Какое смесеобразование применяется в бензиновых двигателях кратко

Обновлено: 05.07.2024

Назначение и классификация автомобильных двигателей. Типы двигателей по виду топлива, количеству тактов, числу и расположению цилиндров, способу смесеобразования и воспламенения.

Введение

Двигатель автомобиля представляет собой совокупность механизмов и систем, преобразующих тепловую энергию сгорающего в его цилиндрах топлива в механическую. На современных автомобилях наибольшее распространение получили поршневые двигатели внутреннего сгорания, в которых расширяющиеся при сгорании топлива газы воздействуют на движущиеся в их цилиндрах поршни. Бензиновые двигатели работают на легком жидком топливе — бензине, который получают из нефти. Дизельные двигатели работают на тяжелом жидком топливе — дизельном, получаемом также из нефти. Из указанных двигателей наиболее мощными являются бензиновые, наиболее экономичными и экологичными — дизели, имеющие более высокий коэффициент полезного действия. Так, при равных условиях расход топлива у дизелей на 25 . 30% меньше, чем у бензиновых двигателей.

У двигателей с внешним смесеобразованием горючая смесь готовится вне цилиндров, в специальном приборе — карбюраторе (карбюраторные двигатели) или во впускном трубопроводе (двигатели с впрыском бензина) и поступает в цилиндры в готовом виде. У двигателей с внутренним смесеобразованием (дизели, двигатели с непосредственным впрыском бензина) приготовление горючей смеси производится непосредственно в цилиндрах путем впрыска в них топлива. В двигателях без наддува наполнение цилиндров осуществляется за счет вакуума, создаваемого в цилиндрах при движений поршней из верхнего крайнего положения в нижнее. В двигателях с наддувом горючая смесь поступает в цилиндры под давлением, которое создается компрессором. Принудительное воспламенение горючей смеси от электрической искры, возникающей в свечах зажигания, производится в бензиновых двигателях, а воспламенение от сжатия (самовоспламенение) — в дизелях.

Назначение двигателей

Двигатель — это машина, преобразующая какой-либо вид энергии в механическую работу. На большинстве современных автомобилей установлены тепловые поршневые двигатели внутрен­него сгорания (ДВС), в которых тепло­та, выделяющаяся при сгорании топлива в цилиндрах, преобразуется в механическую работу.

Классификация двигателей

ДВС применяются на тракторах, автомобилях и других машинах они классифицируются по следующим признакам:

по способу смесеобразования различают двигатели с внешним смесеобразованием (карбюраторные и газовые), у которых горючая смесь приготовляется вне цилиндров, и двигатели с внутренним смесеобразованием (дизели), у которых рабочая смесь образуется внутри цилиндров;

по способу выполнения рабочего цикла двигатели подразделяются на двух- и четырехтактные;

по способу воспламенения рабочей смеси — с принудительным воспламене­нием от электрической искры (бензиновые, газовые и др.) и с воспламенением от сжатия, т. е. с самовоспламенением (дизели);

по способу наполнения цилиндров свежим зарядом — без наддува, т. е. со свободным впуском (наполнение осуществляется за счет перепада давления в цилиндрах и окружающей среде, воз­никающего при движении поршня) и с наддувом (наполнение происходит под давлением, создаваемым компрессором);

по способу охлаждения различают двигатели с жидкостным и воздушным охлаждением;

по виду применяемого топлива двигатели подразделяются на бензиновые (карбюраторные, газовые), дизельные и многотопливные, а также других (альтернативных) видах топлива (спирте, водороде и т. п.);

по числу цилиндров двигатели подразделяются на одно-, двух- и многоцилиндровые;

по расположению цилиндров различают двигатели с вертикальным или наклонным расположением цилиндров в один ряд и V-образные двигатели с расположением цилиндров под углом (при расположении цилиндров под углом 180° двигатель называют оппозитным, или двигателем с противолежащими цилиндрами), Х- и звездообразные (четырех-, пяти-, шестицилиндровые и т.д.).

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:
в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — "тяговиты на низах").
Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:
большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.
Компоновка поршневых двигателей

Рабочий процесс (цикл) четырехтактных двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска. Рабочий процесс происходит за четыре хода поршня или за два оборота коленчатого вала. Рассмотрим протекание рабочего цикла бензинового двигателя. При такте впуска (рис.3, а) поршень -/движется от ВМТ к НМТ. Выпускной клапан 5 закрыт. Под действием вакуума, создаваемого при движении поршня, в цилиндр 3 поступает горючая смесь (бензина и воздуха) через впускной клапан 7, открытый распределительным валом 6.


\

Рис. 2.3. Схема рабочего процесса четырехтактного бензинового двигателя: а — впуск; 6 — сжатие; в — рабочий ход; г — выпуск; / — коленчатый вал; 2 — шатун; 3 — цилиндр; 4 — поршень; 5 — выпускной клапан; 6 — распределительный вал; 7 — впускной клапан

Горючая смесь перемешивается с остаточными отработавшими газами, образуя при этом рабочую смесь. В конце такта впуска давление в цилиндре составляет 0,08. 0,09 МПа, а температура рабочей смеси – 80. 120 °С. Такт сжатия (рис.3, б) происходит при перемещении поршня от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Объем рабочей смеси уменьшается, а давление в цилиндре повышается и в конце такта сжатия составляет 0,9. 1,5 МПа. Повышение давления сопровождается увеличением температуры рабочей смеси до 450. 500°С. При такте рабочего хода (рис.3, в) впускной и выпускной клапаны закрыты. Воспламененная в конце такта сжатия от свечи зажигания рабочая смесь быстро сгорает (в течение 0,001 . 0,002 с). Температура и давление образовавшихся газов в цилиндре возрастают соответственно до 2200. 2500°С и 4. 5,5 МПа. Газы давят на поршень, он движется от ВМТ до НМТ и совершает полезную работу, вращая через шатун 2 коленчатый вал 1. По мере перемещения поршня к НМТ и увеличения объема пространства над ним давление в цилиндре уменьшается и в конце такта составляет 0,35. 0,45 МПа. Снижается и температура газов до 900..Л200 °С. Такт выпуска (рис. 3, г) происходит при движении поршня от НМТ к ВМТ. Впускной клапан закрыт. Отработавшие газы вытесняются поршнем из цилиндра через выпускной клапан, открытый распределительным валом. Давление и температура в цилиндре уменьшаются и в конце такта составляют 0,1 . 0,12 МПа и 700. 800°С. Из рассмотренного рабочего процесса (цикла) следует, что полезная работа совершается только в течение одного такта — рабочего хода. Остальные три такта (впуск, сжатие, выпуск) являются вспомогательными, и на их осуществление затрачивается часть энергии, накопленной маховиком двигателя, который установлен на заднем конце коленчатого вала, при рабочем ходе. Рабочий процесс четырехтактного дизеля существенно отличается от рабочего цикла бензинового двигателя по смесеобразованию и воспламенению рабочей смеси. Основное различие рабочих циклов состоит в том, что в цилиндры дизеля при такте впуска поступает не горючая смесь, а воздух, и при такте сжатия в цилиндры впрыскивается мелкораспыленное топливо, которое самовоспламеняется под действием высокой температуры сжатого воздуха. Рассмотрим более подробно рабочий цикл дизеля. Такт впуска (рис.4, а) осуществляется при движении поршня 2 от ВМТ к НМТ. Выпускной клапан 6 закрыт. Вследствие образовавшегося вакуума в цилиндр 7 через воздушный фильтр 4 и открытый впускной клапан 5 поступает воздух из окружающей среды. В конце такта впуска давление в цилиндре составляет 0,08. 0,09 МПа, а температура - 40. 60°С.


Рис. 4. Схема рабочего процесса четырехтактного дизеля: а — впуск; б — сжатие; в — рабочий ход; г — выпуск; 1 — топливный насос; 2 —поршень; 3 — форсунка; 4 — воздушный фильтр; 5 — впускной клапан; 6 —выпускной клапан; 7 — цилиндр; 8 — шатун; 9 — коленчатый вал

При такте сжатия (рис. 4, б) поршень движется от НМТ до ВМТ. Впускной и выпускной клапаны закрыты. Поршень сжимает находящийся в цилиндре воздух, и его температура в конце такта сжатия достигает 550. 700 °С при давлении 4. 5 МПа. При такте рабочего хода (рис.4, в) поршень подходит к ВМТ, и в цилиндр двигателя из форсунки 3 под большим давлением впрыскивается распыленное дизельное топливо, подаваемое топливным насосом 1 высокого давления. Впрыснутое топливо перемешивается с нагретым воздухом, и образовавшаяся смесь самовоспламеняется. При этом резко возрастают у образовавшихся газов температура до 1800. 2000°С и давление до 6. 9 МПа. Под действием давления газов поршень перемещается от ВМТ до НМТ и совершает полезную работу, вращая через шатун 8 коленчатый вал 9. К концу рабочего хода давление газов становится 0,3-0,5 МПа, а температура — 700. 900°С. Такт выпуска (рис. 4, г) происходит при движении поршня от НМТ к ВМТ. Впускной клапан закрыт. Через открытый выпускной клапан 6 поршень выталкивает из цилиндра отработавшие газы. К концу такта выпуска давление газов в цилиндре уменьшается до 0,11.-0,12 МПа, а температура — до 500. 700 °С. После окончания такта выпуска при вращении коленчатого вала рабочий цикл двигателя повторяется в той же последовательности.

4. Порядок работы двигателя


Порядком работы двигателя называется последовательность чередования рабочих ходов по цилиндрам двигателя. Для равномерной и плавной работы двигателя рабочие ходы и другие одноименные такты должны чередоваться в определенной последовательности в его цилиндрах. При этом чередование должно происходить через равные углы поворота коленчатого вала двигателя, величина которых зависит от числа цилиндров двигателя. В четырехтактном двигателе рабочий процесс совершается за два оборота коленчатого вала, т.е. за поворот вала на 720°. Число рабочих ходов равно числу цилиндров двигателя. Их чередование для четырех-, шести- и восьмицилиндровых двигателей будет происходить соответственно через 180, 120 и 90° поворота коленчатого вала.

Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, например, у коленчатого вала рядного четырехцилиндрового двигателя, представленного на рис.5, а,

Смесеобразование в бензиновых двигателях

Под смесеобразованием в двигателях с искровым зажиганием подразумевают комплекс взаимосвязанных процессов, сопровождающих дозирование топлива и воздуха, распыливание и испарение топлива и перемешивание его с воздухом. Качественное смесеобразование является необходимым условием получения высоких мощностных, экономических и экологических показателей двигателя.

Протекание процессов смесеобразования в значительной степени зависит от физико-химических свойств топлива и способа его подачи. В двигателях с внешним смесеобразованием процесс смесеобразования начинается в карбюраторе (форсунке, смесителе), продолжается во впускном коллекторе и заканчивается в цилиндре.

После выхода струи топлива из распылителя карбюратора или форсунки начинается распад струи под воздействием сил аэродинамического сопротивления (вследствие разности скоростей движения воздуха и топлива). Мелкость и однородность распыливания зависят от скорости воздуха в диффузоре, вязкости и поверхностного натяжения топлива. При пуске карбюраторного двигателя при его относительно низкой температуре распыливания топлива практически нет, и в цилиндры поступает до 90 и более процентов топлива в жидком состоянии. Вследствие этого для обеспечения надежного пуска необходимо существенно увеличивать цикловую подачу топлива (доводить α до значений ≈ 0,1-0,2).

Процесс распыливания жидкой фазы топлива протекает также в проходном сечении впускного клапана, а при не полностью открытой дроссельной заслонке – в образуемой ею щели.

Часть капель топлива, увлекаемая потоком воздуха и паров топлива, продолжает испаряться, а часть – оседает в виде пленки не стенках смесительной камеры, впускного коллектора и канала в головке блока. Под действием касательного усилия от взаимодействия с потоком воздуха пленка движется в сторону цилиндра. Так как скорости движения топливовоздушной смеси и капель топлива отличаются незначительно (на 2–6 м/c), то интенсивность испарения капель низка. Испарение с поверхности пленки протекает более интенсивно. Для ускорения процесса испарения пленки впускной коллектор в двигателях карбюраторных и с центральным впрыскиванием подогревают.

Разное сопротивление ветвей впускного коллектора и неравномерное распределение пленки в этих ветвях приводят к неравномерности состава смеси по цилиндрам. Степень неравномерности состава смеси может достигать 15–17 %.

При испарении топлива протекает процесс его фракционирования. В первую очередь испаряются легкие фракции, а более тяжелые попадают в цилиндр в жидкой фазе. В результате неравномерного распределения жидкой фазы в цилиндрах может оказаться не только смесь с разным соотношением топливо – воздух, но и топливо различного фракционного состава. Следовательно, и октановые числа топлива, находящегося в разных цилиндрах, будут неодинаковыми.

Качество смесеобразования улучшается с ростом частоты вращения n. Особенно заметно негативное влияние пленки на показатели работы двигателя на переходных режимах.

Неравномерность состава смеси в двигателях с распределенным впрыскиванием определяется, главным образом, идентичностью работы форсунок. Степень неравномерности состава смеси составляет ±1,5 % при работе по внешней скоростной характеристике и ±4 % на холостом ходу с минимальной частотой вращения nх.х.min.

При впрыскивании топлива непосредственно в цилиндр возможны два способа смесеобразования:

− с получением гомогенной смеси;

− с расслоением заряда.

Реализация последнего способа смесеобразования сопряжена с немалыми трудностями.

В газовых двигателях с внешним смесеобразованием топливо вводится в воздушный поток в газообразном состоянии. Низкое значение температуры кипения, высокое значение коэффициента диффузии и существенно меньшее значение теоретически необходимого для сгорания количества воздуха (например для бензина − 58,6, метана – 9,52 (м3 возд)/(м3 топл) обеспечивают получение практически гомогенной горючей смеси. Распределение смеси по цилиндрам более равномерное.

Смесеобразование

Топливо, используемое в двигателях с искровым зажиганием, является более летучим, чем дизельное топливо, к тому же его смешивание с воздухом до попадания в камеру сгорания занимает больше времени, чем в дизеле. В результате двигатели с искровым зажиганием работают на более однородных смесях, которые, кроме того, очень близки к стехиометрическим (λ = 1). Дизели всегда работают на обедненных смесях (λ > 1). Если коэффициент избытка воздуха топливо-воздушной смеси недостаточно велик (λ

Образование смеси в бензиновых двигателях


Последовательность сжатия и последующего сгорания топлива, с одной стороны, оказывает значительное влияние на характеристику давления и, следовательно, на к.п.д. и выходной крутящий момент. С другой стороны, эта последовательность определяет процесс образования токсичных продуктов горения. В этом отношении бензиновые и дизельные двигатели отличаются способом управления процессами.

Рабочий цикл поршневого двигателя внутреннего сгорания

Двигатель с искровым зажиганием

Характерной чертой бензиновых двигателей является использование внешнего источника зажигания, обычно электродной свечи зажигания. В идеальном случае имеет место образование надлежащей топливовоздушной смеси, что обеспечивает требуемую воспламеняемость. Это достигается за счет внешнего смесеобразования (впрыск топлива во впускной трубопровод) или внутреннего смесеобразования (прямой впрыск топлива).

Образование смеси в бензиновых двигателях

Испарение топлива

В основном приготовление однородной смеси осуществляется на двигателях с искровым зажиганием, т.е. всасываемый воздух полно­стью смешивается с испаряемым и распы­ленным топливом во время тактов впуска и сжатия. Превосходная испаряемость бензина позволяет впрыскивать его во впускной трубо­провод. С другой стороны, современные дви­гатели с послойным распределением заряда топлива характеризуются частично гетероген­ным смесеобразованием.

Приготовление рабочей смеси в двигателях с искровым зажиганием

Впрыск топлива во впускной трубопровод

Образование капель топлива

В случае впрыска топлива во впускной трубопро­вод перед впускным клапаном создается пленка топлива, масса которой уменьшается по мере воз­растания скорости движения воздуха. Эта скорость движения воздуха линейно изменяется в зависимости от скорости вращения двигателя. Вслед­ствие низкой температуры и неполного испарения топлива во впускном трубопроводе с образованием в результате топливной пленки, впрыск топлива во впускной трубопровод происходит при очень низ­ком давлении впрыска, менее 10 бар.

Прямой впрыск топлива

Испарение капель топлива

В системах прямого впрыска топлива (бен­зина) механизмы смесеобразования в зазоре клапана не используются. Поэтому здесь тре­буется более высокое давление впрыска, от 50 до 100 бар. Для обеспечения достаточного для гомогенизации времени впрыск произво­дится не позже момента достижения порш­нем нижней мертвой точки.

Затем впрыснутая смесь сжимается, в зависимости, прежде всего, от положения дроссельной заслонки и степени сжатия двигателя до уровня давления от 10 до 40 бар. Это соответствует уровню температуры от 300 до 500 °С, в зависимости, прежде всего, от степени сжатия. В гетерогенных процессах впрыск производится только в конце фазы сжатия.

Преимущество прямого впрыска топлива заключается в его точном дозировании. Про­цесс испарения топлива в камере сгорания также требует надлежащего охлаждения заряда топлива в цилиндре. Это позволяет повысить степень сжатия примерно на одну единицу, что дает повышение к.п.д. двига­теля.

Во всех процессах сгорания окисление топлива происходит только в конце фазы сжатия и в начале фазы расширения.

Процессы сгорания топлива в двигателях с искровым зажиганием

Последующий процесс сгорания топлива зависит от природы смесеобразования (го­могенной или гетерогенной). Полностью гомогенная смесь образуется в режиме предварительного смешивания, полностью гетерогенная смесь — в режиме контроля смесеобразования. На современных двигателях с прямым впрыском топлива и послойным рас­пределением заряда топлива большая часть впрыскиваемого топлива (>50 %) гомогени­зируется до начала сгорания.

Как при гомогенном, так и при частично гетерогенном смесеобразовании фактиче­скому сгоранию топлива предшествует ста­дия зажигания.

Зажигание

Зажигание обычно осуществляется при по­мощи электродной свечи зажигания. При подаче высокого напряжения происходит электрический пробой с образованием искры между электродами свечи, зависящий от со­стояния смеси (т.е. ее давления, температуры и состава). Как правило, величина высокого напряжения составляет более 10 кВ. Требуе­мая величина высокого напряжения опреде­ляется прежде всего количеством молекул между электродами. Зажженная свечой зажи­гания смесь в процессе сгорания должна вы­свободить количество энергии, достаточное для зажигания смеси, непосредственно примыкающей к области начального зажигания.

Продолжительность искры и требуемое напряжение зажигания
Минимальная энергия искры для пропано-воздушной смеси

Процессы сгорания гомогенных смесей

Для того чтобы пламя достигло радиуса около одного сантиметра и беспрепятственно распространялось от углубления в поршне и головки цилиндра со скоростью, значительно превышающей 10 м/с, требуется несколько миллисекунд. Решающим фактором здесь является скорость распространения пламени, также называемая турбулентной скоростью пламени. Чем быстрее распространяется пламя, тем лучше происходит сгорание то­плива внутри двигателя. Высокой скорости распространения пламени способствуют следующие факторы: низкое содержание инертных газов, повышение температуры несгоревшей смеси, повышение давления и высокий уровень турбулентности.

Для большинства видов топлива макси­мальная скорость распространения пламени достигается при работе двигателя на несколько обогащенной смеси (λ = 0,85-0,9). Дополни­тельным преимуществом несколько обога­щенной смеси является эффект охлаждения, обеспечиваемый избытком топлива. Поэтому двигатели спортивных и легковых автомо­билей в диапазоне номинальных мощностей работают с несколько обогащенной смесью. Увеличение содержания инертных газов сни­жает скорость распространения пламени. Практическим применением регулирования содержания инертных газов является система рециркуляции отработавших газов (EGR), в которой отработавшие газы с основными со­ставляющими СO2, Н2O и N2 добавляются в топливовоздушную смесь. Существует эмпи­рическое правило, в соответствии с которым при степени рециркуляции 10 % скорость распространения пламени снижается на 20 %.

Причиной, по которой современные двига­тели с искровым зажиганием, тем не менее, могут работать высокой степенью рецирку­ляции отработавших газов, является влияние температуры. Увеличение температуры в два раза повышает скорость распространения пламени в четыре раза.

Давление в цилиндре оказывает меньшее влияние; повышение давления вызывает не­большое увеличение скорости распростране­ния пламени.

Самое большое влияние на скорость рас­пространения пламени оказывает уровень турбулентности в камере сгорания. Ско­рость распространения пламени изменяется приблизительно пропорционально интен­сивности турбулентности. Интенсивность турбулентности представляет собой меру вы­сокочастотных колебаний скорости потока в данной точке камеры. Кинетическая энергия турбулентного потока пропорциональна ква­драту интенсивности турбулентности.

Турбулентная и средняя кинетическая энергия, отнесенные к массе в зависимости от положения коленчатого вала

Интенсивность турбулентности-это трехмер­ный количественный параметр, на величину которого влияет прежде всего профиль потока заряда топлива в камере сгорания. Скорость по­тока внутри камеры сгорания, линейно возрас­тающая до максимально возможной величины с увеличением величины оборотов двигателя, является чрезвычайно важным фактором. По мере увеличения скорости потока, возрастает и интенсивность турбулентности в камере сго­рания. Благодаря этому двигатель стабильно работает в очень широком диапазоне оборо­тов коленчатого вала. В противном случае при повышении оборотов и неизменной скорости распространения пламени имели бы место на­рушения в работе двигателя из-за уменьшения времени, имеющегося для сгорания.

Однако, положительное влияние турбулентности не мо­жет полностью компенсировать влияние вели­чины оборотов, поэтому при высоких оборотах процесс сгорания топлива чрезмерно растя­гивается и занимает более широкий диапазон угла поворота коленчатого вала. Это является дополнительной причиной снижения к.п.д. дви­гателей с искровым зажиганием при работе на высоких оборотах.

В процессе сгорания топлива происходит повышение давления, которое также может одновременно ощущаться. В целях повышения уровня комфорта следует принимать меры к сведению этого повышения давления к минимуму. Однако это противоречит полу­чению высокого термодинамического к.п.д. двигателя. Максимально допустимый гради­ент повышения давления для двигателей с искровым зажиганием лежит в диапазоне от 0,5 до 3 бар/° угла поворота коленчатого вала.

Сгорание частично гомогенных смесей

Современные двигатели с послойным рас­пределением заряда топлива могут работать с избытком воздуха в смеси в диапазоне ча­стичных нагрузок. При эффективном сред­нем давлении рme 1 бар возможна работа даже при значении λ > 5. Основное преимущество здесь заключается в улучшении цикла подачи заряда топлива в цилиндр, поскольку это позволяет в основном исключить дрос­селирование (которое оказывает негативное влияние на общий КПД).

Движение заряда топлива

В реальности имеет место пере­крытие этих трех потоков, сопровождаю­щееся образованием сложных трехмерных полей потока. Вертикальные и горизонталь­ные завихрения существенно различаются по своему поведению в двигателе.

Поток вертикального завихрения рас­сеивается до момента достижения верхней мертвой точки такта сжатия и в основном способствует распространению пламени в течение первой половины процесса сгорания топлива.

Поток горизонтального завихрения длится дольше и имеет место также в течение части последующей фазы расширения. Расщепле­ние больших вертикальных завихрений на уменьшающиеся в размерах турбулентные потоки способствует созданию турбулентно­сти. Однако, в дальнейшем вязкость рабочей среды становится причиной расщепления по­тока, что оказывает неблагоприятное влия­ние на скорость сгорания топлива.

Созданию турбулентности способствует специальная геометрия камеры сгорания. В частности, распространению пламени способствуют потоки в области углубления в поршне или в области вытеснения.

Одной из самых больших физических проблем, связанных с управлением процес­сами сгорания гомогенных смесей, является поведение процесса на стадии расширения, поскольку, как правило, свыше 10 % топлива в момент 30° после ВМТ остается не сгорев­шим. В этот момент несгоревшая смесь все еще находится в непосредственной близости к стенкам цилиндра и еще должна сгорать после того, как она вновь выйдет из области гребня поршня над канавкой верхнего порш­невого кольца. Это явление может стать причиной неполного сгорания топлива на заключительной стадии.

Неконтролируемое сгорание топлива

Многочисленные нежелательные процессы затрудняют достижение равномерного сгора­ния топлива. Кроме циклических изменений состояния, неблагоприятное влияние оказы­вают детонация и самовоспламенение. При этом могут иметь место крайние формы ран­него зажигания, в особенности на современ­ных двигателях с мощным турбонаддувом.

Обычно детонация возникает в ходе рабочего цикла только в том случае, если 80 % количества топлива в камере сгорания остается несгоревшим. Детона­цию особенно часто можно наблюдать при низких оборотах двигателя, когда имеется достаточное время для самовоспламенения смеси, и при больших нагрузках с высокими температурами в камере сгорания. Использо­вание топлива с высокой температурой зажи­гания, например, метана или этана снижает чувствительность к детонации. Детонацию также можно уменьшить, сдвинув момент за­жигания в сторону запаздывания. Двигатели с высокой степенью сжатия и турбонаддувом более чувствительны к детонации в связи с более высокими температурами, достигае­мыми в конце стадии сжатия. Эффективные меры по предотвращению детонации вклю­чают интенсивное охлаждение горячих обла­стей цилиндра, в том числе за счет испарения бензина при прямом впрыске топлива, повы­шение турбулентности, уменьшение степени сжатия и оптимизацию топлива, например, при помощи тех или иных добавок.

В отличие от детонации, самовоспламене­ние может возникать даже в условиях значи­тельного запаздывания зажигания. Возмож­ные причины самовоспламенения включают:

  • Чрезмерное запаздывание момента зажи­гания с неполным сгоранием смеси и об­разованием пленки топлива, способствую­щим самовоспламенению;
  • Работа двигателя с полной нагрузкой, с высокими температурами компонентов цилиндра;
  • Зажигание, вызываемое образивным из­носом и горячими частицами;
  • Выбросы масла вследствие износа порш­невых колец.

Крайние формы самовоспламенения могут возникать в бензиновых двигателях с высо­кой степенью сжатия и турбонаддувом. Они могут вызывать скачки давления свыше 150 бар, которые могут привести к серьезному повреждению двигателя. Однако такие экс­тремальные формы самовоспламенения воз­никают чрезвычайно редко и имеют вероят­ность менее 0,01 на тысячу.

Образование токсичных продуктов и сниже­ние содержания токсичных продуктов в вы­бросах двигателей с искровым зажиганием

Выбросы бензиновых двигателей

Для образования оксидов азота (NOх) требуется наличие четырех факторов: кисло­рода, азота, высоких температур и времени. Поскольку содержание кислорода и азота определяется составом топлива, а время, необходимое для образования оксидов — величиной оборотов двигателя, снизить содер­жание оксидов азота в выбросах бензиновых двигателей можно только за счет снижения температуры в камере сгорания (например, путем сдвига момента зажигания в сторону запаздывания или за счет охлаждения путем рециркуляции отработавших газов).

Повышенное содержание в выбросах угле­водородов (НС) и оксида углерода (СО) явля­ется результатом неполного сгорания смеси. Так, повышенное содержание НС и СО имеет место при работе двигателя на богатой смеси, в условиях недостатка кислорода. При работе на бедной смеси с соответствующим сниже­нием температуры пламени имеет место бо­лее интенсивное затухание пламени, прежде всего вблизи стенок цилиндра, сопровожда­ющееся увеличением содержания в выбросах НС. В то же время, за счет избытка кислорода имеет место снижение содержания СО.

Выброс сажи имеет место в двигателях, работающих на гомогенной смеси, только в случае очень сильного обогащения смеси. Содержание в выбросах соединений серы за­висит от состава топлива.

Благодаря современным системам очистки отработавших газов, современные двигатели с искровым зажиганием, при условии достижения рабочей температуры каталитического нейтра­лизатора, становятся моторами, практически не дающими вредных выбросов. Трехступенчатые каталитические нейтрализаторы, работая при λ = 1, снижают выбросы оксидов азота, одновременно окисляя молекулы НС и СО. Работа двигателя на бедной смеси требует иного под­хода.

В этом случае на двигатели с послойным распределением заряда топлива, как правило, устанавливаются каталитические нейтрализа­торы с нейтрализацией NOх. Эти нейтрализаторы накапливают оксиды азота. Периодическая ра­бота двигателя на обогащенной смеси при высоких температурах уменьшает количество накопленных оксидов азота. Поскольку ката­литические нейтрализаторы с накоплением NOx чувствительны к загрязнению соединениями серы, необходимо периодически выполнять ци­клы десульфатации, заключающиеся в работе двигателя на несколько обогащенной смеси при температурах свыше 600 °С.

Управление нагрузкой двигателей с искровым зажиганием

В двигателях с гомогенным зарядом топлива нагрузка регулируется путем изменения массы впрыскиваемого топлива. Соответ­ствующий массовый расход воздуха, тре­буемый для работы при λ = 1, регулируется путем изменения положения дроссельной заслонки. Этот процесс известен под на­званием количественного контроля. При работе в диапазоне частичных нагрузок это вызывает индукционное дросселирование, оказывающее неблагоприятное влияние на общий к.п.д. двигателя. Этот недостаток может быть частично скомпенсирован за счет изменения синхронизации клапанов. Типичные меры включают опережение или запаздывание момента закрытия впускного клапана, уменьшение высоты подъема кла­пана или запаздывание момента закрытия вы­пускного клапана.

Выходная мощность и эффективность

При работе двигателей с искровым зажи­ганием в режиме частичной нагрузки имеет место ухудшение рабочих характеристик в результате потерь в цикле подачи заряда (дросселирования), плохого управления про­цессом (пиковые давления ниже 30 бар) и повышения потерь трения в двигателе в этом диапазоне нагрузок. Поскольку даже при скоростях движения легковых автомобилей свыше 100 км/ч большинство двигателей продолжают работать в диапазоне частичных нагрузок, весьма успешными оказываются меры, направленные на повышение к.п.д. К таким мерам относятся:

Подготовка смеси топлива с возду­хом в необходимых пропорциях, обеспе­чивающих наиболее эффективное горе­ние, называется смесеобразованием. Различают двигатели с внешним и внутренним смесеобразо­ванием.

К ДВС с внешним смесеобразовани­ем относятся карбюраторные и некото­рые газовые двигатели. В двигателях, работающих на бензине, смесь готовится в карбюраторе. Простейший карбюра­тор, принципиальная схема которого по­казана на рис. 42, состоит из поплавко­вой и смесительной камер. В поплавко­вой камере помещается латунный по­плавок 1, укрепленный шарнирно на оси 3, и игольчатый клапан 2, которыми поддерживается постоянный уровень бензина. В смесительной камере распо­ложен диффузор 6, жиклер 4 сраспыли­телем 5 и дроссельная заслонка 7. Жик­лер представляет собой пробку с калиб­рованным отверстием, рассчитанным на протекание определенного количества топлива.


Рис. 42. Принципиальная схема простейшего карбюратора

Когда поршень движется вниз и впускной клапан открыт, во впускном трубопроводе и смесительной камере со­здается разрежение, и под действием разности давлений в поплавковой и сме­сительной камерах из распылителя вы­текает бензин. Одновременно через сме­сительную камеру проходит поток воз­духа, скорость которого в суженной части диффузора (там, куда выходит ко­нец распылителя) достигает 50—150 м/с. Бензин мелко распыливается в струе воз­духа и, постепенно испаряясь, образует горючую смесь, которая по впускному трубопроводу поступает в цилиндр. Ка­чество горючей смеси зависит от соотно­шения количеств бензина и воздуха. Го­рючая смесь может быть нормальной (15кг воздуха на 1 кг бензина), бедной (более 17 кг/кг) и богатой (менее 13 кг/кг). Количество и качество горючей сме­си, а следовательно, мощность и число оборотов двигателя регулируются дрос­сельной заслонкой и рядом специальных приспособлений, которые предусматри­ваются в сложных многожиклерных кар­бюраторах.

К ДВС с внутренним смесеобразова­нием относятся дизельные двигатели. На процессы смесеобразования, происходя­щие непосредственно в цилиндре, отво­дится незначительное время — от 0,05 до 0,001 с; это в 20—30 раз меньше времени внешнего смесеобразования в карбюра­торных двигателях. Подача топлива в цилиндр дизеля, последующее распыливание и частичное распределение по объему камеры сгорания производятся топливоподающей аппаратурой — насосом и форсункой. Современные дизели имеют форсунки, где число сопловых от­верстий диаметром 0,25—1 мм доходит до десяти.

Бескомпрессорные дизели бывают с неразделенной и разделенной камерами сгорания. Тонкость распыливания и дальнобойность факелов в неразделен­ных камерах обеспечиваются благодаря высокому давлению впрыска топлива (60-100 МПа). В разделенных камерах сгорания происходит более качественное смесеобразование, что позволило су­щественно снизить давление впрыска топлива (8—13 МПа), а также использо­вать более дешевые сорта топлива.

В газовых двигателях газообразное топливо и воздух по соображениям безо­пасности подаются по отдельным трубо­проводам. Дальнейшее смесеобразование осуществляется или в специальном сме­сителе до их поступления в цилиндр (за­полнение цилиндра в начале хода сжа­тия производится готовой смесью), или в самом цилиндре, куда они подаются раздельно. В последнем случае вначале цилиндр заполняется воздухом и затем по ходу сжатия в него через специальный клапан подается газ под давлением 0,2— 0,35 МПа. Наибольшее распространение получили смесители второго типа. Вос­пламенение газовоздушной смеси осуще­ствляется электрической искрой или раскаленным запальным шаром — кало­ризатором.

В соответствии с различными при­нципами смесеобразования различаются и требования, которые предъявляют кар­бюраторные двигатели и дизели к при­меняемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензи­ны. Основной проблемой, препятствую­щей повышению степени сжатия в таких двигателях сверх уже достигнутых зна­чений, является детонация. Упрощая яв­ление, можно сказать, что это — пре­ждевременное самовоспламенение горю­чей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько на­поминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добав­ляют в топливо антидетонаторы — ве­щества, пары которых уменьшают ско­рость реакции. Наиболее распространен­ный антидетонатор — тетраэтилсвинца Pb (C2H5)4— сильнейший яд, действую­щий на мозг человека, поэтому при обра­щении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются с продуктами сгорания в атмосферу, за­грязняя и ее, и окружающую среду (с травой газонов свинец может попасть в пищу скоту, оттуда — в молоко и т. д.). Поэтому потребление этого экологически опасного антидетонатора должно быть ограничено, и в ряде городов меры в этом отношении принимаются.




Для определения склонности данного топлива к детонации устанавливают ре­жим, при котором оно (естественно, в смеси с воздухом) начинает детониро­вать в специальном двигателе со строго заданными параметрами. Затем на этом же режиме подбирают состав смеси изо-октана C3H18 (труднодетонирующего топлива) с н-гептаном C7H16 (легкодето­нирующим топливом), при котором тоже возникает детонация. Процентное содер­жание изооктана в этой смеси называет­ся октановым числом данного топлива и является важнейшей характеристикой топлив для карбюраторных двигателей.

Автомобильные бензины маркируют по октановому числу (АИ-93, А-76 и т.п.). Буква А обозначает, что бензин автомобильный, И — октановое число, определенное специальными испы­таниями, а цифра после букв - само ок­тановое число. Чем оно выше, тем мень­ше склонность бензина к детонации и тем выше допустимая степень сжатия, а зна­чит, и экономичность двигателя.

Вопросы для самопроверки

1. Что называется поршневым двигателем внутреннего сгорания (ДВС)?

2. Объясните принцип работы поршневого двигателя внутреннего сгорания?

3. Принцип действия простейшего карбюратора?

Подготовка смеси топлива с возду­хом в необходимых пропорциях, обеспе­чивающих наиболее эффективное горе­ние, называется смесеобразованием. Различают двигатели с внешним и внутренним смесеобразо­ванием.

К ДВС с внешним смесеобразовани­ем относятся карбюраторные и некото­рые газовые двигатели. В двигателях, работающих на бензине, смесь готовится в карбюраторе. Простейший карбюра­тор, принципиальная схема которого по­казана на рис. 42, состоит из поплавко­вой и смесительной камер. В поплавко­вой камере помещается латунный по­плавок 1, укрепленный шарнирно на оси 3, и игольчатый клапан 2, которыми поддерживается постоянный уровень бензина. В смесительной камере распо­ложен диффузор 6, жиклер 4 сраспыли­телем 5 и дроссельная заслонка 7. Жик­лер представляет собой пробку с калиб­рованным отверстием, рассчитанным на протекание определенного количества топлива.


Рис. 42. Принципиальная схема простейшего карбюратора

Когда поршень движется вниз и впускной клапан открыт, во впускном трубопроводе и смесительной камере со­здается разрежение, и под действием разности давлений в поплавковой и сме­сительной камерах из распылителя вы­текает бензин. Одновременно через сме­сительную камеру проходит поток воз­духа, скорость которого в суженной части диффузора (там, куда выходит ко­нец распылителя) достигает 50—150 м/с. Бензин мелко распыливается в струе воз­духа и, постепенно испаряясь, образует горючую смесь, которая по впускному трубопроводу поступает в цилиндр. Ка­чество горючей смеси зависит от соотно­шения количеств бензина и воздуха. Го­рючая смесь может быть нормальной (15кг воздуха на 1 кг бензина), бедной (более 17 кг/кг) и богатой (менее 13 кг/кг). Количество и качество горючей сме­си, а следовательно, мощность и число оборотов двигателя регулируются дрос­сельной заслонкой и рядом специальных приспособлений, которые предусматри­ваются в сложных многожиклерных кар­бюраторах.

К ДВС с внутренним смесеобразова­нием относятся дизельные двигатели. На процессы смесеобразования, происходя­щие непосредственно в цилиндре, отво­дится незначительное время — от 0,05 до 0,001 с; это в 20—30 раз меньше времени внешнего смесеобразования в карбюра­торных двигателях. Подача топлива в цилиндр дизеля, последующее распыливание и частичное распределение по объему камеры сгорания производятся топливоподающей аппаратурой — насосом и форсункой. Современные дизели имеют форсунки, где число сопловых от­верстий диаметром 0,25—1 мм доходит до десяти.

Бескомпрессорные дизели бывают с неразделенной и разделенной камерами сгорания. Тонкость распыливания и дальнобойность факелов в неразделен­ных камерах обеспечиваются благодаря высокому давлению впрыска топлива (60-100 МПа). В разделенных камерах сгорания происходит более качественное смесеобразование, что позволило су­щественно снизить давление впрыска топлива (8—13 МПа), а также использо­вать более дешевые сорта топлива.

В газовых двигателях газообразное топливо и воздух по соображениям безо­пасности подаются по отдельным трубо­проводам. Дальнейшее смесеобразование осуществляется или в специальном сме­сителе до их поступления в цилиндр (за­полнение цилиндра в начале хода сжа­тия производится готовой смесью), или в самом цилиндре, куда они подаются раздельно. В последнем случае вначале цилиндр заполняется воздухом и затем по ходу сжатия в него через специальный клапан подается газ под давлением 0,2— 0,35 МПа. Наибольшее распространение получили смесители второго типа. Вос­пламенение газовоздушной смеси осуще­ствляется электрической искрой или раскаленным запальным шаром — кало­ризатором.

В соответствии с различными при­нципами смесеобразования различаются и требования, которые предъявляют кар­бюраторные двигатели и дизели к при­меняемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензи­ны. Основной проблемой, препятствую­щей повышению степени сжатия в таких двигателях сверх уже достигнутых зна­чений, является детонация. Упрощая яв­ление, можно сказать, что это — пре­ждевременное самовоспламенение горю­чей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько на­поминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добав­ляют в топливо антидетонаторы — ве­щества, пары которых уменьшают ско­рость реакции. Наиболее распространен­ный антидетонатор — тетраэтилсвинца Pb (C2H5)4— сильнейший яд, действую­щий на мозг человека, поэтому при обра­щении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются с продуктами сгорания в атмосферу, за­грязняя и ее, и окружающую среду (с травой газонов свинец может попасть в пищу скоту, оттуда — в молоко и т. д.). Поэтому потребление этого экологически опасного антидетонатора должно быть ограничено, и в ряде городов меры в этом отношении принимаются.

Для определения склонности данного топлива к детонации устанавливают ре­жим, при котором оно (естественно, в смеси с воздухом) начинает детониро­вать в специальном двигателе со строго заданными параметрами. Затем на этом же режиме подбирают состав смеси изо-октана C3H18 (труднодетонирующего топлива) с н-гептаном C7H16 (легкодето­нирующим топливом), при котором тоже возникает детонация. Процентное содер­жание изооктана в этой смеси называет­ся октановым числом данного топлива и является важнейшей характеристикой топлив для карбюраторных двигателей.

Автомобильные бензины маркируют по октановому числу (АИ-93, А-76 и т.п.). Буква А обозначает, что бензин автомобильный, И — октановое число, определенное специальными испы­таниями, а цифра после букв - само ок­тановое число. Чем оно выше, тем мень­ше склонность бензина к детонации и тем выше допустимая степень сжатия, а зна­чит, и экономичность двигателя.

Читайте также: