Каким путем связанный углерод вновь возвращается в атмосферу кратко

Обновлено: 07.07.2024

Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.

Возвращение углерода в окружающую среду происходит двумя путями.

Во-первых – в процессе дыхания. Суть процессов дыхания заключается в использовании организмами окислительных химических реакций, дающих энергию для физиологических процессов. Окисление органических соединений, для которого используется атмосферный или растворённый в воде кислород, имеет результатом разложение сложных органических соединений с образованием СО2 и Н2О. В итоге углерод в составе СО2 возвращается в атмосферу, и одна ветвь круговорота замыкается.

Второй путь возвращения углерода – разложение органического вещества. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО2 и Н2О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Углерод, высвобождающийся при разложении органического вещества, в основном остаётся в растворённой форме в почвенных, грунтовых и поверхностных водах. Или в виде растворённого углекислого газа, или же в составе растворённых карбонатных соединений – в форме ионов НСО3 - или СО3 2- . Он может после более или менее продолжительной миграции частично возвращаться в атмосферу, но большая или меньшая его доля всегда осаждается в виде карбонатных солей и связывается в составе литосферы.

Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Сюда же поступает и часть углерода, в тех или иных формах растворённого в водах суши. СО2, растворённый в морской воде, используется морскими организмами на создание карбонатного скелета (раковины, коралловые постройки, панцири иглокожих и т.д.). В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками.

Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органичесекого вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах.

Углеродный обмен в биосфере (это почти одно и то же, что обмен СО2) связан с активностью биоты во всех масштабах пространства и времени и почти полностью определяется ею

1. Большая часть углерода биосферы выведена из активного круговорота и находится в осадочных породах - карбонатах и керогене

2. Формирование этих пород происходило при самом активном участии организмов

3. Углерод осадочных пород так же вовлечен в круговорот, но он совершается очень медленно – примерно за 500 миллионов лет

Кероген – органическое вещество, содержащееся в осадочных породах в рассеянной форме. Кероген образовывался на суше и в мелководных морях Скопления керогена – это то органическое вещество, вывод которого из круговорота обеспечил сохранение в атмосфере свободного кислорода




Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.

Возвращение углерода в окружающую среду происходит двумя путями.

Во-первых – в процессе дыхания. Суть процессов дыхания заключается в использовании организмами окислительных химических реакций, дающих энергию для физиологических процессов. Окисление органических соединений, для которого используется атмосферный или растворённый в воде кислород, имеет результатом разложение сложных органических соединений с образованием СО2 и Н2О. В итоге углерод в составе СО2 возвращается в атмосферу, и одна ветвь круговорота замыкается.

Второй путь возвращения углерода – разложение органического вещества. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО2 и Н2О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Углерод, высвобождающийся при разложении органического вещества, в основном остаётся в растворённой форме в почвенных, грунтовых и поверхностных водах. Или в виде растворённого углекислого газа, или же в составе растворённых карбонатных соединений – в форме ионов НСО3 - или СО3 2- . Он может после более или менее продолжительной миграции частично возвращаться в атмосферу, но большая или меньшая его доля всегда осаждается в виде карбонатных солей и связывается в составе литосферы.

Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Сюда же поступает и часть углерода, в тех или иных формах растворённого в водах суши. СО2, растворённый в морской воде, используется морскими организмами на создание карбонатного скелета (раковины, коралловые постройки, панцири иглокожих и т.д.). В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками.

Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органичесекого вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах.

Углеродный обмен в биосфере (это почти одно и то же, что обмен СО2) связан с активностью биоты во всех масштабах пространства и времени и почти полностью определяется ею

1. Большая часть углерода биосферы выведена из активного круговорота и находится в осадочных породах - карбонатах и керогене

2. Формирование этих пород происходило при самом активном участии организмов

3. Углерод осадочных пород так же вовлечен в круговорот, но он совершается очень медленно – примерно за 500 миллионов лет

Кероген – органическое вещество, содержащееся в осадочных породах в рассеянной форме. Кероген образовывался на суше и в мелководных морях Скопления керогена – это то органическое вещество, вывод которого из круговорота обеспечил сохранение в атмосфере свободного кислорода


Пути возвращения связанного углерода в атмосферу

Опишите путь возвращения связанного углерода в атмосферу.

В процессе дыхания животные, растения и микроорганизмы окисляют органические вещества до диоксида углерода и выделяют его в атмосферу. Кроме этого, возвращению углерода в атмосферу способствует деятельность человека. Ежегодно в воздух выбрасывается около 5 млрд т углерода в результате сжигания ископаемого топлива и до 2 млрд т — при переработке древесины. Возвращение углерода в атмосферу из горных осадочных пород зависит от вулканической деятельности и геохимических процессов.

Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами-потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.

2. Расскажите о круговороте воды в природе.

Вода испаряется и воздушными течениями переносится на большие расстояния. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делает их недоступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворёнными в ней химическими соединениями и взвешенными органическими частицами в моря и океаны (рис. 5.4). Циркуляция воды между океаном и сушей представляет собой важнейшее звено в поддержании жизни на Земле. Благодаря этому процессу происходит постепенное разрушение литосферы, компоненты которой переносятся в моря и океаны.

3. Какие организмы поглощают диоксид углерода из атмосферы?

В процессе фотосинтеза зелёные растения используют углевод диоксида углерода и водород воды для синтеза органических соединений, а освободившийся кислород поступает в атмосферу. Им дышат различные животные и растения, а конечный продукт дыхания – СО2 выделяется в атмосферу.

4. Каким путем связанный углерод вновь возвращается в атмосферу?

Все живые существа дышат, в результате этого процесса углерод, находящийся в органических веществах, в виде углекислого газа вновь поступает в атмосферу. Также углекислый газ образуется при минерализации органического вещества микроорганизмами. В живом веществе процессы ассимиляции углерода и его выделение при дыхании практически уравновешены. Только около 1 % углерода откладывается в виде торфа, то есть изымается из круговорота. В гидросфере углерод содержится в растворенном виде (углекислый газ, угольная кислота, ионы угольной кислоты). Здесь его запасы значительно больше, чем в атмосфере. Углерод гидросферы также используется живыми организмами в процессе фотосинтеза и для построения известковых скелетов (губки, кишечнополостные, моллюски и др.). Между Мировым океаном и гидросферой постоянно происходит обмен углеродом, причем в океане значительное количество углерода изымается из круговорота и откладывается в виде малорастворимых карбонатов.

В атмосферу углерод также поступает в результате хозяйственной деятельности человека: при сжигании органоминерального топлива – угля, газа, нефти и продуктов ее переработки и т.д. Диоксид углерода образуется при горении топлива и поступает в атмосферу при гниении органического вещества, брожении, дыхании, из осадочных пород за счет химических процессов, совершающихся при высоких температурах, при сжигании горючих материалов. Все это – углекислый газ биогенного происхождения.

5. Опишите круговорот азота в природе.

Атмосферный азот включается в круговорот благодаря деятельности азотфиксирующих бактерий и водорослей, синтезирующих нитраты, пригодные для использования растениями. Часть азота фиксируется в результате образования оксидов во время электрических разрядов в атмосфере. Соединения азота из почвы поступают в растения и используются для построения белков. После отмирания живых организмов гнилостные бактерии разлагают органические остатки до аммиака. Хемосинтезирующие бактерии превращают аммиак в азотистую, затем в азотную кислоту. Некоторое количество азота, благодаря деятельности денитрифицирующих бактерий, поступает в воздух. Часть азота оседает в глубоководных отложениях и на длительный срок выключается из круговорота. Эта потеря компенсируется поступлением азота в воздух с вулканическими газами.

6. Какую роль играют микроорганизмы в круговороте серы?

Сера попадает в почву в результате естественного разложения некоторых горных пород (серный колчедан FeS2, медный колчедан CuFeS2), а также как продукт разложения органических веществ (главным образом растительного происхождения). Через корневые системы сера поступает в растения, в организме которых синтезируются содержащие этот элемент аминокислоты цистин, цистеин, метионин. В организме животных сера содержится в очень малых количествах и попадает в них с кормом.

Сера из органических соединений попадает в почву благодаря разложению мертвых органических остатков микроорганизмами. В этом процессе органическая сера может быть восстановлена в S8 и минеральную серу или же окислена в сульфаты, которые поглощаются корнями растений, т.е. вновь вступают в круговорот. В наше время в круговорот вовлекается и сера промышленного происхождения (дымы), переносимая с дождевой водой.

7. Как деятельность человека влияет на круговорот серы, фосфора?

Процесс естественного круговорота фосфора в современных условиях интенсифицируется применением в сельском хозяйстве фосфорных удобрений, источником которых служат залежи минеральных фосфатов. В наше время в круговорот вовлекается и сера промышленного происхождения (дымы), переносимая с дождевой водой.

В результате деятельности человека биогенная миграция атомов резко ускоряется. При этом в одних местах возникает недостаток, а в других – избыток каких-то веществ. Примером служит повышенный выброс сернистого газа SО2 в атмосферу при сжигании топлива. В окрестностях медеплавильных заводов избыток SO2 в воздухе вызывает гибель растительности вследствие нарушений процессов фотосинтеза. В процессах круговорота фосфора около 60 тыс. тонн фосфора возвращается ежегодно на сушу в связи с выловом рыбы в океане. Для изготовления фосфорных удобрений ежегодно добывают 1—2 млн тонн фосфорсодержащих пород.

Вопросы и задания для обсуждения.

1. Каким образом формируется биокосное вещество биосферы?

Одной из составляющих биосферы является биокосное вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль. Косное вещество образуется процессами, в которых живое вещество не участвует (абиогенное вещество). Оно может быть твердым, жидким, газообразным, например, вещество вулканического происхождения. Биокосное вещество создается одновременно живыми организмами и косными процессами. К нему относят океаническую и все другие воды биосферы, нефть, приземную атмосферу, почву. Живые организмы в процессе создания биокосного вещества играют ведущую роль.

2. Как скоро образуются скопления биокосного вещества?

Биокосное вещество – это вещество, в создании которого принимают участие живые организмы (почва, ил и т.п.) отсюда можно сделать вывод, что скопление образуется лишь в том случае, когда живые организмы перестанут принимать участие.

3. В чем заключается влияние изменений компонентов атмосферы, литосферы и гидросферы на гомеостаз биосферы в целом?

Биосфера как саморегулирующаяся система обладает устойчивым динамическим равновесием, т. е. гомеостазом. Как открытая система биосфера только тогда устойчива, когда имеет достаточное внутреннее разнообразие. Ее разнообразие проявляется в неоднородности климатических зон, сложном рельефе Земли, многообразии биогеоценозов и видов организмов. Устойчивость биосферы обусловливается одновременно постоянством и изменчивостью живого вещества и его окружения. Согласно палеонтологическим данным, живое вещество существует на Земле около 3,8 млрд лет, что свидетельствует об устойчивости (гомеостазе) биосферы. Особенности биологического круговорота в биосфере. Потоки энергии не могут быть повторно использованы на Земле, так как в конечном итоге все виды энергии превращаются в тепловую энергию и уходят в космическое пространство. Земля, в силу своих размеров, не способна удерживать гравитационными силами только водород и гелий. Остальные элементы задерживаются на Земле благодаря постоянным круговоротам, происходящим в том числе с участием живых организмов. С образованием на Земле живого вещества химические элементы непрерывно циркулируют в биосфере, переходя из внешней среды в организмы, из них – вновь во внешнюю среду.


Геохимический цикл углерода (круговорот углерода в природе) – это процесс, посредством которого углерод циркулирует между атмосферой, гидросферой, литосферой и живыми организмами (биосферой).

Углерод: важнейший элемент

Когда вы в последний раз видели периодическую таблицу Менделеева? Возможно, вы помните таблицу, которая висела на стене в вашем школьном классе. В ней содержится вся ключевая информация о каждом элементе, существующем на Земле. Одни из элементов, представленных в таблице, редки и незнакомы, например иттрий и калифорний. Другие являются драгоценными и благородными, например, золото и серебро.

Но в периодической таблице есть один элемент, который незаменим для каждого живого организма. Он также входит в состав воздуха и постоянно циркулирует через нашу Землю, живые организмы и атмосферу. Этот элемент – углерод, и в этой статье мы рассмотрим очень важный процесс, называемый геохимическим циклом углерода.

Особенности круговорота углерода

Углерод – это элемент, который встречается во многих различных формах и местах нашей Земли и атмосферы. Как упоминалось ранее, он в больших количествах содержится в живых организмах. Без этого элемента мы бы даже не существовали. Ключевые молекулы, из которых состоит наш организм, такие как белки, углеводы и ДНК, содержат углерод в качестве основного компонента. Углерод также в изобилии присутствует в нашей атмосфере в форме углекислого газа или CO2. Кроме того, углерод также содержится в Земле в виде ископаемого топлива.

Круговорот углерода – это, по сути, естественный способ повторного использования атомов углерода различными способами и в разных местах. Это процесс, при котором углерод перемещается из атмосферы в живые организмы и Землю, а затем обратно в атмосферу. Но как он работает и что заставляет углерод циркулировать?

Точно так же у нас есть фиксированное количество углерода на Земле и в атмосфере. Мы находимся в нашем собственном пузыре, и, по сути, практически ничто не выходит из нашего мира и не входит в него. Мы не получаем межгалактических поставок необходимых элементов, таких как углерод. Это означает, что весь углерод на Земле и в атмосфере, равен тому количеству, которое у нас всегда было. Итак, когда формируются новые организмы, необходим углерод для образования ключевых молекул, таких как белок и ДНК. Но откуда он берется? Вот тут и начинает работать круговорот углерода в природе.

Фотосинтез и клеточное дыхание

Как упоминалось ранее, углерод находится во многих различных формах и в разных местах. Мы уже знаем, что он находится в нашей атмосфере. Но только некоторые организмы действительно могут использовать атмосферный углерод. Давайте начнем с рассмотрения процесса фотосинтеза, посредством которого углерод в атмосфере в форме CO2 используется растениями.

Растения могут производить органические вещества, используя несколько простых ингредиентов: CO2, воду (или H2O) и солнечную энергию. Это можно представить следующим уравнением:

6CO2 (диоксид углерода) + 6H2O (вода) + солнечный свет → C6H12O6 (углевод) + 6O2 (кислород)

Теперь вы можете видеть, что в процессе фотосинтеза атомы углерода были взяты из углекислого газа и использованы для создания C6H12O6 или глюкозы. И куда пойдет углерод дальше?

Подумайте, кто может есть растения. Например, люди, которые должны добывать себе пищу, чтобы выжить. Итак, когда мы едим растительные продукты, мы получаем из них глюкозу. Когда мы едим мясо, мы также можем получить глюкозу, так как животные питаются растениями.

После переваривания глюкоза из растения расщепляется в наших клетках для выработки энергии. Этот процесс называется клеточным дыханием. По сути, это процесс, противоположный фотосинтезу, и его побочным продуктом является CO2. Организмы избавляются от этих отходов, выдыхая их обратно в атмосферу. Каждый раз, когда вы дышите, вы участвуете в круговороте углерода, потому что выдыхаете CO2. Таким образом, вы можете видеть, как углерод движется по всей планете и влияет на каждый организм.

Углерод в ископаемом топливе и деревьях

Некоторое количество углерода в нашем мире находится в подвешенном состоянии сотни или даже миллионы лет. Углерод задерживается в ископаемом топливе, таком как уголь и нефть. Ископаемое топливо состоит из трансформированных останков живых организмов и содержит много энергии. Мы сжигаем ископаемое топливо для получения энергии, и в этом процессе углерод возвращается в атмосферу в форме CO2.

Еще одно место, где углерод задерживается на долгое время – это деревья. Поскольку деревья живут очень долго, углерод не циркулирует, пока дерево не умрет или не сгорит. Затем CO2 выпускается обратно в атмосферу, и цикл продолжается, поскольку этот углерод снова используется растениями для создания пищи.

Разложение и углерод

Другой важный способ круговорота углерода в живых организмах – это разложение. Например, представьте, что сейчас осень, и листья меняют цвет и опадают на землю. Эти листья содержат углерод в виде глюкозы, образующийся в результате фотосинтеза. Когда листья падают на землю, они со временем разлагаются. Разложение высвобождает атомы углерода обратно в почву. И через процесс дыхания, в конечном итоге, этот углерод будет выпущен обратно в атмосферу в виде CO2.

Подведение итогов

Круговорот углерода в природе – это процесс, при котором углерод перемещается между всеми оболочками Земли и живыми организмами. Растения забирают углекислый газ из воздуха и используют его для синтеза питательных веществ. Затем животные едят растения, и углерод накапливается в их телах или выделяется в виде CO2 при дыхании. Углерод также возвращается в атмосферу при сжигании древесины и ископаемого топлива или разложении мертвых организмов.

Читайте также: