Каким является двигатель бытового вентилятора кратко

Обновлено: 05.07.2024

1) Электродвигатели постоянного тока. Сфера применения данных электродвигателей весьма обширна от маленьких игрушек до больших электровозов. Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями.

2) Электродвигатели переменного тока. Более распространенный и дешевый вид электродвигателя, чем постоянного тока. Они имеют простую и надежную конструкцию и легко эксплуатируются. Принцип его работы базируется на частой смене направлений тока в секунду. Вращение проволочной петли вокруг своей оси за счет изменения направлений тока будет провоцировать преобразование энергии из электрической в механическую.

3) Асинхронный электродвигатель. Такой двигатель распространен в промышленности, где имеется трехфазная сеть. Принцип действия асинхронного электродвигателя основан на взаимодействии вихревых токов с полем статора, в результате чего образуется вращательный момент. Такие электродвигатели считаются наиболее надежными и требующими меньше обслуживания, потому что отсутствует скользящий контакт, при этом имеют относительно низкую цену.

4) Синхронный электродвигатель. Ротор синхронного двигателя вращается с той же частотой, что и магнитное поле в воздушном зазоре. Данные электродвигатели работают с постоянной скоростью, поэтому их часто используют в крупных насосах, вентиляторах, генераторах.

Статьи
Вентиляция
Кондиционирование
Тепловое оборудование
Электродвигатели

Бытовые электродвигатели и их использование

Бытовые электродвигатели

Благодаря глобальной электрификации наша жизнь стала более комфортной и уютной. Быт современного человека невозможно представить без электроприборов. Немало бытовой техники, которая сплошь работает на электричестве, используется сегодня в каждом доме. Даже сельский быт изобилует различными устройствами, делающими хозяйство более прогрессивным и менее обременительным для своего владельца.

В данной статье мы затронем тему бытовых электродвигателей, которые верно служат в наших пылесосах, в стиральных машинах, в кофемолках, в кухонных комбайнах, в микроволновках, и во многих других бытовых приборах, используя которые мы даже не задумываемся о том, как они устроены, и насколько важна в них роль электродвигателя.

Бытовые электродвигатели — это не промышленные агрегаты на много киловатт, это часто результат работы инженерной мысли по оптимизации обычных, казалось бы, принципов, с целью свести недостатки к минимуму, и при этом повысить эффективность, применительно к конкретному прибору. Нужно чтобы двигатель был компактным, по возможности не шумным, и не потреблял бы слишком много электроэнергии, при этом точно выполнял бы возложенные на бытовой прибор функции.

Начнем с кухни. На каждой кухне есть микроволновка. На некоторых кухнях есть кухонный комбайн, и кофемолка, и даже посудомоечная машина. Рассмотрим двигатели этих приборов.

Электродвигатель посудомоечной машины

Рециркуляционный насос посудомоечной машины, призванный закачать воду в моющие души машины, имеет в качестве привода небольшой однофазный асинхронный электродвигатель с короткозамкнутым ротором. Частота вращения ротора составляет примерно 2800 оборотов в минуту, а мощность его может быть разной - от 60 до 180 ватт обычно, в зависимости от вместительности посудомоечной машины.

Обмотка двигателя оснащена параллельно рабочим конденсатором, типичная емкость которого составляет 3 мкф. Данный двигатель прекрасно справляется со своей задачей — вращает крыльчатку насоса, нагнетает воду.

Электродвигатель поворотного столика микроволновой печи

В микроволновой печи мотора два. Первый из них вращает поворотный столик. Здесь нужна больная мощность и низкие обороты, поэтому данный двигатель синхронный, и хоть и является однофазным, но имеет шестереночный редуктор. В качестве ротора здесь круглый постоянный магнит, который вращается со скоростью до 3000 оборотов в минуту, однако редуктор понижает обороты до 2,5 - 6 оборотов в минуту, которые и передаются столику.

Мощность этого небольшого шайбообразного мотора составляет от 2,5 до 5 ватт, а напряжение питания может быть 21, 30 или 220 вольт, в зависимости от модели микроволновки. Со своей задачей — вращать столик с тяжелой посудой — данный мотор-редуктор справляется на ура.

Электродвигатель вентилятора микроволновой печи

Еще в микроволновке есть вентилятор системы охлаждения магнетрона. Данный вентилятор приводится во вращение однофазным асинхронным двигателем, мощностью от 10 до 50 ватт, скорость вращения ротора которого составляет 1200 - 1300 оборотов в минуту. Статор двигателя набран из пластин электротехнической стали, ротор — просто стальной цилиндр с впрессованным валом.

Рабочая обмотка изготовлена из тонкого эмальпровода, и расположена на пластиковом каркасе, надетом на статор. Имеется здесь и пусковая обмотка, роль которой выполняют короткозамкнутые одиночные витки большого сечения, расположенные по краям статора, и формирующие при включении пусковой момент.

Мотор не отличается высоким КПД, однако со своей функцией — вращать вентилятор, гнать воздух через радиатор магнетрона, справляется.

Коллекторный двигатель кофемолки

В кофемолках применяют однофазные коллекторные моторы. Такие моторы имеют обмотки как на статоре, так и на роторе. Через коллекторно-щеточный узел питание подается на обмотки ротора, и скорость вращения лезвий кофемолки получается огромной.

Моторы типичных домашних кофемолок питаются переменным током, и обладают мощностью до 180 ватт. Они развивают обороты значительно превышающие 3000 в минуту, и могут достигать 20000 и более оборотов в минуту, это особенность коллекторных моторов.

Однофазный коллекторный двигатель кухонного комбайна

Кухонный комбайн также оснащен однофазным коллекторным двигателем, однако более мощным, чем в кофемолках. Мощность двигателя кухонного комбайна может достигать киловатта, а обороты здесь регулируются посредством тиристорных схем управления, по принципу наподобие светорегуляторов - диммеров.

Преимущество коллекторного двигателя, применительно к кухонному комбайну, — высокий крутящий момент и высокие максимальные обороты, поскольку двигатель не является ни синхронным, ни обычным асинхронным, его скорость мало зависит от частоты, больше — от среднего тока.

Электродвигатель стиральной машины

Теперь переместимся в ванную комнату. Здесь, конечно, автоматическая стиральная машина. С самого начала в них применялись коллекторные двигатели с тиристорным регулированием оборотов. Такой двигатель оснащен таходатчиком, который позволяет электронике точно устанавливать скорость вращения барабана стиральной машины при любой степени загрузки.

Маленький шкив на валу двигателя значительно меньше по диаметру, чем ротор, и при оборотах, достигающих 10000 в минуту, на барабан через ремень передается 1000 оборотов в минуту, а мощность может лежать в диапазоне от 200 до 800 ватт.

Мотор прямого привода стиральной машины

В более современных стиральных машинах применяются моторы прямого привода, бесщеточные асинхронные моторы. В качестве ротора — внешний ротор с 12 постоянными магнитами, а в качестве статора — внутренний 36 катушечный статор. Катушки объединены в три группы по 12 штук, и позволяют реализовать трехфазное частотное управление скоростью вращения барабана (частота до 300 герц) посредством электронного BLDC – контроллера, и мощностью (моментом вращения) посредством ШИМ — регулирования.

Данные моторы относятся к асинхронным, и управляются при помощи BLDC – инвертора, где постоянное напряжение в районе 325 вольт подается импульсами последовательно на три группы катушек статора. Скорость достигает 1500 оборотов в минуту, а мощность в районе 1300 ватт.

Электродвигатель пылесоса

Далее, конечно, вспомним пылесос. Двигатели для пылесосов изначально всегда были коллекторными. Здесь и обороты до 10000 в минуту, и мощность до 2 киловатт. Громкими такие моторы оказываются из-за особенности конструкции турбины, которая приводится во вращение.

Устройство современного пылесоса

Наиболее передовые пылесосы с импульсными магнитными моторами, где на роторе расположены постоянные неодимовые магниты, достигают 100000 оборотов в минуту за счет опять же BLDC – импульсной технологии управления. Такие моторы являются настоящим чудом инженерной мысли. Мотор интегрирован в систему всасывания и фильтрации, мощность при работе достигает 1300 ватт, то есть такой мотор в пылесосе работает более эффективно, чем коллекторный.

Электродвигатель вентилятора

Комнатные трехскоростные вентиляторы работают на однофазных асинхронных моторах переменного тока, мощностью 60 ватт. Эти моторы имеют на статоре четыре обмотки, соединенные последовательно между собой и с конденсатором емкостью 1,2 мкф, хотя двигатель и является однофазным. Обмотки, соединенные между собой последовательно в замкнутую цепь статора, при переключении комбинируются в две параллельные цепи в трех различных комбинациях, так получаются доступны три различные скорости вращения вентилятора.

Итак, мы рассмотрели десять бытовых электродвигателей из наиболее часто встречающихся в быту приборов. Конечно, это не все двигатели, есть еще разнообразные фены для волос, машинки для удаления катышков, бритвы, ткацкие станки, дрели, шуруповерты, увлажнители воздуха (из первых), помпы для аквариумов, швейные машинки, принтеры и много чего еще. Если перечислять все двигатели, не хватит и десяти страниц.

Надеемся, что этот небольшой обзор был для вас полезным, и вы теперь знаете, какие электродвигатели работают в ваших бытовых приборах, которыми вы каждый день пользуетесь, и может быть даже не подозревали, что там все устроено именно так.

Одним из главных элементов любой системы вентиляции является электромотор. Знать досконально его устройство — дело электромеханика. В то же время есть некоторые общие принципы, которые полезно знать людям, обустраивающим и эксплуатирующим системы вентиляции

Электродвигатели в вентиляторах могут находиться: в условиях окружающей среды, как, например, в случае радиальных вентиляторов со спиральными корпусами; в условиях перекачиваемой среды, как в случае канальных и осевых вентиляторов.

В обоих случаях электродвигатели подвергаются воздействиям среды — температуры, влажности, запыленности и т. д. И сам вентилятор, и электродвигатель как его составная часть также оказывают воздействие на окружающую среду, в частности, шумом и вибрациями.

Полезная информация

В соответствии с ГОСТ 15150, электродвигатели выпускаются в ряде климатических исполнений (табл. 1). Возможна эксплуатация двигателя и при больших, чем указанные, температурах, однако для уменьшения температуры внутреннего разогрева электродвигатели должны эксплуатироваться при пониженной мощности.

В принципе электродвигатели могут комплектоваться термодатчиками защиты от перегрева обмоток статора. Внутрь электродвигателя на каждую из обмоток устанавливается датчик, и все три датчика соединяются последовательно. В табл. 2 указаны требования по условиям срабатывания датчиков термозащиты обмоток двигателя (ГОСТ 27895). По этим данным можно судить о том, какие предельные температуры и при каких условиях могут выдерживать обмотки асинхронных электродвигателей.

Таблица 1. Климатические исполнения электродвигателей для вентиляторов


Климатическое
исполнение
Категория
размещения *
Рабочая температура, ° С Максимальное
значение
относительной
влажности, %
Верхнее
значение
Нижнее
значение
У (умеренный климат) 1,2 40 -45 100 при 25 °С
У (умеренный) 3 40 -45 98 при 25 °С
У (умеренный) 4 35 1 80 при 25 °С
Т (тропический) 2 45 -10 100 при 35 °С
УХЛ (умеренно холодный) 4 40 -50 100 при 25 °С
ХЛ (холодный) 1,2 40 -60 100 при 25 °С
* 1 — на открытом воздухе; 2 — под навесом при отсутствии прямого воздействия солнечного излучения и
атмосферных осадков; 3 — в закрытых помещениях без искусственного регулирования климатических
условий; 4 — в закрытых помещениях с искусственно регулируемыми климатическими условиями

Таблица 2. Стойкость обмотки двигателей в зависимости от температуры нагрева

Тепловой режим Температура Значение температуры
обмотки статора для системы
изоляции класса
нагревостойкости, °С
B F
Установившийся Предельно допустимое среднее значение 120 140
Медленный нагрев Срабатывание защиты 145 170
Быстрый нагрев Срабатывание защиты 200 225

Таблица. 3. Степень защиты двигателя от попадания внутрь твердых тел

Перваяцифра IP Степень защиты
0 Специальная защита отсутствует
1 Защита от проникновения внутрь оболочки большого участка поверхности человеческого тела,
например, руки, и от проникновения твердых тел размером свыше 50 мм
2 Защита от проникновения внутрь оболочки пальцев или предметов
длиной не более 80 мм и от проникновения твердых тел размером свыше 12 мм
3 Защита от проникновения внутрь оболочки твердых тел (инструментов, проволоки и т. п.)
диаметром или толщиной более 2,5 мм
4 Защита от проникновения внутрь оболочки проволоки и твердых тел размером более 1,0 мм
5 Защита от пыли. Проникновение внутрь оболочки пыли не предотвращено полностью,
однако пыль не может п роникать в количестве, достаточном для нарушения работы изделия
6 Пыленепроницаемость. Проникновение пыли предотвращено полностью

Электродвигатель должен быть защищен от попадания внутрь твердых предметов и влаги, что может привести к выходу из строя подшипников и обмотки. Степень защиты электродвигателей обозначается двумя латинскими буквами IP с последующими двумя цифрами:

  • первая цифра обозначает степень защиты двигателя от попадания внутрь твердых тел (табл. 3);
  • вторая цифра обозначает степень защиты от попадания внутрь двигателя влаги (табл. 4).

Двигатели исполняются обычно со степенью защиты IP44 или IP45. Специальные исполнения для условий морского климата характеризуются степенью защиты IP55; для эксплуатации в химически агрессивных средах — IP54.

Если возможны отклонения параметров электросети от номинальных условий, то надо помнить, что электродвигатели могут нормально работать при отклонениях напряжения ±5 % и частоты ±2 %. Допустима эксплуатация двигателей при изменениях питающего напряжения до ±10 %. При этом, конечно, надо учитывать, что рабочие характеристики двигателя, соответственно, изменятся.

Таблица 4. Защита двигателя от влаги

Вторая
цифра IP
Степень защиты
0 Специальная защита отсутствует
1 Защита от капель воды. Капли воды, вертикально падающие на оболочку,
не должны оказывать вредного воздействия на изделие
2 Защита от капель воды. Капли воды, вертикально падающие на оболочку,
не должны оказывать вредного воздействия на изделие
при наклоне его на любой угол до 15°относительно нормального положения
3 Защита от капель дождя. Дождь, падающий на оболочку под углом до 60°
от вертикали,не должен оказывать вредного воздействия на изделие
4 Защита от брызг. Вода, разбрызгиваемая на оболочку в любом направлении,
не должна оказывать вредного воздействия на изделие
5 Защита от водяных струй. Струя воды, выбрасываемая в любом направлении на оболочку,
не должна оказывать вредного воздействия на изделие
6 Защита от волн воды. Вода при волнении не должна попадать
внутрь оболочки в количестве, достаточном для повреждения изделия

Основные характеристики

Одними из основных характеристик асинхронного электродвигателя являются номинальная установочная мощность NH, номинальный ток IH номинальная частота вращения nн.
Номинальная мощность NH пропорциональна номинальной частоте вращения nн и номинальному вращающему моменту МН:

Моментные характеристики асинхронных электродвигателей показаны на рис. 1.

Dvig_Ris_1

Рис. 1. Моментные характеристики асинхронных электродвигателей:
1 — обычное исполнение электродвигателя; 2 — исполнение электродвигателя с повышенным моментом; 3 — исполнение электродвигателя с повышенным скольжением

Важной характеристикой электродвигателя являются также пусковые нагрузки. Если в качестве нагрузки двигателя рассматривать колесо вентилятора, то необходимо иметь в виду две составляющие — аэродинамическую нагрузку и нагрузку от момента инерции ротора (рабочее колесо со всей подвижной механикой — ротор узла вала, шкивы, ротор электродвигателя и т.д.). Из приведенной выше формулы и рис. 1 видно, что мощность электродвигателя примерно пропорциональна частоте вращения(момент двигателя при пуске даже больше номинального). Потребляемая вентилятором аэродинамическая мощность Nад пропорциональна кубу частоты вращения (момент аэродинамических сил пропорционален квадрату частоты вращения):

Таким образом, при запуске вентилятора аэродинамические силы практически не нагружают двигатель. Вторая составляющая нагрузки на двигатель при пуске связана с наличием момента инерции ротора.

Для вентилятора, как правило, момент инерции ротора определяется моментом инерции рабочего колеса. Моменты инерции рабочих колес иногда приводятся в каталогах фирм, производящих вентиляторы.

Вентиляторная нагрузка не создает пусковых проблем для асинхронных электродвигателей (даже в случае радиальных рабочих колес двустороннего всасывания) и применять специальные методы пуска или устройства плавного пуска электродвигателей в большинстве случаев не обязательно. Однако при использовании электродвигателей, имеющих значительную установочную мощность (несколько десятков киловатт и более), при частых повторных пусках необходимо контролировать температуру электродвигателя для исключения вероятности его перегрева от пусковых токов и выхода из строя.

Электродвигатели, как и вентиляторы, являются источниками шума и вибраций. Уровни излучаемой звуковой мощности обычно указываются в паспортах или в каталогах. Как правило, шум электродвигателя незначителен и на рабочем режиме намного ниже, чем аэродинамический шум самого вентилятора. Если же слышен шум электродвигателя, то необходимо разбираться с проблемами, возникшими с электродвигателем. Увеличенные вибрации электродвигателей встречаются довольно часто. Обычно они связаны с применением низкокачественных подшипников, реже — с недостаточной балансировкой ротора двигателя. По уровню вибраций двигатели подразделяются на двигатели нормальной точности (N), повышенной точности (R), высокой точности (S).

Защита от взрыва

В условиях, где возможно формирование взрывоопасной окружающей среды, должно применяться взрывозащищенное электрооборудование, т. е. электрооборудование, имеющее средства предотвращения проявления источника поджигания, признанные достаточными для обеспечения взрывобезопасности при использовании в установленных условиях окружающей среды.

Для взрывобезопасности силового электрооборудования необходимо обеспечить взрывоустойчивость и взрывонепроницаемость электрооборудования.

Взрывоустойчивость в основном обеспечивается прочностными параметрами корпуса электрооборудования, а взрывонепроницаемость, например, электродвигателей — оболочкойсо щелевой или пластинчатой защитой.

Примеры и тенденции

В нашей стране в системах промышленной вентиляции широкое распространение получили синхронные трёхфазные электродвигатели переменного тока серий АИР, АД и др.

Dvig_Ris_2

Рис. 2. Электродвигатель АИР

В настоящее время, в связи с усилением роли энергосбережения все большее внимание, как в промышленных, так и в бытовых системах вентиляции уделяется применению частотного регулирования приводов вентиляторов. Кроме того, зарубежные и отечественные компании предлагают агрегаты, оснащенные ЕС-моторами — бесколлекторными синхронными двигателями со встроенным электронным управлением, или, более кратко, электронно-коммутируемыми (Electronically Commutated) двигателями.

ЕС-двигатель имеет внешний ротор, в котором располагаются сегменты с постоянными магнитами. Принцип работы основан на том, что в поле, создаваемом встроенными в ротор постоянными магнитами, осуществляется управление вектором магнитного поля путем изменения направления тока в обмотке статора. В каждый момент времени контроллер вычисляет и подает на обмотку статора полярность тока, которая необходима длятого, чтобы обеспечить непрерывное вращение ротора с заданной скоростью.

У ЕС-вентиляторов практически отсутствуют пиковые пусковые токовые нагрузки за счет того, что встроенный регулятор обеспечивает достаточно плавное нарастание амплитуды переменного тока от нуля до номинального значения. Поскольку ротор ЕС-двигателя является внешним с постоянными магнитами, в нем отсутствуют тепловые потери. Отсюда высокий КПД, достигающий 80–90 %.

Наряду с этим, высокая степень энергосбережения при использовании EC-двигателей в системах вентиляции достигается за счет регулирования числа оборотов. В силу кубической зависимости потребляемой мощности от числа оборотов их плавное и глубокое регулирование, обеспечиваемое EC-двигателями без преобразования частоты питающего напряжения, дает снижение суммарных значений потребляемой мощности (рис. 3).

Dvig_Ris_3

Рис. 3. Соотношение расхода и потребляемой мощности вентиляторов различного типа

Управление вращением ротора ЕС-двигателя осуществляется за счет контролируемой подачи электроэнергии на обмотку статора в зависимости от положения ротора, которое отслеживается при помощи датчиков Холла, а также заданных параметров регулирования, поступающих, например, от внешних датчиков соответствующего типа в виде токовых (4–20 мА) или потенциальных (0–10 В) сигналов. При этом встроенный PID регулятор позволяет, наряду с пропорциональным управлением, устанавливать скорость реагирования двигателя на изменение управляющего сигнала в зависимости от его дифференциальных и интегральных показателей.

Помимо вышеперечисленного ЕС-двигатели более компактные и обладают пониженным уровнем шума. В них есть дополнительная защита от перегрева, а также защита от блокировки ротора, потери фазы и резких скачков напряжения, что обеспечивает бесперебойную работу при сбоях электропитания.

Dvig_Ris_4

Рис. 4. Канальные центробежные вентиляторы на основе ЕС-двигателей

Благодаря ЕС-моторам данные вентиляторы можно объединить в сеть и регулировать централизовано с компьютера, задавая индивидуальный режим работы. Управление осуществляется при помощи внешнего управляющего сигнала 0–10 В в зависимости от уровня температуры, давления, задымленности и других параметров. Класс защиты двигателя — IP 44. Диметр присоединения к воздуховодам — 160, 200, 250 или 315 мм. Производительность — до 1460 м 3 /ч.

Більше важливих статей і новин в Telegram-каналі AW-Therm. Підписуйтесь!

Сегодня практически в любом доме можно встретить вентилятор разной конструкции. Вытяжная система на кухне, кондиционеры, кулеры в ПК, системы принудительной вентиляции разных помещений в быту и на производстве — все эти устройства не смогут нормально функционировать без этой важной составляющей. В этой статье мы познакомимся с принципом работы разных по конструкции вентиляторов, а также узнаем их достоинства и недостатки.

Осевой или аксиальный

С виду вентилятор такого типа — это металлический кожух в виде цилиндра, где располагается колесо с лопастями разной конфигурации, установленное на один вал с приводом. Корпус имеет специальные перфорации для надежного закрепления на месте использования. Поток воздуха поступает параллельно оси вращения. На входе располагается коллектор — он улучшает аэродинамику изделия в процессе работы. Как работает изделие, можно объяснить довольно просто.

  1. Закрепленный на специальной раме электрический двигатель раскручивает рабочее колесо вентилятора, насаженное на один вал с ним.
  2. Обороты крыльчатки идентичны установленным изготовителем параметрам привода.
  3. Лопасти закреплены на ступице таким образом, чтобы захватывать слои воздуха и направлять их вдоль оси. Размах лопастей не имеет четких градаций: в быту используют длиной в несколько сантиметров, а в промышленности — до нескольких метров.

Устройство защищено мелкой сеткой, исключающей попадание внутрь предметов, способных нанести вред конструкции, и в целях обеспечения безопасности.

КПД осевых агрегатов значительно выше других изделий, напор воздушной массы и ее количество можно регулировать за счет изменения угла атаки лопастей. Этот вид вентиляторов используется для перемещения очень больших воздушных масс при низком встречном сопротивлении.

Ниже приведен чертеж осевого вентилятора, где 1 – корпус; 2 – рабочее колесо; 3 – лопатки; 4 – электродвигатель.

Чертеж вентилятора

  • сравнительно небольшое энергопотребление;
  • механизм работает исправно без вмешательства человека;
  • для установки не требуется много места.
  • изделие исправно работает только с воздухом без примесей;
  • высокая вибрация и соответственно шум.

Как правило, такие изделия устанавливаются снаружи объектов, чтобы шум работы вентилятора не мешал производственному процессу.

Вентилятор

Радиальный

Радиальное или центробежное устройство отличается от других видов необычным спиральной конструкции кожухом, в котором расположено рабочее колесо, сжимающее при вращении воздушные массы, перемещая их в направлении от центра к периферийной части. В кожух поток поступает под воздействием центробежных сил от вращения колеса с лопастями.

Лопатки приварены к полому цилиндру по всему его периметру строго параллельно оси вращения при помощи стальных дисков, концы их загнуты внутрь или наружу, что зависит от прямого назначения устройства. Вращение может производиться в любую сторону — это зависит от того, как устроен вентилятор, и какие перед ним поставлены задачи (нагнетания или вытяжки).

Основные компоненты радиального вентилятора показаны на чертеже ниже, где 1- корпус; 2 — рабочее колесо; 3 — лопасти рабочего колеса; 4 — ось вентилятора; 5 — станина; 6 — двигатель; 7 — выхлопной патрубок; 8 — фланец всасывающего патрубка

Радиальный вентилятор

  • выдерживает приличные перегрузки;
  • экономия энергоресурсов до 20%;
  • небольшой диаметр рабочего колеса;
  • невысокие скорости вращения вала привода.
  • высокие вибрации и шум;
  • требовательность к качеству изготовления вращающихся частей.

Радиальный тип вентилятора

Канальный

Такой тип вентиляторов устанавливают в стене, а в помещении видна только его решетка, далее идут воздуховоды, через которые отработанный воздух направляется наружу или к системе фильтрации и очистки, после чего возвращается назад.

Чтобы узнать все нюансы работы вентилятора этого типа, посмотрите видео. В нем подробно разъясняются функциональные особенности канального вентилятора.

Для изготовления корпусов этих оригинальных устройств используется многослойное полотно, состоящее из стали, прочного пластика или их комбинаций. Соединение происходит методом точечной сварки или крепежными деталями.

Канальный вентилятор

  • обработка одновременно нескольких помещений;
  • осуществлять добавку свежего воздуха с улицы;
  • вариации подачи воздушного потока.
  • при подаче во все помещения происходит смешивание, если кто-то курит, то этот запах попадает в другие комнаты;
  • нет независимой регулировки температуры;
  • высокая стоимость установки, куда входит цена трубопроводов;
  • чтобы чистить фильтры, нужен люк для работы.

На заметку! Весьма высокие характеристики по эксплуатации таких вентиляторов из-за их оригинального строения делают их популярными. Канальные вентиляторы устанавливают в жилых домах, крупных торговых комплексах и на некоторых видах производства.

Тангенциальные

Изделия этого вида состоят из корпуса, имеющего диффузор и патрубок, оригинального вида рабочее колесо, очень похожее на жатку уборочного комбайна, только сильно уменьшенного размера с загнутыми вперед параллельными лопастями.

Принцип работы тангенциального вентилятора основывается на повторном прохождении воздуха через рабочие параллельные лопатки в поперечном направлении, что является оригинальным нюансом этой конструкции. Кроме этого, эти устройства отличаются довольно высокими показателями по части аэродинамики.

Ниже приведен упрощенный чертеж тангенциального вентилятора, где 1 – входной патрубок, 2 – рабочее колесо, 3 – выходной диффузор.

Тангенциальный вентилятор

  • весьма высокий КПД;
  • возможность направлять поток в любую сторону;
  • создание уникально плоского и равномерного потока воздуха.

Этот вид изделий отличается весьма небольшим уровнем шума при довольно большом расходе воздуха в единицу времени.

Внешний вид тангенциального вентилятора

Безлопастные

В основе работы безлопастного вентилятора заложен принцип действия реактивного двигателя: есть турбина, работа которой и способствует быстрой циркуляции воздуха в помещении. Конструкция этого вентилятора весьма оригинальная: мощное основание, овальная рабочая часть, визуально очень похожая на воздухозаборник современного авиационного двигателя.

Контурное кольцо имеет ряд перфораций, через которые вырывается воздух, увлекая за собой слои воздушных масс по закону аэродинамики. Мощная турбина может осуществлять прокачку до 20 кубических метров воздуха за секунду, чего не могут аналогичные устройства — это основное отличие этого вида изделий.

Скорость проходящего сквозь кольцо воздуха может достигать весьма приличных значений, производители такого оригинального оборудования уверяют, что она может превышать 90 км/ч.

  • быстрота сборки и установки;
  • высокая безопасность;
  • большая экономия;
  • пульт ДУ;
  • LED-подсветка, успешно заменяет ночник;
  • щетки привода выполнены из магнитного сплава, что исключает скопление на них пыли;
  • весьма неординарный дизайн.
  • высокая стоимость;
  • сильный шумовой эффект из-за большой скорости потока.

Такие оригинальные изделия считаются разновидностью напольного вентилятора.

Бытовые

Для осуществления нормальной вентиляции в квартире или собственном доме используют специальной конструкции бытовые вентиляторы, т.к. они должны эффективно работать и не пропускать обратную тягу в помещение вместе со всеми негативными компонентами.

Бытовой вентилятор

Электрическая схема вентилятора отличается в зависимости от его вида и назначения — она прилагается в инструкции по эксплуатации изделия. Аналогичная электросхема подключения практически не меняется, за исключением некоторых специфических для каждого конкретного устройства нюансов.

Под бытовыми вентиляторами понимаются также привычные всем нам конструкции для охлаждения воздуха в помещениях. По исполнению они могут быть настольного или напольного вида, стандартная комплектация — электрический привод, импеллер и ограничительные решетки для безопасности.

Напольный вентилятор

Функции бытового вентилятора могут быть расширены за счет эффективных добавлений:

  • увлажнение воздуха;
  • система ионизации, что весьма полезна для подрастающего поколения и людей пожилого возраста.

Эти усовершенствования повышают стоимость изделия, но положительно влияют на микроклимат помещения, особенно в период всплеска сезонных заболеваний.

Читайте также: