Кратко что такое энергосистема

Обновлено: 05.07.2024

Вот смотрите. Электричество у нас дома -- из розетки. В розетке оно берётся от электростанции, откуда передаётся по проводам. Но электростанций много, как же они взаимодействуют друг с другом? И что будет, если что-нибудь случится с "моей" станцией, от которой я сейчас запитан?

А чтобы почти ничего и не было для потребителей, чтобы у них всегда было электричество, когда-то давно, примерно лет сто назад, умные люди додумались, что станции надо объединять для совместной работы. Идея простая -- что-то случилось на одной электростанции, её нагрузку разделят между собой другие. Ну а дальше дело за малым, нужно фактически организовать эту самую совместную работу. Дело техники. Которое тем не менее продолжается до сих пор.

Маленькая историческая справка. Впервые принципиальную возможность параллельной работы станций разных типов показал Михаил Андреевич Шателен. В 1913 году в Пятигорске он поставил на параллельную работу тепловую и гидравлическую станции, то есть, по большому счёту, объединил их в одну систему.

Так и стали впоследствии формировать электроэнергетические системы (ЭЭС) , которые сильно позже, уже после Великой Отечественной, тоже стали объединять уже в Объединённые энергетические системы (ОЭС) (извините за тавтологию, но это термин).

Самая главная фишка ЭЭС в том, что мы не рассматриваем отдельно генерацию, отдельно сеть (передачу и распределение электроэнергии), отдельно потребление. В ЭЭС это всё едино, это просто разные аспекты одного процесса.

Получается, что все электростанции работают через сети на всех потребителей. И вы наверняка уже осознали, что управлять этим масштабным хозяйством непросто. Поэтому тоже лет сто назад создали оперативно-диспетчерскую службу.

ОЭСы стали объединять дальше, в Единую энергетическую систему СССР, начало которой положила линия 400 кВ Куйбышеская ГЭС - Москва.

Союза не стало, и энергосистема тоже слегка уменьшилась. ЕЭС России - это объединение только в пределах нашей страны. В неё входят 7 ОЭС (см. картинку ниже).

Оперативно-диспетчерское управление всем этим добром осуществляет Системный оператор Единой энергетической системы России, потомок Центрального диспетчерского управления ЕЭС СССР.

Вот ссылка на страничку с этой картой, можете пойти поглядеть, в разные ОЭС потыкать, это интересно.

И по большому секрету я вам расскажу, что ЕЭС СССР никуда и не делась. Просто сейчас она называется ЕЭС России и параллельно работающие системы других стран. А конкретнее так:

Параллельно с ЕЭС России работают энергосистемы Азербайджана, Белоруссии, Грузии, Казахстана, Латвии, Литвы, Монголии, Украины и Эстонии. Через энергосистему Казахстана параллельно с ЕЭС России работают энергосистемы Центральной Азии - Киргизии и Узбекистана. Через энергосистему Украины – энергосистема Молдавии. По линиям переменного тока осуществлялся обмен электроэнергией с энергосистемой Абхазии и передача электроэнергии в энергосистему Южной Осетии.

От электросетей России, в том числе, через вставки постоянного тока, осуществляется передача электроэнергии в энергосистемы Китая, Норвегии и Финляндии.

Через устройство Выборгского преобразовательного комплекса совместно (несинхронно) с ЕЭС России работает энергосистема Финляндии, входящая в энергообъединение энергосистем Скандинавии НОРДЕЛ .

Кроме того, параллельно с энергосистемами Норвегии и Финляндии работают отдельные генераторы ГЭС Кольской и Ленинградской энергосистем, а также один из блоков Северо-Западной ТЭЦ.

Вот такая у нас интересная и большая энергосистема. А я желаю всем тепла и света и прощаюсь, надеюсь, ненадолго.

Не стесняйтесь поддерживать моё маленькое начинание. Лайки, репосты и оживлённые комменты поддерживают и воодушевляют.

Энергетической системой называют совокупность установок и устройств, предназначенных для выработки, преобразования, распределения и потребления тепловой и электрической энергии, связанных единым режимом работы. Основными элементами энергосистемы являются электрические станции, тепловые сети, линии электропередач, преобразовательные установки, электрические подстанции, предназначенные для изменения параметров электроэнергии и распределения её по различным участкам электрической сети, нагрузки электрической системы, потребляющие электроэнергию и преобразующие её в другие, определяемые технологией, виды энергии.

Электрическая часть энергосистемы называется электрической системой. Самым ответственным силовым элементом электрической системы являются электрические станции, на которых различные виды первичных энергоресурсов преобразуются в электрическую энергию. На рис. 8.2. приведена схема электрической системы, в которой две электростанции осуществляют питание электроэнергией нескольких подстанций. Электрические станции связаны с потребителем электрической сетью, которая во многом обеспечивает надёжность и экономичность работы системы.

Передача электроэнергии осуществляется по линиям электропередач на напряжении, значительно превышающем напряжение синхронных генераторов. Для преобразования электроэнергии одного напряжения в электроэнергию другого напряжения используются трансформаторные подстанции с повышающими и понижающими трансформаторами.

Объединение электростанций на параллельную работу в составе энергосистемы обеспечивает целый ряд преимуществ, важнейшими из которых являются:

· повышение надёжности электроснабжения за счёт взаимного резервирования в аварийных режимах;

· повышение экономичности за счёт загрузки в первую очередь блоков с малыми удельными расходами топлива и передачи мощности по сети;

· снижение аварийного резерва мощности;

· возможность использования блоков с более высокой единичной мощностью;

· снижение установленной мощности электростанций объединённых систем за счёт смещения суточных максимумов нагрузки по часовым поясам.


Рис. 8.2. Схема электрической системы

Таким образом, объединение электрических станций позволяет снабжать потребителей от разных станций и осуществлять перераспределение потоков электроэнергии между объектами энергосистемы.

Рост объёмов потребления электроэнергии приводит к увеличению установленных мощностей электрических станций и перетоков по линиям электропередач. Обеспечить экономичность передачи электроэнергии в этих условиях можно путём освоения всё более высоких уровней напряжения. Напряжения, при которых обеспечивается длительная нормальная работа электроустановок, называют номинальными. Уровни номинальных напряжений определяются соответствующим ГОСТ и правилами устройства электроустановок (ПУЭ). В России применяется следующая шкала стандартных номинальных междуфазных напряжений трёхфазного тока частотой 50 Гц:

0,4; 6; 10; 20; 35; 110; 150; 220; 330; 500; 750 и 1150 кВ.

Как известно из электротехники, повышение напряжения при передаче одинаковой мощности обеспечивает пропорциональное снижение тока, что позволяет снизить сечение проводов ЛЭП и уменьшить затраты на цветной металл линий.

Снижение тока при сохранении сечения провода и его сопротивления R приводит к уменьшению потерь в ЛЭП, которые пропорциональны квадрату тока, и повышению КПД передачи. Правда, при повышении номинального напряжения как правило увеличиваются габариты электроустановок и возрастают затраты на обеспечение надёжной изоляции. Поэтому рациональные уровни напряжения определяются на основе технико-экономических расчётов, в которых учитываются все составляющие затрат.

В истории освоения высоких напряжений в России можно отметить следующие этапы:

· 1902 год, ЛЭП 70 кВ на нефтепромыслах в районе Баку;

· 1922 год, передача 110 кВ от Каширы до Москвы;

· 1932 год, передача 154 кВ от Днепровской ГЭС;

· 1933 год, передача 220 кВ от Нижне-Свирской ГЭС в г. Ленинград;

· 1956-1959 гг., ввод ЛЭП 400 кВ (позже переведены на 500 кВ);

· 1978 год, объединение ЕЭС СССР и ОЭС стран СЭВ линией 750 кВ;




· 1985 год, ЛЭП 1150 кВ Сибирь-Казахстан-Урал.

Основной особенностью работы электрических систем является одновременность процесса производства и потребления электрической энергии. Источники электроэнергии – вращающиеся системы, состоящие из первичных двигателей (турбин) и синхронных генераторов, для которых должен соблюдаться баланс между энергией, развиваемой турбиной и энергией, отдаваемой в систему генератором. Нарушение этого баланса приводит к изменению скорости вращения и частоты, т.е. к нарушению синхронизма и расстройству работы энергосистемы.

Для правильного планирования и ведения режима работы энергосистемы необходимо знать графики потребления мощности отдельными потребителями, узлами нагрузки и всей системой. Ежегодные наблюдения позволяют на основе статистических данных прогнозировать объёмы и характер потребления нагрузки в системе и планировать распределение нагрузки между электростанциями. На рис. 8.3, а показан график зимних суток небольшой энергосистемы. Наибольшую мощность по суточному графику называют суточным максимумом мощности Рмакс. Площадь, ограниченная суточным графиком, определяет электроэнергию за сутки

Среднесуточная мощность будет представлять собой

Важным показателем графика является продолжительность использования максимальной нагрузки, определяемая как время работы с наибольшей нагрузкой, в течение которого обеспечивается тот же объём электроэнергии

Рис. 8.3. Суточный график нагрузки системы:

a) – показатели графика; б) – распределение нагрузки между электростанциями.

Степень неравномерности графика определяется коэффициентом заполнения графика

Изменение мощности потребителей приводит к необходимости распределять эту мощность между станциями системы по критерию наименьших затрат на топливо. Возможность экономичного распределения обеспечивается совместной параллельной работой электростанций разного типа на общую сеть, что является одним из самых важных достоинств объединения их в систему.


Рис. 8.4 Условные обозначения некоторых элементов системы:

1–синхронный генератор; 2– трансформатор; 3–шины; 4–воздушная ЛЭП; 5– кабельная ЛЭП; 6–выключатель; 7– разъединитель.

На рис. 8.3,б показан пример условного распределения нагрузки между электростанциями. В базовой части графика 1 работают с постоянной нагрузкой АЭС и мощные КЭС. Часть 2 графика может заполняться ТЭЦ, работающими по вынужденному графику, определяемому тепловым потреблением. Участок 3 графика распределяется между блоками малых и средних КЭС, а пиковые зоны 4 и 5 выделяются для ГЭС, которые имеют водохранилища с суточным циклом регулирования.

Структура электрической системы и состав основных силовых объектов её определяются схемами электрических соединений. Схемы выполняются в соответствии с требованиями единой системы конструкторской документации (ЕСКД) с применением условных обозначений, нормируемыми соответствующими ГОСТ. На рис. 8.4 в качестве примера приведены условные обозначения для некоторых элементов электрических систем.

Завершая изучение темы отметим еще раз преимущества энергетических систем. Объединение всех потребителей электроэнергии в единую электрическую систему приводит к выравниванию графика нагрузки, что даёт возможность более полно использовать оборудование электрической системы, установленную мощность электростанций, которая должна быть рассчитана на максимальную мощность нагрузки. Объединение всех электростанций в систему позволяет обеспечить быструю, маневренную взаимопомощь между разными станциями при изменении нагрузки системы, а также при аварийных повреждениях её элементов. Работа электрических станций на общую сеть, а не на отдельных потребителей электроэнергии, даёт возможность концентрировать производство электроэнергии, внедрять мощные наиболее экономичные энергетические агрегаты, облегчает управление работой системы, её автоматизацию и кибернетизацию.

Централизованное распределение электроэнергии и концентрированное её производство снижают капитальные затраты на единицу установленной мощности, эксплуатационные расходы и себестоимость электроэнергии.

Энергетической системой называют совокупность установок и устройств, предназначенных для выработки, преобразования, распределения и потребления тепловой и электрической энергии, связанных единым режимом работы. Основными элементами энергосистемы являются электрические станции, тепловые сети, линии электропередач, преобразовательные установки, электрические подстанции, предназначенные для изменения параметров электроэнергии и распределения её по различным участкам электрической сети, нагрузки электрической системы, потребляющие электроэнергию и преобразующие её в другие, определяемые технологией, виды энергии.

Электрическая часть энергосистемы называется электрической системой. Самым ответственным силовым элементом электрической системы являются электрические станции, на которых различные виды первичных энергоресурсов преобразуются в электрическую энергию. На рис. 8.2. приведена схема электрической системы, в которой две электростанции осуществляют питание электроэнергией нескольких подстанций. Электрические станции связаны с потребителем электрической сетью, которая во многом обеспечивает надёжность и экономичность работы системы.

Передача электроэнергии осуществляется по линиям электропередач на напряжении, значительно превышающем напряжение синхронных генераторов. Для преобразования электроэнергии одного напряжения в электроэнергию другого напряжения используются трансформаторные подстанции с повышающими и понижающими трансформаторами.

Объединение электростанций на параллельную работу в составе энергосистемы обеспечивает целый ряд преимуществ, важнейшими из которых являются:

· повышение надёжности электроснабжения за счёт взаимного резервирования в аварийных режимах;

· повышение экономичности за счёт загрузки в первую очередь блоков с малыми удельными расходами топлива и передачи мощности по сети;

· снижение аварийного резерва мощности;

· возможность использования блоков с более высокой единичной мощностью;

· снижение установленной мощности электростанций объединённых систем за счёт смещения суточных максимумов нагрузки по часовым поясам.


Рис. 8.2. Схема электрической системы

Таким образом, объединение электрических станций позволяет снабжать потребителей от разных станций и осуществлять перераспределение потоков электроэнергии между объектами энергосистемы.

Рост объёмов потребления электроэнергии приводит к увеличению установленных мощностей электрических станций и перетоков по линиям электропередач. Обеспечить экономичность передачи электроэнергии в этих условиях можно путём освоения всё более высоких уровней напряжения. Напряжения, при которых обеспечивается длительная нормальная работа электроустановок, называют номинальными. Уровни номинальных напряжений определяются соответствующим ГОСТ и правилами устройства электроустановок (ПУЭ). В России применяется следующая шкала стандартных номинальных междуфазных напряжений трёхфазного тока частотой 50 Гц:

0,4; 6; 10; 20; 35; 110; 150; 220; 330; 500; 750 и 1150 кВ.

Как известно из электротехники, повышение напряжения при передаче одинаковой мощности обеспечивает пропорциональное снижение тока, что позволяет снизить сечение проводов ЛЭП и уменьшить затраты на цветной металл линий.

Снижение тока при сохранении сечения провода и его сопротивления R приводит к уменьшению потерь в ЛЭП, которые пропорциональны квадрату тока, и повышению КПД передачи. Правда, при повышении номинального напряжения как правило увеличиваются габариты электроустановок и возрастают затраты на обеспечение надёжной изоляции. Поэтому рациональные уровни напряжения определяются на основе технико-экономических расчётов, в которых учитываются все составляющие затрат.

В истории освоения высоких напряжений в России можно отметить следующие этапы:

· 1902 год, ЛЭП 70 кВ на нефтепромыслах в районе Баку;

· 1922 год, передача 110 кВ от Каширы до Москвы;

· 1932 год, передача 154 кВ от Днепровской ГЭС;

· 1933 год, передача 220 кВ от Нижне-Свирской ГЭС в г. Ленинград;

· 1956-1959 гг., ввод ЛЭП 400 кВ (позже переведены на 500 кВ);

· 1978 год, объединение ЕЭС СССР и ОЭС стран СЭВ линией 750 кВ;

· 1985 год, ЛЭП 1150 кВ Сибирь-Казахстан-Урал.

Основной особенностью работы электрических систем является одновременность процесса производства и потребления электрической энергии. Источники электроэнергии – вращающиеся системы, состоящие из первичных двигателей (турбин) и синхронных генераторов, для которых должен соблюдаться баланс между энергией, развиваемой турбиной и энергией, отдаваемой в систему генератором. Нарушение этого баланса приводит к изменению скорости вращения и частоты, т.е. к нарушению синхронизма и расстройству работы энергосистемы.

Для правильного планирования и ведения режима работы энергосистемы необходимо знать графики потребления мощности отдельными потребителями, узлами нагрузки и всей системой. Ежегодные наблюдения позволяют на основе статистических данных прогнозировать объёмы и характер потребления нагрузки в системе и планировать распределение нагрузки между электростанциями. На рис. 8.3, а показан график зимних суток небольшой энергосистемы. Наибольшую мощность по суточному графику называют суточным максимумом мощности Рмакс. Площадь, ограниченная суточным графиком, определяет электроэнергию за сутки

Среднесуточная мощность будет представлять собой

Важным показателем графика является продолжительность использования максимальной нагрузки, определяемая как время работы с наибольшей нагрузкой, в течение которого обеспечивается тот же объём электроэнергии

Рис. 8.3. Суточный график нагрузки системы:

a) – показатели графика; б) – распределение нагрузки между электростанциями.

Степень неравномерности графика определяется коэффициентом заполнения графика

Изменение мощности потребителей приводит к необходимости распределять эту мощность между станциями системы по критерию наименьших затрат на топливо. Возможность экономичного распределения обеспечивается совместной параллельной работой электростанций разного типа на общую сеть, что является одним из самых важных достоинств объединения их в систему.


Рис. 8.4 Условные обозначения некоторых элементов системы:

1–синхронный генератор; 2– трансформатор; 3–шины; 4–воздушная ЛЭП; 5– кабельная ЛЭП; 6–выключатель; 7– разъединитель.

На рис. 8.3,б показан пример условного распределения нагрузки между электростанциями. В базовой части графика 1 работают с постоянной нагрузкой АЭС и мощные КЭС. Часть 2 графика может заполняться ТЭЦ, работающими по вынужденному графику, определяемому тепловым потреблением. Участок 3 графика распределяется между блоками малых и средних КЭС, а пиковые зоны 4 и 5 выделяются для ГЭС, которые имеют водохранилища с суточным циклом регулирования.

Структура электрической системы и состав основных силовых объектов её определяются схемами электрических соединений. Схемы выполняются в соответствии с требованиями единой системы конструкторской документации (ЕСКД) с применением условных обозначений, нормируемыми соответствующими ГОСТ. На рис. 8.4 в качестве примера приведены условные обозначения для некоторых элементов электрических систем.

Завершая изучение темы отметим еще раз преимущества энергетических систем. Объединение всех потребителей электроэнергии в единую электрическую систему приводит к выравниванию графика нагрузки, что даёт возможность более полно использовать оборудование электрической системы, установленную мощность электростанций, которая должна быть рассчитана на максимальную мощность нагрузки. Объединение всех электростанций в систему позволяет обеспечить быструю, маневренную взаимопомощь между разными станциями при изменении нагрузки системы, а также при аварийных повреждениях её элементов. Работа электрических станций на общую сеть, а не на отдельных потребителей электроэнергии, даёт возможность концентрировать производство электроэнергии, внедрять мощные наиболее экономичные энергетические агрегаты, облегчает управление работой системы, её автоматизацию и кибернетизацию.

Централизованное распределение электроэнергии и концентрированное её производство снижают капитальные затраты на единицу установленной мощности, эксплуатационные расходы и себестоимость электроэнергии.

Энергосистема – совокупность электростанций, электрических и тепловых сетей, а также потребителей электроэнергии и тепла, связанных общностью режима в непрерывности процессов производства, преобразования, передачи, распределения и потребления электрической и тепловой энергии при общем управлении этими режимами. Электрическая часть энергосистемы называется электроэнергетической системой.

Объединение электроэнергетических систем на параллельную работу дает следующие преимущества:

  • более высокую надежность электроснабжения;
  • использование несовмещения максимумов нагрузки;
  • меньшие резервы мощности из-за возможности передачи электроэнергии из одной энергосистемы в другую;
  • более рациональное использование первичных источников энергии;
  • возможность использования более крупных агрегатов, имеющих более высокий коэффициент полезного действия.

Единая энергетическая система России (ЕЭС России) – совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике. Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Системный оператор выделяет три крупных независимых энергообъединения в Европе – Северную (NORDEL), Западную (UCTE) и Восточную (ЕЭС/ОЭС) синхронные зоны (NORDEL и UCTE в июле 2009 г. вошли в состав нового европейского объединения – ENTSO-E). Под ЕЭС/ОЭС понимается ЕЭС России в совокупности с энергосистемами стран СНГ, Балтии и Монголии.

2. Участие электростанций различного типа в покрытии суммарной нагрузки энергосистем

Суммарные графики нагрузки энергосистем неравномерны. Коэффициент заполнения графиков довольно низок – kзап= 0,5…0,7 – и имеет тенденцию к дальнейшему снижению ввиду появления в энергосистемах новых типов потребителей и изменения структуры энергопотребления.

Распределение нагрузки между отдельными электростанциями с целью покрытия суммарного графика нагрузки энергосистемы производят, исходя из особенностей технологического режима электростанций различного типа, с тем, чтобы получить в целом по системе положительный хозяйственный эффект. При этом в базовую часть графика нагрузки в непаводковый период помещают АЭС, ТЭЦ, частично КЭС, ГЭС без водохранилищ, а также частично ГЭС с водохранилищами. В полупиковую часть графика помещают КЭС, а в пиковую часть – ГЭС. Во время паводка мощность ГЭС в базовой части графика нагрузки увеличивается, с тем, чтобы после заполнения водохранилищ не сбрасывать бесполезно избыток воды через водосливные плотины. При этом большая доля мощности КЭС и частично мощности ТЭЦ вытесняется в полупиковую часть графика нагрузки.

Зная графики нагрузки электростанций, можно планировать ремонт оборудования. Агрегаты ГЭС, как правило, ремонтируют зимой, а ТЭС и АЭС – весной и летом. Изменения нагрузки и установленной мощности электростанции в системе в течение года взаимосвязаны.

В энергосистеме должны быть предусмотрены резервы: эксплуатационный (ремонтный, режимный, аварийный), составляющий примерно 10…12 % установленной мощности энергосистемы, и хозяйственный, составляющий около 3 %. Считается, что для нормального функционирования энергосистемы ее общий резерв должен составлять 13…15 % установленной мощности. На практике разность между установленной мощностью электростанций и их фактической нагрузкой в каждый данный момент не есть резервная мощность энергосистемы в обычном понимании.

С учетом устойчивости и надежности работы энергосистемы мощность наиболее крупного агрегата, как показывает опыт эксплуатации, нормально не должна превышать 1,5…3 % установленной мощности энергосистемы. Следовательно, крупные агрегаты мощностью 500, 800 и 1200 МВт могут устанавливаться только в относительно мощных энергосистемах.

3. Регулирование частоты в энергосистемах

Регулирование частоты в энергетических системах требует изменения мощности, которую выдают генераторы. Мощность генераторов и ее изменения определяются мощностью турбин, которыми эти генераторы приводятся во вращение. Поэтому, рассматривая возможности регулирования частоты в энергетических системах, необходимо проанализировать характеристики первичных двигателей тепловых и гидравлических турбин, изменяющих свою мощность под действием систем регулирования.

Турбины электростанций оснащаются автоматическими регуляторами скорости. Принцип регулирования заключается в том, что при изменении частоты регулятор изменяет отпуск энергоносителя (пара или воды) через турбину: при снижении частоты увеличивает отпуск энергоносителя, а при повышении частоты – уменьшает его. Таким образом, регуляторы скорости турбин оказывают стабилизирующее влияние на частоту в системе и поэтому часто называются первичными регуляторами частоты. Процесс изменения частоты под действием этих регуляторов называется первичным регулированием частоты.

Регулятор скорости турбины может иметь астатическую или статическую характеристику (рис. 1). Под действием регулятора либо восстановится номинальная частота, либо установится некоторая новая частота f1, близкая к fном. Реальные регуляторы скорости имеют статическую характеристику. Добиться астатической характеристики у регулятора практически очень трудно.

Наклон характеристики принято называть крутизной (К). Для тепловых станций К = 15…20 %, для гидравлических К = 25…50 %.

Первичное регулирование частоты непрерывно осуществляется всеми электростанциями автоматически, персонал станции и диспетчер энергосистемы в этот процесс не вмешиваются.

Характеристики регулятора скорости турбины

Рис. 1. Характеристики регулятора скорости турбины: а –астатическая; б – статическая

На рис. 2 в точке 0 существовал баланс Рг0 = Рн0 при fном. При увеличении нагрузки до РН1 частота по статической характеристике снизилась до f1 (точка 1). Если отсутствует регулирование скорости турбины, то баланс может установиться при частоте f1: Рг0 = Рн1, но регулятор скорости турбины увеличивает впуск энергоносителя и генератор набирает часть нагрузки: ΔР = Рг1Рг0. Устанавливается новый баланс Рг1 = Рн1 при частоте f2 (точка 2).

Первичное регулирование частоты

Рис. 2. Первичное регулирование частоты

При первичном регулировании большую нагрузку набирают генераторы с большей мощностью и крутизной характеристики.

Если отклонение частоты f2 от fном больше допустимого, то для дополнительной корректировки частоты в системе применяется вторичное регулирование частоты. В процессе вторичного регулирования также осуществляется изменение мощности, развиваемой турбинами, в зависимости от частоты. Вторичное регулирование ведется либо автоматическими регуляторами частоты (вторичными регуляторами скорости), либо вручную обслуживающим персоналом станции, который контролирует частоту по показаниям приборов.

В отличие от первичного регулирования частоты, в котором принимают участие все станции, для вторичного регулирования выбирают одну или несколько станций с большой крутизной характеристики регулятора скорости турбины. Все остальные станции получают задание поддерживать постоянное значение РГ и участвовать в первичном регулировании частоты.

В результате вторичного регулирования статическая характеристика турбины перемещается параллельно самой себе до тех пор, пока частота не станет номинальной (на рис. 3 точка 3), мощность генератора при этом увеличивается до РГ2.

Первичное и вторичное регулирование частоты

Рис. 3. Первичное и вторичное регулирование частоты

Наилучшее качество частоты может быть достигнуто при автоматическом регулировании, если оно осуществляется совместно с экономическим распределением активных нагрузок между станциями.

Основная цель экономического распределения нагрузок между электростанциями заключается в том, чтобы требуемое количество энергии выработать с минимальными затратами. Основным критерием при эксплуатации электрических станций является себестоимость отпущенной потребителям электроэнергии, главной составляющей которой являются затраты на топливо, поэтому считают, что наивыгоднейшим режимом системы будет такой режим, который обеспечивает наименьший расход условного топлива.

При перераспределении нагрузок между станциями происходит перераспределение потоков мощности по линиям, а значит, меняются потери в линиях, следовательно, нужно выбрать такой режим, чтобы потери в сетях были наименьшими.

При выборе частоторегулирующих станций (наиболее подходящими для этой цели являются крупные ГЭС) необходимо учитывать пропускную способность линий электропередачи, связывающих электростанции энергосистемы.

В процессе работы энергосистемы все параметры переменного тока, а именно частота, величина и форма кривой напряжения, могут изменяться. Чем ближе они поддерживаются к номинальным, т. е. расчетным для оборудования, значениям, тем ближе режим к оптимальному. Таким образом, частота приобретает значение показателя, характеризующего качество продукции энергетической промышленности, качество электроэнергии. Согласно ГОСТ 13109-97 на качество электрической энергии частота в энергосистемах России в нормальном режиме должна поддерживаться с точностью ±0,2 Гц (95 % времени суток). Допускается кратковременная (не более 72 мин в сутки) работа энергосистем с отклонением частоты в пределах ±0,4 Гц.

Столь жесткие требования объясняются тем, что частота переменного тока непосредственно связана с частотой вращения агрегатов, преобразующих механическую энергию в электрическую, т. е. генераторов, и агрегатов, преобразующих электрическую энергию в механическую, т. е. двигателей. Изменение же частоты вращения, даже небольшое, существенно влияет на режим работы вращающихся механизмов. Снижение частоты приводит к падению производительности насосов и других механизмов.

Автоматическое ограничение снижения частоты должно выполняться с таким расчетом, чтобы при любых возможных дефицитах мощности энергосистемы снижение частоты ниже 45 Гц было исключено. Время работы с частотой 47 Гц – не более 20 с, а с частотой ниже 48,5 Гц – не более 60 с.

Система автоматического ограничения частоты осуществляет:

  • автоматический ввод резерва;
  • автоматическую частотную разгрузку;
  • дополнительную разгрузку;
  • включение отключенных потребителей при восстановлении частоты.

Аварии, связанные с понижением частоты, считаются наиболее опасными (тяжелыми для энергосистемы).

Снижение частоты происходит в результате:

  • отключения источников генерации;
  • аварийного разделения систем на части;
  • отключения питающих линий.

Причем частота при снижении активной мощности генерации снижается лавинообразно. Снижение частоты ведет к еще более глубокому снижению частоты.

Другим опасным явлением при снижении частоты является возможность развития лавины напряжения, приводящей к массовому отключению потребителей.

Эти два процесса взаимосвязаны: при снижении частоты резко увеличивается потребление реактивной мощности, которое приводит к снижению напряжения в узлах потребления.

Предотвращение снижения частоты до опасных уровней, при которых возможно нарушение работы энергосистемы, может быть возложено только на действие автоматических устройств АЧР (автоматическая частотная разгрузка), поскольку процесс снижения частоты и напряжения развивается за время от нескольких секунд до десятков секунд.

Основное назначение АЧР – путем отключения части потребителей (соответственно менее ответственных) сохранить рабочее состояние энергосистемы.

4. Надежность и устойчивость работы энергосистем

Надежность любой системы – это ее свойство выполнять заданные функции в заданном объеме и требуемого качества при определенных условиях функционирования. Применительно к системам электроснабжения (СЭС) одной из основных функций является бесперебойное снабжение потребителей электроэнергией в необходимом количестве и установленного качества. Для характеристики надежности объектов энергетики определяются основные показатели надежности (параметр потока отказов, время восстановления) и вспомогательные (частота ремонтов и их продолжительность). Показатели надежности определяются для узла нагрузки главной схемы СЭС с учетом режима работы СЭС (нормальный, аварийный, послеаварийный).

Основные способы повышения надежности СЭС:

  • повышение надежности источников питания;
  • повышение надежности отдельных элементов СЭС;
  • уменьшение числа последовательно включенных элементов в СЭС;
  • усовершенствование релейной защиты и автоматики СЭС;
  • совершенствование системы технического обслуживания и ремонта;
  • повышение квалификации обслуживающего персонала.

Таким образом, повышение надежности СЭС является комплексной задачей, которая может быть решена на основе технологического и экономического анализа режимов СЭС, условий ее функционирования.

Одним из основных условий функционирования электроустановок и СЭС в целом является надежная работа при воздействии условий окружающей природной среды (погодно-климатические условия) и техникотехнологических условий. Поэтому при выборе элементов СЭС необходимо учитывать как климатические условия эксплуатации (макроклимат, включая загрязнение окружающей среды), так и технико-технологические условия эксплуатации (микроклимат: температуру, влажность, запыленность, агрессивную среду и пожаро- и взрывоопасные зоны).

Безопасность СЭС – это свойство СЭС сохранять с некоторой вероятностью безопасное состояние при выполнении заданных функций в условиях, установленных нормативно-технической документацией (монтаж, эксплуатация и проведение ремонтных работ).

Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от воздействия электрического тока, электромагнитного поля и статического электричества.

На этапе проектирования СЭС предусматривается возможность ее реконструкции при развитии производства предприятия, без значительных капитальных затрат.

Показатели по надежности электроснабжения. В отношении обеспечения надежности электроснабжения электроприемники подразделяются на следующие три категории:

Электроприемники I категории – электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых, взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого, взаимно резервирующего источника питания для безаварийной остановки технологического процесса.

Электроприемники II категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции; массовым простоям рабочих, механизмов и промышленного транспорта; нарушению нормальной деятельности значительного количества городских и сельских жителей. Электроприемники II категории в нормальном режиме должны обеспечиваться электроэнергией от двух независимых, взаимно резервирующих источников питания. Перерыв электроснабжения электроприемников II категории допускается на время, необходимое для включения резервного питания действиями дежурного персонала.

Электроприемники III категории – все остальные электроприемники, не подпадающие под определения I и II категорий. Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают одни сутки.

Независимые источники питания – источники, схема и конструктивное исполнение которых и питающих их электрических сетей таковы, что при отказе одного из них снижение качества электроэнергии на другом не превышает установленных пределов в любой момент времени, включая время аварийного режима.

Термины и определения

Power systems. Terms and definitions

Дата введения 1976-07-01

1. РАЗРАБОТАН Энергетическим институтом им.Г.М.Кржижановского

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 29.07.75 N 1972

3. ВВЕДЕН ВПЕРВЫЕ

4.Ограничение срока действия снято Постановлением Госстандарта СССР от 21.07.81 N 3451

5. ИЗДАНИЕ с Изменениями N 1, 2, утвержденными в мае 1982 г., феврале 1986 г. (ИУС 9-82, 6-86)

Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий, относящихся к энергетическим системам общего назначения.

Термины, установленные настоящим стандартом, обязательны для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе.

Приведенные определения можно при необходимости изменять по форме изложения, не допуская нарушения границ понятий.

Для каждого понятия установлен один стандартизованный термин.

Применение терминов - синонимов стандартизованного термина не допускается.

Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных их краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

В стандарте приведен алфавитный указатель содержащихся в нем терминов.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы - светлым.

(Измененная редакция, Изм. N 1).

1. Энергетическая система

Совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической энергии и тепла при общем управлении этим режимом

2. Диспетчерское управление энергосистемой

Централизованное оперативное управление работой энергосистемы, осуществляемое диспетчерской службой.

Примечание. Управление осуществляется на основе оптимизации электрических, теплоэнергетических и гидроэнергетических режимов в целях обеспечения бесперебойного снабжения потребителей электроэнергией надлежащего качества, включая задание суточных графиков работы электростанций, ведение текущих режимов, вывод оборудования в ремонт и ликвидацию аварийных состояний энергосистемы

3. Объединенная энергосистема

Совокупность нескольких энергетических систем, объединенных общим режимом работы, имеющая общее диспетчерское управление как высшую ступень управления по отношению к диспетчерским управлениям входящих в нее энергосистем

4. Единая энергосистема

Совокупность объединенных энергосистем, соединенных межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление

5. Изолированная энергосистема

Энергосистема, не имеющая электрических связей для параллельной работы с другими энергосистемами

6. Энергорайон

Совокупность объектов энергосистемы, расположенных на части обслуживаемой ею территории

7. Электрическая часть энергосистемы

Совокупность электрического оборудования объектов энергосистемы

8. Электроэнергетическая система

Находящееся в данный момент в работе электрооборудование энергосистемы и приемников электрической энергии, объединенное общим режимом и рассматриваемое как единое целое в отношении протекающих в нем физических процессов

9. (Исключен, Изм. N 2).

10. Межсистемная связь энергосистем

Участок линии электропередачи, непосредственно соединяющий электростанции или подстанции разных энергосистем.

Примечание. Иногда к межсистемной связи относят и смежные участки линии электропередачи, не имеющие дополнительных шунтирующих связей

11. Секционирование энергосистемы

Осуществление параллельной работы разных частей энергосистемы через увеличенные реактивные сопротивления с целью уменьшения токов короткого замыкания и улучшения распределения потоков мощности

12. Надежность работы энергосистемы

Способность энергосистемы обеспечивать бесперебойность энергоснабжения потребителей и поддержание в допускаемых пределах показателей качества электрической энергии и тепла

13. Живучесть энергосистемы

Способность энергосистемы противостоять цепочечному развитию аварийных режимов

14-16. (Исключены, Изм. N 2).

17. Включенная мощность энергосистемы

Суммарная располагаемая мощность генераторов энергосистемы, находящихся в данный момент в работе

18. (Исключен, Изм. N 2).

19. Межсистемный переток

Мощность, передаваемая по межсистемной связи

20. Сальдо перетоков

Алгебраическая сумма перетоков по всем межсистемным связям данной энергосистемы с другими энергосистемами

21. Полный резерв мощности энергосистемы

Полный резерв мощности

Резерв активной мощности, равный разности между располагаемой мощностью энергосистемы и нагрузкой ее в момент годового максимума при нормальных показателях качества электроэнергии и с учетом сальдо перетоков

22. Эксплуатационный резерв мощности энергосистемы

Эксплуатационный резерв мощности

Резерв активной мощности в данный момент времени, равный разности между рабочей мощностью и нагрузкой энергосистемы при нормальных показателях качества электрической энергии и с учетом сальдо перетоков

23. Нагрузочный резерв мощности энергосистемы

Нагрузочный резерв мощности

Резерв мощности, необходимый для восприятия случайных колебаний нагрузки и регулирования частоты в энергосистеме

24. Аварийный резерв мощности энергосистемы

Аварийный резерв мощности

Резерв мощности, необходимый для восполнения аварийного понижения генерирующей мощности в энергосистеме

25. Ремонтный резерв мощности энергосистемы

Ремонтный резерв мощности

Резерв мощности, необходимый для возмещения мощности оборудования, выведенного в плановый ремонт

26. Расчетный резерв мощности энергосистемы

Расчетный резерв мощности

Резерв мощности, необходимый для обеспечения нормальной работы энергосистемы в процессе ее развития и эксплуатации.

Примечание. Расчетный резерв включает в себя аварийный, нагрузочный и ремонтный резервы мощности

27. Включенный резерв мощности энергосистемы

Включенный резерв мощности

Резервная мощность работающих в данное время агрегатов, которая практически может быть использована немедленно

28. Невключенный резерв мощности энергосистемы

Невключенный резерв мощности

Мощность неработающих исправных агрегатов электростанций энергосистемы.

Примечание. Невключенный резерв мощности равен разности между рабочей и включенной мощностью энергосистемы

29. Максимум нагрузки энергосистемы

Наибольшее значение активной нагрузки энергосистемы за определенный период времени

30. Совмещенный максимум нагрузки энергосистемы

Максимум суммарной нагрузки работающих параллельно энергосистем

31. Минимум нагрузки энергосистемы

Наименьшее значение активной нагрузки за определенный период времени

32. Баланс мощности энергосистемы

Система показателей, характеризующая соответствие суммы значений нагрузки энергосистемы и потребной резервной мощности величине располагаемой мощности энергосистемы

33. Дефицит мощности энергосистемы

Недостаток мощности в энергосистеме, равный разности между требуемой мощностью энергосистемы при нормальных показателях качества электрической энергии и рабочей мощностью в данный момент времени с учетом перетоков мощности

34. Дефицит располагаемой мощности энергосистемы

Недостаток мощности энергосистемы, равный разности между максимальной нагрузкой с потребным полным резервом, с одной стороны, и располагаемой мощностью с учетом перетоков - с другой

35. Баланс электроэнергии энергосистемы

Система показателей, характеризующая соответствие потребления электроэнергии в энергосистеме, расхода ее на собственные нужды и потерь в электрических сетях величине выработки электроэнергии в энергосистеме с учетом перетоков мощности из других энергосистем

36. (Исключен, Изм. N 2).

37. Нормальный режим работы энергосистемы

Нормальный режим энергосистемы

Режим работы энергосистемы, при котором обеспечивается снабжение электроэнергией всех потребителей при поддержании ее качества в установленных пределах

38. Установившийся режим работы энергосистемы

Установившийся режим энергосистемы

Режим работы энергосистемы, при котором параметры режима могут приниматься неизменными

39. Переходный режим работы энергосистемы

Переходный режим работы энергосистемы

Режим работы энергосистемы, при котором скорости изменения параметров настолько значительны, что они должны учитываться при рассмотрении конкретных практических задач

40. Асинхронный режим работы энергосистемы

Асинхронный режим энергосистемы

Переходный режим, характеризующийся несинхронным вращением части генераторов энергосистемы

41. Режим качаний в энергосистеме

Режим энергосистемы, при котором происходят периодические изменения параметров без нарушения синхронизма

42. Статическая характеристика нагрузки электроэнергетической системы

Статическая характеристика нагрузки

Зависимость активной или реактивной нагрузки от направления при постоянной частоте или от частоты при постоянном напряжении

43. Динамическая характеристика нагрузки электроэнергетической системы

Динамическая характеристика нагрузки

Зависимость активной или реактивной нагрузки от времени при определенных изменениях напряжения или частоты

44. Регулирующий эффект нагрузки электроэнергетической системы по напряжению

Регулирующий эффект нагрузки по напряжению

Изменение активной или реактивной нагрузки электроэнергетической системы при изменении напряжения, препятствующее данному возмущению

45. Регулирующий эффект нагрузки электроэнергетической системы по частоте

Регулирующий эффект нагрузки по частоте

Изменение активной или реактивной нагрузки электроэнергетической системы при изменении частоты, препятствующее данному возмущению

46. Устойчивость энергосистемы

Способность энергосистемы возвращаться к установившемуся режиму работы после различного рода возмущений

47. Область устойчивости энергосистемы

Зона значений параметров режима энергосистемы, в которой ycтойчивость ее при данном возмущении обеспечена

48. Статическая устойчивость энергосистемы

Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений.

Примечание. Под малым возмущением режима энергосистемы понимается такое, при котором изменения параметров несоизмеримо малы по сравнению со значениями этих параметров

49. Критическое напряжение в энергосистеме

Предельное наименьшее значение напряжения в узлах энергосистемы по условиям статической устойчивости

50. Запас статической устойчивости энергосистемы

Показатель, количественно характеризующий статическую устойчивость данного режима энергосистемы в сравнении с предельным по устойчивости режимом

51. Динамическая устойчивость энергосистемы

Способность энергосистемы возвращаться к установившемуся режиму после значительных нарушений без перехода в асинхронный режим

Примечание. Под значительным понимается такое нарушение режима, при котором изменения параметров режима соизмеримы со значениями этих параметров

52. Результирующая устойчивость энергосистемы

Способность энергосистемы восстанавливать синхронную работу после возникновения асинхронного режима

53. Лавина напряжения в энергосистеме

Явление лавинообразного снижения напряжения вследствие нарушения статической устойчивости энергосистемы и нарастающего дефицита реактивной мощности

54. Лавина частоты в энергосистеме

Явление лавинообразного снижения частоты в энергосистеме, вызванного нарастающим дефицитом активной мощности

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ

Баланс мощности энергосистемы

Баланс электроэнергии энергосистемы

Дефицит мощности энергосистемы

Дефицит располагаемой мощности энергосистемы

Живучесть энергосистемы

Запас статической устойчивости энергосистемы

Лавина напряжения в энергосистеме

Лавина частоты в энергосистеме

Максимум нагрузки энергосистемы

Максимум нагрузки энергосистемы совмещенный

Минимум нагрузки энергосистемы

Мощность энергосистемы включенная

Надежность работы энергосистемы

Напряжение в энергосистеме критическое

Область устойчивости энергосистемы

Переток межсистемный

Режим качаний в энергосистеме

Режим работы энергосистемы асинхронный

Режим работы энергосистемы нормальный

Режим работы энергосистемы переходный

Режим работы энергосистемы установившийся

Режим энергосистемы асинхронный

Режим энергосистемы нормальный

Режим энергосистемы переходный

Режим энергосистемы установившийся

Резерв мощности аварийный

Резерв мощности включенный

Резерв мощности энергосистемы аварийный

Резерв мощности энергосистемы включенный

Резерв мощности нагрузочный

Резерв мощности энергосистемы нагрузочный

Резерв мощности невключенный

Резерв мощности энергосистемы невключенный

Резерв мощности полный

Резерв мощности энергосистемы полный

Резерв мощности расчетный

Резерв мощности энергосистемы расчетный

Резерв мощности ремонтный

Резерв мощности энергосистемы ремонтный

Резерв мощности эксплуатационный

Резерв мощности энергосистемы эксплуатационный

Сальдо перетоков

Связь межсистемная энергосистем

Секционирование энергосистемы

Система электроэнергетическая

Система энергетическая

Управление энергосистемой диспетчерское

Устойчивость энергосистемы

Устойчивость энергосистемы динамическая

Устойчивость энергосистемы результирующая

Устойчивость энергосистемы статическая

Характеристика нагрузки динамическая

Характеристика нагрузки электроэнергетической системы динамическая

Характеристика нагрузки статическая

Характеристика нагрузки электроэнергетической системы статическая

Часть энергосистемы электрическая

Энергорайон

Энергосистема единая

Энергосистема изолированная

Энергосистема объединенная

Эффект нагрузки электроэнергетической системы по напряжению регулирующий

Эффект нагрузки электроэнергетической системы по частоте регулирующий

Читайте также: