Какой принцип действия у трехфазного генератора кратко

Обновлено: 05.07.2024

Переменный ток, о котором говорилось при рассмотрении вращения рамки в магнитном поле, называется простым или однофазным .

Генераторы, установленные на крупных электростанциях, работают по трёхфазной системе переменного тока.

Её изобретателем в конце 19 века стал русский электротехник Доливо-Добровольский.

По сути трёхфазный генератор является соединением в одной машине трёх генераторов переменного тока.

На статоре генератора расположены три самостоятельные обмотки смещённые по окружности на 120 градусов друг от друга.

В центре генератора вращается ротор , который на рисунке изображён в виде постоянного магнита. На самом деле ротором мощного генератора является электромагнит, имеющий магнитные полюсы.

Магнитные полюсы ротора создаются обмотками возбуждения - обмотками, по которым пропускается постоянный ток.

(Как создаются магнитные полюсы катушкой с постоянным током можно увидеть в Занятии 63 .)

При вращении ротора в каждой из трёх обмоток статора появляется переменная ЭДС одной и той же частоты, но сдвинутых по фазе на одну треть периода.

Каждая обмотка трёхфазного генератора является самостоятельным генератором тока и источником электрической энергии.

Из первого рисунка видно, что к каждой обмотке можно присоединить провода, и питать переменным током потребителя (на рисунке в качестве потребителя показаны электрические лампочки).

В таком случае для присоединения потребителей энергии к трём обмоткам, потребовалось бы 6 проводов. Но обмотки можно соединить так, что количество проводов уменьшится до 4 и даже трёх, что даёт значительную экономию .

На следующем рисунке показана четырёхпроводная система соединения обмоток трёхфазного генератора звездой.

Цифрами со штрихами обозначены концы обмоток фаз, соединённые в одну точку генератора, называемую нулевой точкой или нейтралью.

Генератор с п отребителями энергии соединяется линейными проводами, идущими от начала обмоток 1, 2, 3 и нулевым проводом, идущим от нулевой точки генератора.

Напряжение между нулевой точкой и началом каждой фазы называется ф азным напряжением, а напряжения между началами обмоток 1 и 2, 2 и 3, 3 и 1 называются л инейными .

В наши дома, квартиры подходят два провода - нулевой и фаза , напряжение между ними равно 220 В .

Лампочки, плитка, другие электрические приборы , подсоединённые к этим проводам, между собой соединяются параллельно, не влияя на работу друг друга.

Коротко скажем, как работают крупные электростанции (тепловые, гидроэлектростанции), на которых устанавливаются мощные трёхфазные генераторы переменного тока.

На тепловых электростанциях ротор генератора приводится во вращательное движение паровой турбиной , а паровая турбина приводится во вращение сжатым и перегретым паром.

О работе паровой турбины см. в статье " Реакция движущейся жидкости и газа.)

Тепловые электростанции работают на газе, каменном угле, торфе.

На фото показана мощная турбина тепловой электростанции.

Чтобы снизить температуру и давление пара на выходе из турбины, его направляют в конденсатор, где пар превращается в воду.

Тепловые электростанции, которые одновременно дают электроэнергию и тепло для обогрева зданий, называют ТЭЦ (теплоэлектроцентралью).

А так выглядит машинный зал ТЭЦ:

Чтобы получить ток частотой 50 Гц ( промышленный ток ) ротор генератора должен делать 50 оборотов в секунду. Эту скорость ротор получает от турбины , специально рассчитанную на эту скорость.

Турбины гидроэлектростанции приводятся во вращение напором воды.

Для с оздания напора воды реку перегораживают плотиной , оставляя в ней небольшое отверстие. Уровень воды перед плотиной поднимается, а за плотиной остаётся на прежнем уровне. Появившаяся разность уровней и создаёт напор воды.

Гидротурбина , поставленная у отверстия плотины, под напором воды вращается, передавая своё вращение ротору генератора и создавая этим в обмотках статора генератора переменный электрический ток.

Гидротурбина массивная, раскрутить её до 50 оборотов в секунду невозможно.

Чтобы получить ток частотой 50 Гц, ротор генератора делают в виде "лепёшки" - колеса очень большого диаметра. На окружности такого колеса ( ротора ) размещают не одну пару магнитных полюсов, а большое количество пар полюсов .

По форме ротора делают и статор, содержащий три обмотки.

Проносясь мимо проводников статора, магнитные полюсы ротора наводят в них ЭДС индукции.

Магнитных полюсов на роторе устанавливается столько, чтобы частота получаемого в обмотках статора тока была равна 50 Гц.

На следующих рисунках показано, как под напором воды рабочее колесо с лопастями гидротурбины приводится во вращательное движение. которое через вал передаётся ротору генератора.

В принципе, устройство трехфазного генератора переменного тока достаточно простое. Это корпус с двумя крышками с противоположных сторон. В каждой из них проделаны отверстия для вентиляции. В крышках устроены ниши под подшипники, в которых вращается вал. На передний конец вала устанавливается передаточный элемент. К примеру, на автомобильном генераторе установлен шкив, с помощью которого вращение передается от двигателя внутреннего сгорания на генератор. На противоположном конце вала производится передача электрического тока, ведь вал в этом случае выступает как электромагнит с одной обмоткой.

Передача производится через графитовые щетки и токосъемные кольца (они из меди). Щетки соединены с электрорегулятором (по сути, это обычное реле), который регулирует подачу напряжение 12 вольт с требуемыми отклонениями

Самое важное, что реле не повышает и не понижает напряжение в зависимости от скорости вращения самого вала


Так вот если говорить о трехфазных генераторах переменного тока, то это три вот таких однофазных. Только трехфазный агрегат имеет обмотку не на роторе (валу), а в статоре. И таких обмоток три, которые сдвинуты относительно друг друга по фазе. Вал, как и в первой конструкции, выполняет функции электромагнита, который питается через контакты скользящего типа постоянным током.

Вращение вала создает в обмотках магнитное поле. Электродвижущая сила начинает индуцироваться, когда происходит пересечение магнитного поля обмоток с ротором. А так как обмотки располагаются на статоре симметрично, то есть, через каждые 120º, то соответственно и электродвижущая сила будет иметь одинаковое амплитудное значение.

Как выбрать?

При покупке в первую очередь ориентируйтесь на условия, в которых будет работать генератор.

Для начала определите требуемую мощность. Она должна превышать суммарную мощность одновременно включенных потребителей. Рекомендуется иметь небольшой (или большой) запас на случай экстренных ситуаций.

Выберите вид топлива. Решите, что для вас важнее – экономичность или способность запуститься в любых условиях.

Если в сети возможны перегрузки, нужно покупать синхронную модель. Но учтите, что она потребует более тщательного обслуживания, чем асинхронная, и обладает меньшим сроком службы. Да и на систему защиты придется потратиться. Если перегрузки полностью исключены, лучшим выбором станет асинхронный генератор.

Затем проверьте качество изготовления.

  • Покрутите ротор рукой. Он должен вращаться легко. Хруст, щелчки и рывки в подшипниках не допускаются, как и биение ротора. Он не должен шататься в подшипниках.
  • Контакты и клеммы должны быть блестящими. Не допускается сорванная резьба. Если есть провода, требуется их надежная изоляция. Особенно в местах стыков и перегибов.
  • На статоре и каркасе не должно быть трещин. Внимательно осмотрите опорную часть.
  • Проверьте генератор в работе. Показания измерительной аппаратуры должны быть стабильными. Звук выхлопа обязан быть ровным.
  • Ответственные производители внимательно окрашивают изделие и хорошо крепят логотип. Если краска вызывает сомнения, от такого генератора лучше отказаться.
  • Солидность любой фирмы определяется качеством сервиса. Убедитесь, что при возникновении неисправности вы сможете найти специалиста для ее устранения.


Затем обратите внимание на дополнительные функции

  • Хорошо, если на заводе уже будут смонтированы измерительные приборы.
  • Лучше покупать модели, имеющие как ручной запуск, так и со стартера.
  • Проверьте удобство транспортировки. Если есть колесики, они должны хорошо крутиться. Если есть ручки, за них должно быть удобно держаться.

И не бойтесь задавать вопросы консультантам, даже, по их мнению, нелепые. Время, которое вы потратите на выбор, с лихвой компенсируется беспроблемной эксплуатацией.


Принцип работы

Принцип действия трехфазных генераторов основан на законе электромагнитной индукции. Он гласит: на концах металлической рамки, помещенной во вращающееся магнитное поле, будет индуцироваться электродвижущая сила (ЭДС). При этом может вращаться как сама рамка, так и магниты.

Так устроены демонстрационные модели. В реальных генераторах вместо рамки применяется катушка из тонкого медного провода с изолированными друг от друга жилами. Это делается для увеличения коэффициента полезного действия установки.


В современных моделях 3-х фазных генераторов в качестве магнита выступает ротор. При этом магнит может быть постоянным или электрическим. В последнем случае для питания ротора применяют скользящий контакт с графитовыми щетками. Для запуска такого устройства нужен отдельный источник электроэнергии.

Силовая обмотка располагается в статоре. Это убирает необходимость передавать большие токи через скользящий контакт и повышает надежность работы.


3-фазные генераторы переменного тока не имеют сильных различий между собой. Они отличаются лишь мощностью и особенностями конструкции.

По мощности вырабатываемого тока они бывают:

  • 5 кВт;
  • 6 кВт;
  • 10 кВт;
  • 12 кВт;
  • 15 кВт и более.





Кроме того, реальная выходная мощность зависит от многих факторов, таких как качество и чистота топлива, состояние атмосферы (на холоде и при высокой влажности мощность уменьшается) и тому подобное.

По виду применяемого топлива генераторы бывают:

  • дизельные;
  • бензиновые;
  • работающие на дровах или природном газе.

Наибольшее распространение получили первые 2 варианта. При этом дизельные, в силу своей конструкции, надежнее, поскольку работают без системы зажигания. Еще они более экономичные. Бензиновые, в свою очередь, легче запускаются в сложных условиях.

По принципу действия генераторы бывают синхронные и асинхронные.

Синхронные. Их достоинство – могут выдержать кратковременную перегрузку в 5-6 раз. Такое бывает при запуске некоторых типов электродвигателей и другого мощного оборудования, когда пусковые токи значительно превышают номинальные. Но у них есть недостатки – это большие габариты и масса, а также меньшая надежность по сравнению с асинхронными собратьями.



Также генераторы могут обладать дополнительными функциями:

  • возможность подключения дополнительных линий для увеличения нагрузочной способности;
  • регулировка характеристик выходного тока (например, его формы);
  • наличие электромагнитного реле-регулятора.

По назначению генераторы бывают:

Они различаются только способом подключения.

Это все, что касается классификации генераторов. Теперь давайте поговорим о выборе этого устройства.

Схемы подключения

Для решения этой задачи существует несколько методов подключения генератора к электросети.


Через розетку

Самый простой метод. Потребители подключаются к генератору напрямую. Но есть серьезные недостатки:

  • полное отсутствие защитных устройств;
  • нужно купить специальную 4-х полюсную розетку, рассчитанную на большой ток.

Применять этот метод настоятельно не рекомендуется. Мы написали про него только потому, что он есть.


Через распределительный автомат

Это более удобный способ, поскольку он не требует внесения изменений в имеющуюся электросеть. Особенно хорошо он зарекомендовал себя в частных домах.

Для подключения сделайте следующее.

  • Отключите вводной автомат централизованной системы электрораспределения. Проще говоря, обесточьте дом.
  • Установите в щитке новый 4-х полюсный автомат. Его выходные контакты соедините с домашней сетью.
  • Внимательно подключите к новому автомату кабель с генератора. Все провода присоединяются к соответствующим клеммам.


Через рубильник

Основной недостаток предыдущей схемы – возможность попадания сетевого напряжения на генератор. Такое может случиться при невнимательном пользовании переключателями. Чтобы такого не произошло, генератор можно подключить через рубильник.

Такое подключение полностью исключает возможность замыкания. Рубильник имеет 3 контакта:

  • первый – питание потребителей от централизованной сети;
  • третий – питание от генератора;
  • центральный – сеть полностью обесточена.

Потребители подключаются к центральному контакту.

После рубильника обязательно устанавливаются предохранители, УЗО и другие средства защиты.

Такими способами подключаются основные генераторы.


Система автоматического включения

Основной недостаток этих всех методов – ручное управление. А иногда нужно, чтобы генератор запускался автоматически (особенно при аварийных ситуациях). В этих случаях применяется система автоматического включения.

В нее входят 2 пускателя с перекрестным включением и модуль управления. При пропадании электричества они отключают потребителей от централизованной системы и подключают к генератору.

Независимо от метода подключения никогда не забывайте заземлять корпус генератора. И главное: коммутационные устройства, выключатели и предохранители ставить в заземляющий провод запрещается. Это убережет от несчастных случаев и гарантирует безопасность работы прибора.


О том, какой купить генератор: однофазный или трехфазный, смотрите далее.

Принцип работы

В основе работы трехфазного генератора лежит закон Фарадея – закон электромагнитной индукции, который гласит, что электродвижущая сила будет обязательно индуцироваться во вращающейся прямоугольной рамке, которая установлена между двумя магнитами. При этом делается оговорка, что магниты будут создавать вращающееся магнитное поле. Направление вращения и рамки, и магнитного поля обязательно совпадают. Но электродвижущая сила будет возникать и в том случае, если рамка останется неподвижной, а внутри нее вращать магнит.

Чтобы разобраться, как работает генератор, обратите внимание на рисунок ниже. Это простейшая схема его работы


Здесь хорошо видны магниты с разными полюсами, рамка, вал и токосъемные кольца, с помощью которых производится отвод тока.

Конечно, это просто схема, хотя лабораторные генераторы так и создавались. На практике же обычные магниты заменяют электромагнитами. Последние – это медная обмотка или катушки индуктивности. Когда по ним проходит электрический ток, образуется необходимое магнитное поле. Такие генераторы установлены во всех автомобилях (это для примера), чтобы их запустить, под капотом устанавливается аккумулятор, то есть, источник постоянного тока. Некоторые модели генераторов запускаются по принципу самовозбуждения или при помощи маломощных генераторов.


Схемa генерaторa переменного токa

Разновидности

В основе классификации заложен принцип действия, поэтому эти агрегаты переменного тока делятся на два класса:

  • Асинхронные. Это самые надежные в работе, небольших размеров и веса, простых по конструкции генераторы. Они прекрасно справляются с перегрузками и коротким замыканием. Правда, необходимо учитывать, что данный вид сразу же выходит из строя, если на него будет действовать большая перегрузка. К примеру, пусковой ток электрооборудования. Поэтому стоит учитывать этот факт, для чего придется приобретать генератор мощностью большей раза в три или четыре, чем потребляемая мощность оборудования при запуске.
  • Синхронные. А вот этот вид легко справляется с краткосрочными нагрузками. Такой генератор может выдержать перегруз раз в пять или шесть. Правда, высокой надежностью он не отличается по сравнению с асинхронным вариантов, к тому же он является обладателем больших размеров и массы.

Конечно, в данном разделении лежит принцип работы агрегата. Но есть и другие критерии.


  • Однофазный.
  • Двухфазный.
  • Трехфазный.
  • Многофазный (обычно шесть фаз).
  • Сварочный.
  • Линейный.
  • Индукционный.
  • Стационарный.
  • Переносной.

Устройство

Назначение электрического генератора – преобразовывать механическую энергию в электрическую. Он состоит из 2-х основных частей – подвижного ротора и неподвижного статора.

Несмотря на столь широкое применение, немногие знают, что собой представляет трехфазный ток. И это простительно, поскольку не все получали высшее профильное образование по профессии электрика. Поэтому цель этой статьи — рассказать в общих чертах о переменном трехфазном электрическом токе. Людям, не связанным с техническим науками, а также начинающим специалистам, будет интересно узнать, что это такое, где применяется, в том числе о его положительных и отрицательных сторонах.

Что такое трехфазный ток

Электрической цепью с трехфазной системой называют схему подключения, к которой подводят три жилы кабеля. В каждой действуют переменные электродвижущие силы одинаковых частот, но сдвинутых по фазе на одну треть периода относительно друг друга. На языке физике сдвиг выглядит как alpha = 2*pi/3. Каждую отдельную цепь всей схемы в целом называют фазой. А поскольку их три, то и вся схема получила соответствующее название.


Принцип действия трехфазного генератора

Практически все генераторы электрических станций вырабатывают трехфазный ток. Они совмещают в себе конструкцию одновременной инициации возбуждения сдвинутых относительно друг друга электродвижущих сил. В его устройство входят три независимых якоря, расположенных на статоре установки и удаленных друг от друга на одну треть окружности. В центре размещается элемент индукции, представленный как постоянный магнит.

На рисунке видно отличие трехфазного тока от однофазного. На схеме показаны три катушки, которые сами по себе являются независимыми генераторами напряжения. Если включить каждую из них в отдельную сеть со своей нагрузкой, то они способны питать электричеством любые приборы.

Однако продолжая логику схематического подключения проводки, для общего электроснабжения оборудования-приемника потребуется шесть кабелей. С точки зрения рациональности, такая цепь будет громоздкой и не экономной. Поэтому катушки соединяют таким образом, чтобы обойтись всего тремя или четырьмя кабелями. Такую систему называют трех- и четырехжильной, одна из которых нулевая, то есть не находится под токовым напряжением.

Зачем нужен трехфазный ток

Однофазный и трехфазный переменный ток широко применяются в промышленной и бытовой сфере. Однако в последнее время все больше потребителей предпочитают отказываться от первого и склоняются к последнему.

И дело даже не в увеличении мощности и включении большего количества электрического оборудования. Порой разница между силовой нагрузкой даже не заметна, а при определенных параметрах сети входная мощность для обоих цепей может быть одинаковой.

Основным потребителем является трехфазное оборудование. В эту группу входит:

  • асинхронные электроприводы;
  • нагревательные установки;
  • промышленное оборудование.

Наиболее частым потребителем трехфазного тока является асинхронный двигатель. Именно в составе этой сети они показывают наилучшие рабочие параметры, высокое КПД при относительно низких энергозатратах.

К тому же, приводы, обогреватели, котлы, электрические печи, обогреватели не перекашивают фазы. Для чувствительного оборудования такое проседание — тема очень щекотливая.

Обратите внимание! В реальности обеспечить одинаковую нагрузку на всех трех фазах невозможно. Соответственно, напряжение всегда будет неодинаковым.

Поскольку в помещении присутствует еще несколько потребителей, необходима дополнительная система, которая сможет распределять нагрузку равномерно по всем приемникам. Для этого нужна трехкабельная цепь. Включение нагрузки в сеть трехфазного тока происходит к той цепи, на которую приходится меньше всего потребителей.


Схема подключения трехфазного тока

Однако распределительные системы для цепей трехфазного тока получаются очень громоздкими и занимают много места. Оно требует дополнительных систем безопасности, так как напряжение таких сетей составляет 380 В. При коротком замыкании ток будет в разы больше, чем при привычных нам 220 В.

Преимущества и недостатки

Как и все материальное, трехфазный ток имеет свои плюсы и минусы. К положительным моментам применения систем с тремя или четырьмя проводами относится:

  • экономичность. Для передачи электроэнергии на большие расстояния используют жилы из цветных металлов, имеющих небольшие удельные сопротивления. Вольтаж делят пропорционально количеству кабелей. За счет распределения нагрузок инженеры могут уменьшить количество проводов и их сечение, что при стоимости редких материалов дает заметную экономию;
  • эффективность. Параметры мощности трехфазных трансформаторов на порядок выше однофазных при меньших размерах магнитопровода;


Трансформатор 3-фазного тока

  • простота. При одновременном подключении потребителей к трехфазной системе генерируется дополнительное электромагнитное поле. Эффект сдвига фаз позволил создать простые и надежные бесколлекторные электродвигатели, ротор которых выполнен по принципу обычной болванки и устанавливается на шариковые подшипники. Асинхронные электроприводы с короткозамкнутым ротором широко применяются в качестве силовых агрегатов. Главным преимуществом таких моторов является возможность менять направления вращения оси путем переключения на разные фазные провода;
  • вариативность. В цепях с несколькими фазами существует возможность получать разные напряжения. Пользователь сможет менять мощность нагревателя или сервопривода, переключившись с одного кабеля на другой;
  • уменьшение стробоскопического эффекта. Он достигается за счет независимого подключения разных ламп к отдельным фазам.

Наравне с достоинствами трехфазный ток имеет свои недостатки. Они включают в себя:

  • сложность подключения. Для подведения трехфазной сети к частному или промышленному зданию необходимо получить специальное разрешение и технические условия от локальной компании по энергосбыту. Это мероприятие достаточно затратное и хлопотное. Даже при выполнении всех условий положительный результат не всегда гарантирован;
  • применения усиленных систем безопасности. В трехфазной сети подается напряжение 380 В, поэтому необходимы дополнительные устройства защиты от поражения электрическим током и короткого замыкания, которое может привести к пожару. В таких случая на входе ставят еще один трехполюсный автоматический выключатель с большими номинальными характеристиками. Он поможет избежать возгорания в случае замыкания цепи;
  • необходимость монтажа вспомогательных модулей для ограничения перенапряжения в распределительном щите. Он необходим на случай обрыва нулевого кабеля, что приведет к увеличению напряжения в одной из фаз.

Переход на трехфазный ток целесообразен для владельцев помещений, площадь которых больше 100 кв. метров. Это относится к частным домам и к производственным зданиям. Такая схема подключения позволит перераспределять равномерно нагрузку по всем потребителям и избежать скачков напряжения.

Чем отличается трехфазный ток от однофазного

Основное отличие однофазной цепи от трехфазной:

  • однофазный ток подается потребителям через один проводник, трехфазный — через три;
  • для завершения сети необходим нулевой кабель, поэтому в цепях с одной фазой их два, а в трех — четыре;
  • мощность повышается с увеличением количества фаз;
  • простота сетевой конструкции;
  • в однофазной цепи появляются перепады напряжения с увеличением количества потребителей электроэнергии;
  • при отключении одной жилы в трехфазном, ток продолжает течь в оставшихся двух проводах. В однофазном напряжение полностью пропадает.

Обратите внимание! Трехфазная система позволяет использовать разные номиналы напряжений при питании оборудования с разными параметрами мощности.

Почему обычно три фазы, а не четыре

Таким вопросом задаются практически все начинающие электрики. По сути, количество фаз не ограничено. Их может быть 1, 2, 3, 4 и даже 10. Однако широкое применение получили трехфазные системы. Это связано с тем, что такой цепи достаточно для решения большинства задач.

Такие системы в большей степени используют для силовых установок на производстве. Вращение ротора составляет 360 градусов, а сдвиг по фазам составляет 120 градусов. Его вполне достаточно, чтобы раскрутить якорь до нужных оборотов и получить с двигателя нужную мощность. Увеличение количества фаз лишь повысит стоимость самой установки, поскольку потребует установки дополнительных катушек и подведения лишних кабелей.

Важно! Добавление фаз к существующим трем не повышает КПД агрегата, не увеличивает его мощность. С точки зрения рациональности, это лишь добавляет стоимость установок при сохранении прежних параметров работы.

График трехфазного тока

Ниже представлен график трехфазного тока.

На рисунке видно, что каждая ветка имеет одинаковую частоту, но в каждой цепи периода прохождения тока через проводник сдвинуты по фазе на одну треть.

Система подключения

Существует два вида подключения катушек в электрогенераторе:

  • звездой. Суть системы заключается в соединении всех концов катушек в одну точку, которая является нейтральной. Нулевой провод и остальные три провода подключаются к потребителю;
  • треугольником. При таком способе каждый вывод обмотки соединяется со следующим. В результате они образуют замкнутый на отдельных контактах треугольник, а линейные кабели соединяются с оборудованием.

На рисунке показано схематическое подключение катушек в электрогенераторе.

Трехфазная система подачи тока потребителям приобрела широкую популярность благодаря эффективности и экономичности. Также она позволяет повышать коэффициент полезного действия силового оборудования, его мощность, упрощая при этом его конструкцию.

Трехфазный генератор и его преимущества

С каждым годом частный пользователь всё больше привязывается к электрической энергии. Даже выезд на дачу или загород сопряжён с большими неудобствами, если там отсутствует напряжение сети. Тем более, если предвидится использование мощных приборов и оборудования. Выход из такой форс-мажорной ситуации — это купить трёхфазный генератор.
Применение трёхфазных генераторов
Основным отличием трёхфазного генератора от однофазного является возможность индуцировать ток напряжением 380 Вольт, вместо обычных 220. Это необходимо при подключении мощных станков или агрегатов, оборудованных специальными 3-фазными двигателями или силовыми установками, поэтому рядовому потребителю такой генератор понадобится в исключительных случаях.


Генератор трехфазный фото


Генератор трехфазный фото2

Любой двигатель внутреннего сгорания создаёт рабочий шум. Поэтому, при использовании генератора вблизи жилых помещений или зон отдыха, необходимо выбрать модель, оборудованную шумопоглощающим кожухом.
В связи с высокой мощностью трёхфазной установки, она будет иметь более высокое потребление горючего. Поэтому, необходимо рассчитать рациональность такой покупки.
Генераторы могут иметь дизельные или бензиновые двигатели. Каждый тип имеет свои преимущества и особенности эксплуатации.
Покупая трёхфазный генератор, потребитель приобретает независимость от энергетических компаний, капризов погоды и расстояния от линий электропередач.

Трехфазный генератор – принцип работы и его устройство

Тот, кто незнаком с генераторами, объясняем, что это агрегат, в котором из одного вида энергии получается другая. А, точнее, из механической электрическая. При этом эти приборы могут генерировать как ток постоянный, так и ток переменный. До середины двадцатого века использовались в основном генераторы постоянного тока. Это были аппараты больших размеров, которые работали не очень хорошо. Появление на рынке диодов полупроводникового типа позволило изобрести трехфазный генератор переменного тока. Именно диоды позволяют выпрямить переменный ток.


Принцип работы

В основе работы трехфазного генератора лежит закон Фарадея – закон электромагнитной индукции, который гласит, что электродвижущая сила будет обязательно индуцироваться во вращающейся прямоугольной рамке, которая установлена между двумя магнитами. При этом делается оговорка, что магниты будут создавать вращающееся магнитное поле. Направление вращения и рамки, и магнитного поля обязательно совпадают. Но электродвижущая сила будет возникать и в том случае, если рамка останется неподвижной, а внутри нее вращать магнит.

Чтобы разобраться, как работает генератор, обратите внимание на рисунок ниже. Это простейшая схема его работы.


Здесь хорошо видны магниты с разными полюсами, рамка, вал и токосъемные кольца, с помощью которых производится отвод тока.

Конечно, это просто схема, хотя лабораторные генераторы так и создавались. На практике же обычные магниты заменяют электромагнитами. Последние – это медная обмотка или катушки индуктивности. Когда по ним проходит электрический ток, образуется необходимое магнитное поле. Такие генераторы установлены во всех автомобилях (это для примера), чтобы их запустить, под капотом устанавливается аккумулятор, то есть, источник постоянного тока. Некоторые модели генераторов запускаются по принципу самовозбуждения или при помощи маломощных генераторов.


Схемa генерaторa переменного токa

Разновидности

В основе классификации заложен принцип действия, поэтому эти агрегаты переменного тока делятся на два класса:

  • Асинхронные. Это самые надежные в работе, небольших размеров и веса, простых по конструкции генераторы. Они прекрасно справляются с перегрузками и коротким замыканием. Правда, необходимо учитывать, что данный вид сразу же выходит из строя, если на него будет действовать большая перегрузка. К примеру, пусковой ток электрооборудования. Поэтому стоит учитывать этот факт, для чего придется приобретать генератор мощностью большей раза в три или четыре, чем потребляемая мощность оборудования при запуске.
  • Синхронные. А вот этот вид легко справляется с краткосрочными нагрузками. Такой генератор может выдержать перегруз раз в пять или шесть. Правда, высокой надежностью он не отличается по сравнению с асинхронным вариантов, к тому же он является обладателем больших размеров и массы.

Конечно, в данном разделении лежит принцип работы агрегата. Но есть и другие критерии.


  • Однофазный.
  • Двухфазный.
  • Трехфазный.
  • Многофазный (обычно шесть фаз).
  • Сварочный.
  • Линейный.
  • Индукционный.
  • Стационарный.
  • Переносной.

Устройство трехфазного генератора

В принципе, устройство трехфазного генератора переменного тока достаточно простое. Это корпус с двумя крышками с противоположных сторон. В каждой из них проделаны отверстия для вентиляции. В крышках устроены ниши под подшипники, в которых вращается вал. На передний конец вала устанавливается передаточный элемент. К примеру, на автомобильном генераторе установлен шкив, с помощью которого вращение передается от двигателя внутреннего сгорания на генератор. На противоположном конце вала производится передача электрического тока, ведь вал в этом случае выступает как электромагнит с одной обмоткой.

Передача производится через графитовые щетки и токосъемные кольца (они из меди). Щетки соединены с электрорегулятором (по сути, это обычное реле), который регулирует подачу напряжение 12 вольт с требуемыми отклонениями. Самое важное, что реле не повышает и не понижает напряжение в зависимости от скорости вращения самого вала.


Так вот если говорить о трехфазных генераторах переменного тока, то это три вот таких однофазных. Только трехфазный агрегат имеет обмотку не на роторе (валу), а в статоре. И таких обмоток три, которые сдвинуты относительно друг друга по фазе. Вал, как и в первой конструкции, выполняет функции электромагнита, который питается через контакты скользящего типа постоянным током.

Вращение вала создает в обмотках магнитное поле. Электродвижущая сила начинает индуцироваться, когда происходит пересечение магнитного поля обмоток с ротором. А так как обмотки располагаются на статоре симметрично, то есть, через каждые 120º, то соответственно и электродвижущая сила будет иметь одинаковое амплитудное значение.

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Как устроен генератор переменного тока - назначение и принцип действия

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Как устроен генератор переменного тока - назначение и принцип действия

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды генераторов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

Синхронный

Как устроен генератор переменного тока - назначение и принцип действия

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

Как устроен генератор переменного тока - назначение и принцип действия

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Как устроен генератор переменного тока - назначение и принцип действия

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Как устроен генератор переменного тока - назначение и принцип действия

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

Читайте также: