выполняя сложные задачи. Благодаря открытию Шванна и Шлейдена были дополнены знания. Современная научная теория использует передовые постулаты базовой доктрины в биологии.

Основные положения

Все живые организмы состоят из клеток. Есть клеточно-элементарный ряд строения, функционирования и формирования организмов. Существуют неклеточные формы жизни — микробы, но они проявляют свои качества только в фибробластах живых организмов.

Основные положения клеточной теории:

Клеточная теория шванна и шлейдена

  • структурно-функциональные единицы — элементы функционирования и формирования всех организмов, способные к самовоспроизводству и обновлению;
  • все фибробласты одноклеточных и многоклеточных организмов сходны по своей структуре, химическому составу, основным проявлениям жизнедеятельности и метаболизма;
  • размножение структурно-функциональных единиц происходит методом их разделения, любая новая клетка появляется в результате отделения исходной (материнской) частицы;
  • в сложных многоклеточных организмах фибробласты конструируются в соответствии с их собственными функциями и образуют ткани, которые тесно связаны между собой и подчинены регуляции.

Эти положения оправдывают особенности происхождения организмов, согласованность всей органики. Благодаря авторской доктрине стало ясно, что сама клетка считается важным компонентом организмов.

Фибробласт — исключительно малая доля организма, аспект её делимости, наделённый жизнью и всеми основными элементами организма. Как простая живая система, она лежит в основании структуры и формирования всех организмов. На клеточном уровне проявляются все её качества жизни.

Теория М. Шлейдена и Т. Шванна

Немецкие учёные внесли большой вклад в развитие исследований и стали основоположниками формулировки о фибробластах. Клеточная теория Шванна и Шлейдена стала быстро известной в научных кругах.

В частности, они определили, что роль клеточной теории в науке:

Роль клеточной теории в науке

  1. Всё живое состоит из небольших похожих частей, что растут и развиваются по общим законам.
  2. Артельным принципом формирования примитивных частей тела является образование клеток.
  3. Любая клетка представляет собой сложное биоустройство и считается отдельным организмом.
  4. В функциональных единицах происходят различные процессы: деление, увеличение объёмов, утолщение и дальнейшее развитие.

Благодаря этим открытиям стало возможным утверждать, что клетки являются не только основными структурными единицами, но и функциональными элементами всех живых организмов, а такие процессы, как рост или размножение, являются результатом изменений, происходящих внутри самих частиц.

Современный взгляд

Идеи учёных доктрины были современными и революционными для того времени, с тех пор развитие в этом направлении продолжается.

Стоит выделить следующее:

Клетка строение

  1. Фибробластовая структура — ведущая, но не единственная форма существования жизни. Из-за того, что в клетках присутствуют микробы (обнаруженные русским учёным Д. Ивановским в 1892 г.), их собственные качества могут проявить себя внутри них.
  2. Есть идентичные фибробласты: прокариотические, немембранные и эукариотические. Структурно-функциональные единицы растений и животных являются символически биологическими с более высокой организационной ценностью, чем микробные клетки.
  3. Клеточная доктрина прошлого оценивала организм как оригинальное наполнение клетками, игнорируя его единство. Прогрессивная теория оценивает это с точки зрения единения.
  4. Другая клеточная доктрина игнорировала неклеточные структуры, временами они были приняты неодушевлёнными. Фактически в организме, помимо фибробластов, имеются многоядерные неклеточные структуры (синциты, симпласты) без каких-либо ядерных межклеточных элементов с возможностью метаболизма.

И вполне возможно, что в будущем клеточное учение получит последующее образование, биологи найдут новые, неизвестные ранее части клетки, механизмы её работы. И чрезвычайно интересным вопросом является проблема старения фибробласта и его смерти. Многие учёные хотят разработать системы, позволяющие восстановить жизнь.

Основания учения о клетках

В литературе можно найти разное количество постулатов прогрессивного клеточного учения, абсолютная версия имеет 5 оснований:

История создания клеточной теории

  1. Клеткой считается самая короткая (элементарная) актуальная типовая система, проводящая размножение, формирование и функционирование организмов. Неклеточные структуры нельзя назвать живыми.
  2. Функциональные единицы образуются только методом разделения.
  3. Химический состав и вид структурных единиц всех организмов по доказательству идентичны.
  4. Многоклеточный организм расширяется методом разделения одной или нескольких первичных фибробластов.
  5. Подобная клеточная структура организмов говорит об одном источнике их происхождения.

Согласно теории происхождения жизни на Земле, первые клетки появились более 4 миллиардов лет назад. Это произошло в результате взаимосвязи органических соединений. Но прежде должны были быть созданы элементы, которые показывали черты живых существ.

Несмотря на большое разнообразие организации известных организмов (бактерий, растений и животных), их необычное сходство на клеточном уровне может отразить единство живого мира.

Читайте также: