Каким путем возникают новые клетки при дроблении кратко

Обновлено: 04.07.2024

Сущность стадии дробления. Дробление — это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша — бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте—росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость — бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы — бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса — Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления — в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера — микромеры, на вегетативном — четыре более крупных — макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.




Рис. 7.2. Дробление у хордовых животных с разным типом яйцеклетки.

А — ланцетник; Б — лягушка; В — птица; Г — млекопитающее:

I—два бластомера, II—четыре бластомера, III—восемь бластомеров, IV—морула, V—бластула;

1—борозды дробления, 2—бластомеры, 3— бластодерма, 4—бластоиель, 5—эпибласт, 6— гипобласт, 7—эмбриобласт, 8—трофобласт; размеры зародышей на рисунке не отражают истинных соотношений размеров

Рис. 7.2. Продолжение

К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки. Некоторые типы дробления и бластул представлены на рис. 7.2 и схеме 7.1. Более подробное описание дробления у млекопитающих и человека см. разд. 7.6.1.

Особенности молекулярно-генетических и биохимических процессов при дроблении. Как было отмечено выше, митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.

Например, весь цикл деления в яйцах морского ежа длится 30—40 мин при продолжительности S-фазы всего 15 мин. gi- и 02-периоды практически отсутствуют, так как в цитоплазме яйцевой клетки создан необходимый запас всех веществ, и тем больший, чем она крупнее. Перед каждым делением происходит синтез ДНК и гистонов.

Скорость продвижения репликационной вилки по ДНК в ходе дробления обычная. Вместе с тем в ДНК бластомеров наблюдается больше точек инициации, чем в соматических клетках. Синтез ДНК идет во всех репликонах одновременно, синхронно. Поэтому время репликации ДНК в ядре совпадает с временем удвоения одного, притом укороченного, репликона. Показано, что при удалении из зиготы ядра дробление происходит и зародыш доходит в своем развитии почти до стадии бластулы. Дальнейшее развитие прекращается.

В начале дробления другие виды ядерной активности, например транскрипция, практически отсутствуют. В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, например, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.

В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для деления клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее. В пользу этого свидетельствуют данные о наличии региональных различий в синтезе РНК и белков между бластомерами. Иногда эти РНК и белки начинают действовать на более поздних стадиях.

Важную роль в дроблении играет деление цитоплазмы — цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран

Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. Поэтому цитоплазма разных бластомеров различается по химическому составу.

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ

Сущность стадии дробления. Дробление — это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша — бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте—росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость — бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы — бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса — Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления — в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера — микромеры, на вегетативном — четыре более крупных — макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.

Рис. 7.2. Дробление у хордовых животных с разным типом яйцеклетки.

А — ланцетник; Б — лягушка; В — птица; Г — млекопитающее:

I—два бластомера, II—четыре бластомера, III—восемь бластомеров, IV—морула, V—бластула;

1—борозды дробления, 2—бластомеры, 3— бластодерма, 4—бластоиель, 5—эпибласт, 6— гипобласт, 7—эмбриобласт, 8—трофобласт; размеры зародышей на рисунке не отражают истинных соотношений размеров

Рис. 7.2. Продолжение

К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки. Некоторые типы дробления и бластул представлены на рис. 7.2 и схеме 7.1. Более подробное описание дробления у млекопитающих и человека см. разд. 7.6.1.

Особенности молекулярно-генетических и биохимических процессов при дроблении. Как было отмечено выше, митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.

Например, весь цикл деления в яйцах морского ежа длится 30—40 мин при продолжительности S-фазы всего 15 мин. gi- и 02-периоды практически отсутствуют, так как в цитоплазме яйцевой клетки создан необходимый запас всех веществ, и тем больший, чем она крупнее. Перед каждым делением происходит синтез ДНК и гистонов.

Скорость продвижения репликационной вилки по ДНК в ходе дробления обычная. Вместе с тем в ДНК бластомеров наблюдается больше точек инициации, чем в соматических клетках. Синтез ДНК идет во всех репликонах одновременно, синхронно. Поэтому время репликации ДНК в ядре совпадает с временем удвоения одного, притом укороченного, репликона. Показано, что при удалении из зиготы ядра дробление происходит и зародыш доходит в своем развитии почти до стадии бластулы. Дальнейшее развитие прекращается.

В начале дробления другие виды ядерной активности, например транскрипция, практически отсутствуют. В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, например, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.

В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для деления клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее. В пользу этого свидетельствуют данные о наличии региональных различий в синтезе РНК и белков между бластомерами. Иногда эти РНК и белки начинают действовать на более поздних стадиях.

Важную роль в дроблении играет деление цитоплазмы — цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран

Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. Поэтому цитоплазма разных бластомеров различается по химическому составу.

Эмбриология

Эмбриология человека – это направление науки, занимающееся изучением развития зародыша, то есть организма на ранних стадиях развития до рождения. Знания в области эмбриологии человека необходимы всем врачам, особенно работающим в направлении педиатрии и акушерства.

Знания эмбриологии оказывают помощь при диагностике нарушений в системе мать-плод, выявлении болезней детей после рождения, а также выявлении причин уродств.

На сегодняшний день знания в сфере эмбриологии применяют для выявления и ликвидации причин бесплодия, разработки противозачаточных препаратов, трансплантации фетальных органов. Приобрели актуальность проблемы трансплантации зародыша в матку, экстракорпорального оплодотворения и культивирования яйцеклеток.

Эмбриология изучает несколько стадий развития зародыша:

  • оплодотворение с дальнейшим образованием зиготы;
  • дробление и образование бластоцисты;
  • гаструляцию – процесс образования зародышевых листов и осевых органов;
  • органогенез и гистогенез внезародышевых и зародышевых органов;
  • системогенез.

Внутриутробное развитие делится на три основных периода:

  • начальный – первая неделя;
  • зародышевый – вторая-восьмая недели;
  • плодный – начинается с девятой недели и завершается рождением ребенка.

В среднем внутриутробное развитие человека продолжается 280 суток.

Эмбриология: стадия оплодотворения и образования зиготы

Оплодотворение – процесс слияния мужских и женских половых клеток, в результате которого восстанавливается диплоидный набор хромосом и возникает новая клетка – оплодотворенная яйцеклетка (зигота). Для возможности оплодотворения концентрация в эякуляте сперматозоидов должна соответствовать 20-200 млн/мл, а их общее количество – 150 млн/мл.

Процесс оплодотворения состоит из трех фаз:

  • дистантного взаимодействия и сближения гамет;
  • контактного взаимодействия с активацией яйцеклетки;
  • проникновения сперматозоида в яйцеклетку с последующей сингамией (слиянием).

Дистантное взаимодействие обеспечивает хемотаксис - совокупность специфических факторов, отвечающих за повышение вероятности встречи мужских и женских половых клеток. В этом процессе важную роль играют вырабатываемые половыми клетками химические вещества.

Сразу после эякуляции происходит процесс капацитации – сперматозоиды под воздействием секрета женских половых путей приобретают оплодотворяющую способность. На механизм капацитации большое влияние оказывают гормональные факторы (например, прогестерон), активизирующие секрецию маточных труб.

Оплодотворение происходит в маточных трубах, ему предшествует осеменение, обусловленное хемотаксисом.

При контактном взаимодействии сперматозоиды приближаются к яйцеклетке, а затем вступают в контакт с ее оболочкой.

Далее происходит процесс проникновения головки и хвоста спермия в овоплазму. На периферии овоплазмы образуется оболочка оплодотворения.

В организме женщины в течение 12 часов после сближения мужского и женского пронуклеусов образуется одноклеточный зародыш – зигота.

Эмбриология: стадия дробления и образования бластоцисты

Дробление – это последовательный процесс деления зиготы без роста бластомеров. У человека дробление полное, асинхронное и неравномерное.

После первого дробления в организме женщины образуются два бластомера. Один из бластомеров обладает более крупными размерами и темной окраской, второй – светлый и более мелкий.

Из крупного бластомера происходит образование зародыша и большинства провизорных органов: плодной части плаценты и соединительной ткани хориона, желточного мешка, амниона, аллантоиса. Из второго бластомера развивается трофобласт.

Образование бластулы

Мелкие клетки в процессе дробления делятся быстрее крупных и обрастают их снаружи. Таким образом, образуется морула – скопление клеток. Внутри нее расположены крупные клетки, названные эмбриобластом, а снаружи мелкие клетки, названные трофобластом.

В ходе деления клеток морула увеличивается в размерах, клетками зародыша начинает секретироваться жидкость и накапливаться под трофобластом.

В дальнейшем объем жидкости увеличивается, образуется полость внутри зародыша, наполненная такой жидкостью, эмбриобласт оттесняется к периферии и прилипает к трофобласту. Образуется бластоциста.

Трофобласт образует выросты – ворсинки, вследствие чего поверхность бластулы неровная. Трофобласт – это первый провизорный орган, образующийся у зародыша. В дальнейшем трофобласт войдет в состав плаценты. Посредством трофобласта происходит имплантация зародыша в слизистую оболочку матки.

Эмбриология: стадия гаструляции

В результате перемещения клеток после образования бластулы образуется гаструла – двуслойный зародыш. Процесс образования гаструлы назван гаструляцией.

В процессе гаструляции происходит интенсивное перемещение клеток – будущие зачатки тканей перемещаются в соответствии с планом структурной организации будущего полноценного организма.

На стадии гаструляции зародыш состоит из зародышевых листков - разделенных пластов клеток. Наружный слой – эктодерма, внутренний – энтодерма. У позвоночных животных образуется третий слой (средний) – мезодерма.

Из эктодермы развиваются:

  • эпителий кожи;
  • нервная система;
  • эмаль зубов;
  • органы чувств.

Из энтодермы развиваются:

  • эпителий легких;
  • пищеварительные железы;
  • эпителий средней кишки.

Из мезодермы развиваются:

  • кровеносная система;
  • соединительная и мышечная ткани;
  • половые железы;
  • почки и др.

Выделяют несколько способов гаструляции:

  • инвагинация – осуществляется путем втягивания в бластоцель стенки бластулы;
  • деляминация – в эпителиальный пласт эктодермы преобразуются клетки, располагающиеся снаружи, а оставшиеся формируют энтодерму. Деляминация характерна для кишечнополостных;
  • эпиболия – обрастание клетками при неполном дроблении внутренней массы желтка или обрастание клеток другими быстро делящимися клетками;
  • иммиграция – миграция внутрь бластоцеля части клеток стенки бластулы;
  • инволюция – вворачивание наружного пласта клеток, увеличивающего в размерах, внутрь зародыша.

Эмбриология: стадия гистогенеза и органогенеза внезародышевых и зародышевых органов

Органогенез – совокупность процессов, приводящих к формированию зачатков органов и их последующей дифференциации в процессе эмбрионального развития.

В органогенезе выделяют:

  • нейруляцию – процесс образования нейрулы. В нейруле закладывается мезодерма, состоящая, в свою очередь, из зародышевых листков и осевого комплекса органов – хорды, нервной трубки и кишки. Клетки комплекса органов влияют друг на друга. Такое влияние носит название эмбриональной индукции.
  • гистогенез – ряд процессов, обеспечивающих образование и восстановление тканей в ходе онтогенеза.

На сегодняшний день эмбриология стала одним из важнейших направлений науки. В медицине ее применение не ограничивается областью гистологии и анатомии. Эмбриология имеет важное значение в развитии профилактической медицины, направленной на разработку и тестирование новых медицинских препаратов, борьбу с наследственными заболеваниями. Эмбриология имеет большие перспективы, связанные с развитием генетики и ряда других наук.

Также эмбриология тесно связана с ЭКО, так как эмбриологический период является одним из важнейших этапов программы экстракорпорального оплодотворения.

Клиническая эмбриология изучает причины нарушений эмбрионального развития, механизмы развития уродств, а также способы влияния на эмбриогенез.

Разработки в области ЭКО стали возможными благодаря использованию высокотехнологической медицины и развитию клинической эмбриологии. Исход экстракорпорального оплодотворения в большой степени зависит от знаний и опыта специалиста-эмбриолога.

Эмбриональное (зародышевое) развитие охватывает процессы от первого деления зиготы до выхода из яйца или рождения и у большинства животных включает три основных этапа: дробление, гаструляцию и органогенез.

При дроблении дочерние клетки ( бластомеры ) не расходятся и не увеличиваются в размерах. С каждым следующим делением их размеры уменьшаются.

рис 4.jpg

Яйцеклетки с небольшим запасом питательных веществ делятся полностью, т. е. происходит полное дробление. Если яйцеклетка содержит большое количество желтка, то наблюдается частичное дробление — делится только диск цитоплазмы с ядром, а сам желток остаётся без изменений (например, у птиц).

Бластула — это шарообразный зародыш, стенка которого ( бластодерма ) образована одним слоем клеток, а внутри — полость ( бластоцель ).

После дробления начинается гаструляция — часть клеток бластодермы перемещается внутрь зародыша. В результате этих перемещений образуется гаструла.

Гаструла — двухслойный зародыш, состоящий из двух зародышевых листков: наружного ( эктодермы ) и внутреннего ( энтодермы ).

У ланцетника образование гаструлы происходит в результате впячивания части бластодермы внутрь бластоцеля.

Внутренняя полость гаструлы называется первичной кишкой . Её связывает с внешней средой отверстие ( бластопор ), которое становится первичным ртом .

рис 3.jpg

На стадии гаструлы (двух зародышевых листков) прекращается развитие двухслойных животных — губок и кишечнополостных.

У всех остальных животных развитие продолжается, и образуется третий зародышевый листок — мезодерма . Она формируется из энтодермы и всегда расположена между экто- и энтодермой в первичной полости тела.

Дальнейшая специализация клеток зародышевых листков обеспечивает формирование тканей и органов, т. е. гисто- и органогенез .

Из энтодермы образуется хорда — внутренний скелет в виде гибкого тяжа, расположенный на спинной стороне. Позже вместо хорды у позвоночных развивается позвоночник, и только у некоторых животных (например, у хрящевых рыб) её остатки сохраняются в течение всей жизни.

Из эктодермы, расположенной над самой хордой, выделяется нервная пластинка . Затем края пластинки поднимаются и смыкаются. Образуется нервная трубка — зачаток центральной нервной системы. Формируется нейрула .

рис 2.jpg

Нервная трубка, хорда и кишечник создают осевой комплекс органов зародыша, который определяет двустороннюю симметрию тела.

рис 1.jpg

Из эктодермы у позвоночных животных образуется нервная система, органы чувств, покровный эпителий с его железами и производными структурами (волосы, перья, копыта, когти и т. п.).

Из энтодермы формируются органы пищеварительной и дыхательной системы: эпителий средней кишки, печень и поджелудочная железа, жабры, лёгкие, плавательный пузырь, а также щитовидная железа.

Из мезодермы формируются все виды мышечной и соединительной ткани (например, дерма кожи, тела позвонков), кровеносная система, органы выделения, половые железы.

От момента образования зиготы и до выхода зародыша из яйцевых оболочек длится эмбриональный период развития.

Эмбриональный период

Дробление зиготы

После того, как произошло оплодотворение - слияние сперматозоида и яйцеклетки, образовавшаяся зигота начинает интенсивно делиться. Ее множественные митотические деления называют дроблением.

Важная особенность дробления в том, что не происходит увеличение в размере зародыша: клетки дробятся (делятся) настолько быстро, что не успевают накопить цитоплазматическую массу. Дробление зиготы человека является полным неравномерным асинхронным.

Дробление зиготы

В результате дробления образуется морула. Морула (лат. morum - ягода тутового дерева) - клетка на стадии этапа дробления, когда зародыш представляет собой компактную совокупность клеток (без полости внутри).

Бластуляция

Бластуляция - заключительный период дробления, в который зародыш называется бластулой.

После очередных этапов многократного деления образуется однослойный зародыш с полостью внутри - бластула (греч. blastos — зачаток).

Стенки бластулы состоят из бластомеров, которые окружают центральную полость - бластоцель (греч. koilos — полый). Соединяясь друг с другом, бластомеры образуют бластодерму из одного слоя клеток.

Бластула и морула

Гаструляция (греч. gaster — желудок, чрево)

Гаструляцией называют стадию эмбрионального развития, в ходе которой клетки, возникшие в результате дробления зиготы, формируют три зародышевых листка: эктодерму, мезодерму и энтодерму.

Стенка бластулы начинается впячиваться внутрь - происходит инвагинация стенки. По итогу такого впячивания зародыш становится двухслойным. Двухслойный зародыш называется - гаструла. Полость гаструлы называется гастроцель (полость первичной кишки), а отверстие, соединяющее гастроцель и внешнюю среду - первичный рот (бластопор).

Гаструла

У первичноротых животных на месте первичного рта (бластопора) образуется ротовое отверстие. К первичноротым относятся: кишечнополостные, плоские, круглые и кольчатые черви, моллюски, членистоногие.

У вторичноротых на месте бластопора формируется анальное отверстие, а ротовое отверстие образуется на противоположном полюсе. К вторичноротым относят хордовых и иглокожих (морских звезд, морских ежей).

Первичноротые и вторичноротые

При впячивании части бластулы (инвагинации) клетки бластодермы мигрируют внутрь и становятся энтодермой (греч. entós — внутренний). Оставшаяся часть бластодермы снаружи называется эктодермой (греч. ἔκτος - наружный).

Между энто- и эктодермой из группы клеток формируется третий зародышевый листок - мезодерма (греч. μέσος — средний).

Гаструляция

Нейрула

Эта стадия следует за гаструлой. Ранняя нейрула представляет собой трехслойный зародыш, состоящий из энто-, экто- и мезодермы. На этапе нейрулы происходит закладка отдельных органов.

Важно отметить, что на стадии нейрулы происходит процесс нейруляции - закладывание нервной трубки. Нервная пластинка, образовавшаяся на ранних этапах, прогибается внутрь, при этом ее края сближаются и, замыкаясь, формируют нервную трубку.

Нейруляция

Итак, как уже было сказано, на стадии нейрулы закладываются отдельные органы. Эктодерма образует покровный эпителий и нервную пластинку, мезодерма (из которой в дальнейшем появятся все соединительные ткани), энтодерма - окружает полость первичной кишки (гастроцель), образуя кишечник. От энтодермы отшнуровывается хорда.

Нейрула

Все три зародышевых листка требуют нашего особого внимания, а также понимания того, какие органы и структуры из них образуются.

Эктодерма (греч. ἔκτος - наружный) - наружный зародышевый листок, образует головной и спинной мозг, органы чувств, периферические нервы, эпителий кожи, эмаль зубов, эпителий ротовой полости, эпителий промежуточного и анального отделов прямой кишки, гипофиз, гипоталамус.

Мезодерма (греч. μέσος — средний) - средний зародышевый листок, образует соединительные ткани: кровеносную и лимфатическую системы, костную и хрящевую ткань, мышечные ткани, дентин и цемент зубов, а также выделительную (почки) и половую системы (семенники, яичники).

Зародышевые листки и их производные

Из зародышевых листков образуются ткани, органы и системы органов. Такой процесс называется органогенезом. В период закладки органов важное значение имеет воздержание матери от вредных привычек (алкоголь, курение), которые могут нарушить процесс дифференцировки клеток и привести к тяжелейшим аномалиям, уродствам плода.

Некоторые лекарства также могут оказывать на плод тератогенный эффект (греч. τέρας — чудовище, урод), приводя к развитию уродств. Периоды закладки органов и система органов вследствие их большой важности носят название критических периодов эмбриогенеза.

Критический период эмбриогенеза

Анамнии и амниоты

Анамнии, или низшие позвоночные - группа животных, не имеющая зародышевых оболочек (зародышевого органа - аллантоиса и амниона). Анамнии проводят большую часть жизни в воде, без которой невозможно их размножение.

К анамниям относятся рыбы, земноводные.

Анамнии

Амниоты - группа высших позвоночных, характеризующаяся наличием зародышевых оболочек. К амниотам относятся пресмыкающиеся, птицы и млекопитающие.

Зародышевый орган, аллантоис, является органом дыхания и выделения.

За счет особых оболочек, развивающихся в ходе эмбрионального развития, амниона и серозы, у амниот формируется амниотическая полость. В ней находится зародыш, окруженный околоплодными водами. Благодаря такому гениальному устройству, амниотам для размножения и развития более не нужно постоянное нахождение в водоеме, они "обрели независимость" от него.

Амниоты

Развитие плода происходит в мышечном органе - матке, которая, сокращаясь во время родов, стимулирует изгнание плода через родовые пути. Питание осуществляется через плаценту - "детское место" - орган, который с одной стороны омывается кровью матери, а с другой - кровью плода. Через плаценту происходит транспорт питательных веществ и газообмен.

Соединяет плаценту и плод особый орган - пуповина, внутри которой проходят артерии, вены.

Плацента и матка

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: