Какие условия внешней среды относятся к физическим факторам кратко

Обновлено: 05.07.2024

Существует определенный параллелизм между жизнедеятельностью микроорганизмов и факторами окружающей среды. Чем благоприятнее эти условия для данного микроорганизма, тем интенсивнее он развивается и тем выше темп его жизнедеятельности. Связь микроорганизмов с окружающей средой проявляется в течение всего периода индивидуального развития, причем она имеет многосторонний характер. При ассимиляции питательных веществ микроорганизм растет, развивается и выделяет в окружающую среду определенные продукты обмена. На изменение условий питания он отвечает приспособительной перестройкой своего обмена веществ. При изменении реакции среды, температуры, концентрации питательных веществ, давления, радиации и т. д. нарушается обмен веществ, прекращаются или ограничиваются рост и размножение микроорганизма. Иными словами, происходят все те морфологические и физиологические изменения, которые объединяются в понятие жизнедеятельность.

Обмен веществ у микроорганизмов не сводится только к построению веществ тела, к размножению. Одновременно осуществляются различные процессы, приводящие к улучшению самими микроорганизмами условий внешней среды для дальнейшего размножения. Естественно, ни влажность, ни температура не зависят от микроорганизма. К ним он может только пассивно приспосабливаться. Микроорганизмы могут приспосабливаться к своим потребностям и активно изменять при помощи ферментных систем химические условия. Например подщелачивание среды автоматически активирует ферменты, способные вызывать кислотообразование, интенсивная аэрация вызывает образование защитных восстановительных соединений, снижающих окислительно-восстановительный потенциал rH2.

Все факторы внешней среды, оказывающие большое влияние на развитие микроорганизмов, можно разделить на три основные группы: физические, химические и биологические. Из физических факторов наиболее важное значение имеют влажность, концентрация веществ, температура, радиация, свет; из химических - реакция среды и окислительно-восстановительные условия в ней; из биологических - антимикробные вещества. Необходимо помнить, что существует тесная взаимосвязь между многими факторами окружающей среды и что изменение одного из них часто меняет реакцию микроорганизма на действие других факторов.

Физические факторы

Влажность. В клетках микроорганизмов протекает множество различных биохимических процессов. Одни сложные вещества разлагаются, другие образуются из более простых соединений. Вода же является той необходимой средой, в которой только и могут осуществляться все эти химические реакции. Микробная клетка на 65-85 % состоит из воды, и вся ее жизнедеятельность связана с наличием влаги (табл. 1.1).

Содержание воды в некоторых микроорганизмах

Без предварительного растворения в воде многие питательные вещества не могут проникнуть внутрь микробной клетки, и жизнь ее становится невозможной. Большое влияние оказывает наличие влаги на микробные клетки, находящиеся в стадии роста, хотя между ними и в этом отношении наблюдаются значительные различия. Микроскопические грибы могут расти и на твердых питательных субстратах с минимальным содержанием воды. Микроорганизмы в природе находятся в непрерывно изменяющихся условиях, сильно колеблется и содержание влаги. Многие представители хорошо приспособились к высушиванию. Например, некоторые бесспоровые бактерии переносят высушивание и остаются жизнеспособными иногда в течение нескольких лет. Особенно хорошо приспособились к высушиванию споры различных грибов и бактерий. Споры, находящиеся в течение многих лет в сухом месте, при увлажнении начинают прорастать. Однако, как бы стойки ни были вегетативные клетки микроорганизмов к высушиванию, в высушенном состоянии они остаются бездеятельными, так как отсутствие влаги препятствует процессам их питания, а следовательно, росту и размножению. В этом состоянии, что особенно важно, они только сохраняются, хотя их жизнедеятельность заметно приостанавливается.

Концентрация веществ. На рост и жизнедеятельность микроорганизмов большое влияние оказывает концентрация различных веществ. Высокие концентрации любых веществ, в том числе питательных, создают высокое осмотическое давление во внешней среде, превышающее внутреннее осмотическое давление в клетке. Вода при этом выходит наружу, клетки обезвоживаются и начинается плазмолиз. Из-за невозможности поступления в микробную клетку питательных веществ прекращается нормальный обмен с внешней средой. Благодаря тому что цитоплазматическая мембрана имеет высокую избирательную проницаемость, клетки приспосабливаются к изменению осмотического давления в окружающей среде. В этих условиях может иметь место даже накопление в цитоплазме или минеральных солей (если они могут проникать в клетку), или осмотически активных веществ, образующихся в результате гидролиза резервных веществ цитоплазмы.

В последнем случае можно говорить даже об определенной способности к осморегуляции.

Концентрация минеральных солей, необходимая для нормального роста микроорганизмов

Концентрация питательного вещества должна быть оптимальной, т. е. достаточной для обеспечения максимального роста. Для различных веществ оптимальные концентрации различны. Так, минеральные соли, содержащие Р, S, Са, Mg, Zn, Na и другие элементы, требуются в небольших количествах. Концентрации минеральных солей, необходимые для нормального роста различных микроорганизмов, приведены в табл. 1.2. Концентрация в среде источников углерода (углеводы, кислоты, спирты, углеводороды и др.), которые чаще всего одновременно являются и источниками энергии, т. е. окисляемыми или сбраживаемыми веществами, может изменяться от десятых долей процента до 15-20%. Абсолютное содержание источника углерода для обеспечения нормальной жизнедеятельности микроорганизма и получения необходимого количества метаболита рассчитывают, используя экспериментально установленные экономические коэффициенты выхода.

Зависимость накопления микроорганизмов от температуры культивирования

Температура. Жизнь и размножение микроорганизмов зависят от многих физических факторов. Наиболее существенным фактором является прежде всего температура окружающей среды. Как и все факторы внешней среды, температурная зависимость характеризуется тремя кардинальными точками (минимум, оптимум, максимум), которые различны для отдельных микроорганизмов (табл. 1.3). Все микроорганизмы по их отношению к температуре делят на три основные группы: психрофилы, мезофилы и термофилы (рис. 1.6).

Температурный оптимум психрофилов находится в пределах 0-15 °С. Сюда относятся преимущественно представители микрофлоры северных морей. Для психрофилов характерна небольшая скорость роста. Ко второй группе относится большинство используемых в промышленности бактериальных и грибных культур микроорганизмов, температурный оптимум развития которых находится в пределах 25-37 °С. К термофильным микроорганизмам относятся формы, температурный оптимум которых 50-60 °С, крайние пределы 30-70 °С. Термофильные микроорганизмы представляют особый интерес для промышленного использования, так как культивирование их при высоких температурах создает селективные условия и позволяет снизить требования к стерильности процесса.

Свет. На развитие микроорганизмов большое влияние оказывают солнечный свет и другие формы лучистой энергии. Наиболее сильным действием обладает коротковолновая ультрафиолетовая часть спектра (200-300 нм) с ярко выраженным фотохимическим эффектом. Большой активностью обладают также рентгеновские лучи (ионизирующее излучение с длиной волны 0,005-1 нм), y-лучи (коротковолновые рентгеновские лучи), а-, B-частицы, нейтроны. Действие всех этих форм лучистой энергии на микроорганизмы зависит от дозы, а также от физиолого-биохимического состояния микроорганизма. Есть все основания полагать, что действие различного рода излучений связано в первую очередь с изменением структуры ДНК. Во многих случаях спектр действия УФ-лучей соответствует спектру их поглощения нуклеиновыми кислотами. При изучении механизма действия УФ-лучей на молекулярном уровне было обнаружено, что при денатурации ДНК, облученной высокими дозами УФ-лучей (порядка 1*10-2 Дж), возникают разрывы между нуклеотидами, а также образование поперечных сшивок между комплементарными нитями молекулы ДНК.

Действие рентгеновских лучей также связано с ДНК. Наблюдения показали, что рентгеновские лучи, а также некоторые продукты, возникающие под их действием (Н+ и ОН-, радикалы, перекиси), разрушают ДНК.

Следует отметить, что на влиянии различного рода излучений на микроорганизмы основаны приемы стерилизации воды и некоторых других продуктов.

Давление. Микроорганизмы устойчивы к давлению в 500 и даже 1000 кПа, что, по-видимому, связано с малой чувствительностью белков к его денатурирующему влиянию. Для большинства микроорганизмов давление 100 МПа приводит к летальному исходу.

Химические факторы

Концентрация ионов водорода. Большое влияние на развитие микроорганизмов оказывает такой химический фактор внешней среды, как концентрация ионов водорода или pH. Каждый микроорганизм имеет свой максимум и минимум pH, в пределах которых он может развиваться (табл. 1.4).

Значения pH среды для некоторых микроорганизмов

Как свидетельствуют данные таблицы, есть и некоторые общие закономерности. Бактериальные микроорганизмы хорошо развиваются при pH, близком к нейтральному - от 6,5 до 7,5. У микроскопических грибов и различных видов дрожжей оптимум pH в кислой зоне - от 4 до 6. Концентрация водородных ионов в среде оказывает большое влияние на развитие микроорганизмов и на их физиологическую активность. Это положение можно подтвердить ходом процесса брожения. Например, при спиртовом брожении, протекающем при pH 4, образуются диоксид углерода и этиловый спирт. При сдвиге pH в щелочную сторону (до 7,5) брожение также происходит, но в этом случае кроме диоксида углерода и спирта образуется еще и уксусная кислота.

Окислительно-восстановительный потенциал. Выражают через rH2. Если pH выражает степень кислотности и щелочности, то rH2 - степень аэробности. И. Л. Работнова (1958) показала, что в водном растворе, насыщенном кислородом, rH2 = 41, а в условиях насыщения водородом - rH2 = 0. Шкала от 0 до 41 характеризует любую степень аэробности. По отношению к этому фактору внешней среды все микроорганизмы подразделяются на следующие основные группы: аэробы, анаэробы и факультативные анаэробы. Аэробы содержат в своих клетках систему дыхательных ферментов и в качестве акцепторов водорода при окислительно-восстановительных процессах используют молекулярный кислород. Для аэробных микроорганизмов, например для дрожжей, rH2= 10 / 30 (рис. 1.7, а). Анаэробы получают энергию без участия кислорода воздуха за счет сопряженного окисления - восстановления веществ субстрата. Эти микроорганизмы жизнедеятельны при rH2 не выше 20. Рис. 1.7, б свидетельствует, что размножаются анаэробы только при крайне низких значениях rH2 - не выше 3-5. Для представителей этой группы микроорганизмов молекулярный кислород не только не нужен, но в ряде случаев и ядовит.

Кривые размножения и изменения rH2 для культуры аэробов и анаэробов

Микроорганизмы, для которых кислород не обязателен, так как они живут за счет сопряженного окисления-восстановления без вовлечения кислорода, называются факультативными анаэробами. Они живут в широком диапазоне rH2 - от 0 до 30. Кислород для них не ядовит или слабо ядовит.

Биологические факторы (антимикробные вещества)

Различные вещества, находящиеся в окружающей среде, могут служить источником питания микроорганизмов и способствовать росту и развитию, а могут и ингибировать рост микробной клетки, не оказывая на нее летального действия. Наиболее известными антимикробными веществами являются антибиотики, которые даже в небольших концентрациях угнетают рост и активность микробов. Антибиотики образуют главным образом актиномицеты, а также некоторые грибы и бактерии. Механизм действия антибиотиков состоит в том, что одни из них нарушают процессы деления бактериальной клетки, другие изменяют отдельные процессы метаболизма, мешают использованию витаминов, конкурируют с отдельными ферментами, нарушают процессы дыхания, способствуют образованию перекисей, лизису клеток, оказывают депрессирующее действие на поверхностное натяжение и т. д.

Физические факторы составляют значительную часть абиотических факторов. Особое значение принадлежит температуре, поскольку она является важнейшим фактором, ограничивающим жизнь. Различают термические пояса — тропический, субтропический, умеренный и холодный, к которым приурочена жизнь организмов в тех или иных температурных условиях. Верхний и нижний уровни температурного диапазона легальны для организмов. Температуру, которая благоприятна для жизни организмов, называют оптимальной. Большинство организмов способно к жизни в диапазоне от 0° до 50°С.[ . ]

Физический синергизм обусловлен влиянием физически> факторов или взаимодействием компонентов, имеющим физическую природу.[ . ]

Физические факторы — это те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Например, температура, если она высокая — будет ожог, если очень низкая — обмораживание. На действие температуры могут повлиять и другие факторы: в воде — течение, на суше — ветер и влажность, и т. п.[ . ]

К физическим факторам воздействия, характерным для городской среды, относят акустические поля, вибрацию, ионизирующее излучение и электромагнитные поля.[ . ]

К физическим факторам относят электрический ток, кинети-: ческую энергию движущихся машин и оборудования или их частей, повышенное давление паров или газов в сосудах, недопустимые уровни шума, вибрации, инфра- и ультразвука, недостаточную освещенность, электромагнитные поля, ионизирующие излучения и др.[ . ]

Среди физических факторов основными являются разбавление, растворение и перемешивание поступающих загрязнений. Например, интенсивное течение реки обеспечивает хорошее перемешивание, в результате чего снижается концентрация взвешенных частиц. Оседание в воде нерастворимых частиц в процессе отстаивания загрязненных вод способствует самоочищению водоемов. Под действием силы тяжести микроорганизмы осаждаются на органических и неорганических частицах и постепенно опускаются на дно, подвергаясь при этом действию других факторов. Увеличение интенсивности действия физических факторов способствует быстрому отмиранию загрязняющей микрофлоры. При воздействии ультрафиолетового излучения происходит обеззараживание воды, основанное на прямом губительном воздействии этих лучей на белковые коллоиды и ферменты протоплазмы микробных клеток. Ультрафиолетовое излучение может воздействовать не только на обычные бактерии, но и на споровые организмы и вирусы.[ . ]

Наряду с этими факторами в каждом конкретном случае могут быть названы и другие факторы, учитывающие специфику экосистемы. Необходимо указать, что значительное число экологических факторов имеет физическую природу. Многие особенности воздействия физических факторов на элементы экосистемы не исследованы. Физические процессы в биосфере, действие которых на экосистемы описывается в виде экологических факторов, также требуют дальнейших исследований. Экологические факторы физической природы также могут быть отнесены к сфере интересов физической экологии.[ . ]

Антропогенные физические факторы - это факторы, возникшие в результате деятельности человека (например, различного рода излучения, которые подразделяются на электромагнитные, инфракрасные, ультрафиолетовые и рентгеновские).[ . ]

Нормативы допустимых физических воздействий — нормативы, которые установлены в соответствии с уровнями допустимого воздействия физических факторов на окружающую среду и при соблюдении которых обеспечиваются нормативы качества окружающей среды.[ . ]

Канцерогенные вещества. Среди физических факторов и химических веществ, поступающих в биосферу как загрязнители, наиболее опасными являются канцерогены, которые способны вызывать в живых организмах злокачественные новообразования (рак).[ . ]

Действие шума является вредным физическим фактором окружающей природной среды. Воздействие шума на человека характеризуется звуковым давлением, частотным составом и изменением этих показателей во времени. Величины звукового давления, с которыми приходится иметь дело, изменяются от 210 5 до 2 К)2 Н . Г ? [51].[ . ]

Вибрация является одним из видов физического (энергетического) загрязнения среды обитания человека. В пределах городской территории действие этого фактора менее выражено по сравнению, например, с шумом. Однако вибрация, особенно в сочетании с другими физическими факторами, не только ухудшает условия проживания населения, но и может оказывать отрицательное влияние на его здоровье, выступать в роли фактора, модифицирующего или ускоряющего течение имеющихся у людей заболеваний.[ . ]

Геофизические поля также являются физическими факторами, но имеют литосферную природу, более того, можно с полным основанием считать, что и эдафические факторы имеют преимущественно литосферную природу, так как средой их возникновения и действия является почва, которая формируется из горных пород поверхностной части литосферы, поэтому мы их и объединили в одну группу (см. рис. 1.3).[ . ]

Организмы не являются всего лишь рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить лимитирующее влияние температуры, света, влажности и других физических факторов. Такая компенсация факторов особенно эффективна на уровне сообщества, но возможна и на уровне вида. Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами. Их оптимумы и диапазон толерантности соответствуют местным условиям. Компенсация в отношении разных участков градиента температуры, освещенности и других факторов может сопровождаться появлением генетических рас (с морфологическими проявлениями или без них) или может быть просто физиологической акклимацией без генетических изменений.[ . ]

Существует несколько гипотез, согласно которым физические факторы среды играют наибольшую роль в регуляции видового разнообразия, как прямой, так и косвенной.[ . ]

Оказывается, такая ситуация возможна и ей благоприятствуют четыре физических фактора: 1) континентальность климата региона расположения водоема; 2) небольшие глубины (до 10м); 3) соленость; 4) достаточно большой наклон берегов водоема. Уравнение водного баланса для такого модельного водоема может не иметь стационарных устойчивых решений. Физически это означает, что даже в средних стационарных условиях природной среды водоем не будет иметь равновесной площади, испарение с которой будет уравновешивать речной (либо подземный) сток или осадки. Время жизни такого водоема будет конечным, и он будет циклически высыхать или переполняться: в период высыхания испарение будет прогрессирующе опережать сток или осадки, в период наполнения - отставать. Существование в природе таких водных объектов может служить сильным аргументом в пользу тепловой теории колебаний уровня бессточных водоемов.[ . ]

Завершающим штрихом в вопросе о соотносительном влиянии химического и физического факторов на силу электролитов может служить сопоставление силы аминов в воде с силой электролитов в низкополярном (уксусная кислота) и высокополярном (муравьиная кислота) кислотных растворителях. Хотя по отношению к аминам вода — намного более слабая кислота,ччем перечисленные неводные растворители, но благодаря ее высокой ДП, амины в воде более сильные электролиты, чем в уксусной кислоте. Но в муравьиной кислоте действие ДП преобладает: в этом растворителе амины намного более сильные основания, чем в воде.[ . ]

Динамика развития сообществ в экотонах импульсно стабилизирована, т.е. зависима от физических факторов (для водной среды - от проточности, уровня вод, штормовых условий, направления ветра). Своеобразие гидрофизических условий в зонах контакта речных и водохранилищных вод определяет температура, минерализация и динамика движения водных масс.[ . ]

Проведение исследований по изучению эффектов сочетания действия химических веществ с физическими факторами (шум, вибрация, повышенная температура) с целью гигиенической оценки производственной среды: Методические рекомендации (№ 3242-85). — М.: М3 СССР, 1985.[ . ]

Основными этапами подготовки и выполнения космических полетов, определяющих степень материальных и физических факторов воздействия на экосферу и околоземное пространство, являются: строительство и эксплуатация космодромов; предстартовая подготовка и обслуживание; активный и пассивный участки полета; коррекция и маневрирование КА на траектории полета; довыведение КА с промежуточной на рабочую орбиту; полет и маневрирование КА в космическом пространстве и возвращение на Землю.[ . ]

Там, где снижен расход энергии на поддержание определенной температуры тела при колебаниях значений физических факторов среды (т. е. когда отношение R/B невелико), остается больше энергии на создание видового разнообразия. Соответственно в экосистемах со стабильными условиями обитания, например в дождевом тропическом лесу, больше разнообразие видов.[ . ]

Нефтяные продукты, попадающие в естественные водоемы и образующие на их поверхности плавающую пленку, подвергаются сложному воздействию физических факторов (течений, ветра, солнечной радиации, несомой ветром пыли, минеральной взвеси, и др.), в результате чего часть нефтепродуктов испаряется, часть прибивается к берегу и там оседает, часть же, обогащенная минеральными частицами, оседает па дно, а так же и биологических факторов.[ . ]

Биотическую и абиотическую части экосистемы связывает непрерывный обмен материалов и круговорот питательных веществ. Абиотическая среда ("физические факторы") создает среду обитания организмов и контролирует их деятельность, но и организмы не только приспосабливаются к физической среде, а своей совместной деятельностью приспосабливают геохимическую среду к своим биологическим потребностям.[ . ]

Водные объекты, атмосферный воздух, воздух в местах постоянного или временного пребывания человека и почвы не должны являться источниками биологических, химических и физических факторов вредного воздействия на человека. Критерии безопасности и (или) безвредности их для человека устанавливаются санитарными правилами.[ . ]

Среди мелких организмов, составляющих основу пищевой цепи, сезонная смена видов представляет собой эффективную адаптацию к характерным для лиманов умеренной зоны сезонным изменениям физических факторов (гл. 5). Пищевое поведение консументов часто бывает изменчивым. Широко распространенная кефаль (Mugit), виды которой встречаются в лиманах всего мира, может питаться на разных трофических уровнях (У. Одум, 1970а). Вследствие высокого содержания органических веществ в лиманных осадках важную роль играет биогеохимический круговорот серы (гл. 4).[ . ]

В условиях производства человек, как правило, находится под воздействием не одного, а нескольких разных ксенобиотиков, а также под совместным (комбинированным) воздействием химических веществ и физических факторов (шума, вибрации, высоких температур, электромагнитных полей и др.). В совокупности все они называются вредными и опасными производственными факторами. Отсюда второй задачей промышленной токсикологии является изучение и регламентация совместного воздействия на организм различных неблагоприятных факторов окружающей (в том числе и производственной) среды.[ . ]

Система изучения земель!в Англии разработана службой сельскохозяйственных земель Министе 1тва сельского хозяйства, рыбоводства и продовольствия в 1966 году. Данная методика включает два основных этапа: физическую и экономическую классификацию земель. Цель физической классификации состоит в определении основных физических факторов, влияющих на сельское хозяйство. В этой связи при физической классификации все земли страны в зависимости от степени влияния физических факторов (климата, рельефа, высоты над уровнем моря, крутизны склонов, почвенного покрова ограничивающих их использование в сельскохозяйственном производстве, объединены в пять классов землепригодности.[ . ]

Создание благоприятного микроклимата является одной из важнейших составляющих задачи обеспечения оптимальных окружающих условий для работы человека. В гигиеническом отношении микроклимат представляет собой комплекс физических факторов окружающих условий, способных влиять на тепловое состояние организма и его терморегуляторные реакции. Эти факторы — температура, влажность, скорость движения воздуха и лучистая теплота (инфракрасное излучение). При этом основную роль в определении теплового состояния организма играют температура воздуха и интенсивность теплового облучения. Большое значение имеет также запыленность воздуха и наличие в нем вредных примесей.[ . ]

В соответствии со ст. 18 Закона водные объекты, используемые в целях питьевого и хозяйственно-бытового водоснабжения, купания, занятия спортом, отдыха и в лечебных целях, не должны являться источником биологических, химических и физических факторов вредного воздействия на человека. Для охраны водных объектов, предотвращения их загрязнения и засорения устанавливаются согласованные с органами и учреждениями Государственной санитарно-эпидемиологической службы России нормативы предельно допустимых вредных воздействий на водные объекты, нормативы предельно допустимых сбросов химических, биологических веществ и микроорганизмов в водные объекты. Питьевая вода должна быть безопасной в эпидемиологическом и радиационном отношении, безвредной по химическому составу и должна иметь благоприятные органолептические свойства (ст. 19.).[ . ]

В зависимости от мощности, условий эксплуатации, концентрации объектов на данной территории, характера и количества выделяемых в окружающую среду токсичных и пахучих веществ, уровня создаваемого шума, вибрации и других вредных физических факторов для предприятий, производств и объектов устанавливаются минимальные размеры СЗЗ: предприятия 1-го класса — 2000 м; 2-го класса — 1000 м; 3-го класса — 500 м; 4-го класса — 300 м; 5-го класса — 100 м.[ . ]

Ознакомившись с данной книгой, Вы смогли убедиться на целом ряде экспериментального материала в том, что вода представляет собой сложный объект, состояние которого не является строго детерминированным, а зависит от целого ряда внешних физических факторов. Под действием таких факторов вода способна проявлять такие уникальные кооперативные свойства как трансформация и накопление рассеянной энергии в виде ее высокоэнергетических форм (химической, электромагнитной, магнитной, электрической и других), испускание и поглощение когерентных электромагнитных волн нетепловой интенсивности, трансляция энергии возбуждения по координатной сетке водородных связей и другие.[ . ]

Многие заболевания, характерные для районов, где ведется добыча углеводородного сырья, объясняются прежде всего крайне неблагоприятными климатическими условиями, некомфортным микроклиматом помещений, а также воздействием химических и физических факторов производственных процессов.[ . ]

Состав контролируемых параметров, периодичность наблюдений и схема размещения пунктов контроля согласовываются со специально уполномоченными территориальными органами исполнительной власти в области охраны атмосферного воздуха, а по мониторингу физических факторов (шума, радиации, электромагнитных полей и т.п.), воздуха рабочей зоны и селитебной территории - с территориальными органами Росздрава.[ . ]

Эта гипотеза рассматривает зависимость между средними значениями переменных среды (например, среднегодового количества осадков или среднегодовой температуры) и разнообразием. Уже давно стало ясно, что низкое видовое разнообразие как-то коррелирует с суровостью климата [229]. Если какой-либо физический фактор отклоняется от уровня, оптимального для данного вида, организмы становятся все более специализированными в отношении этого фактора, диапазон их устойчивости к другим физическим или биотическим факторам становится шире (т. е. возрастает Ои). Если все условия среды приближаются к оптимальным, то организмы могут специализироваться по дополнительным градиентам и уделять больше времени и энергии коадаптивным подгонкам к другим видам (т. е. уменьшается Ои и возрастает С).[ . ]

Касаясь кратко истории медицинского применения аэроионов, следует отметить, что франклинизация в форме электростатической “воздушной ванны”, или “головного душа”, сопровождается образованием огромного числа аэроионов близ головного электрода благодаря подаче высокого напряжения на колпак с остриями, т.е. благодаря электрическому эффлювию с них. Кроме того, у острий, как раз в том месте, где помещается голова или часть тела больного, возникают сильные электрические поля. Большинство врачей, применяющих и в настоящее время изо дня вдень франклиниза-цию, совершенно не знает, с какими физическими факторами они имеют дело, и пользуются такими мало что говорящими терминами, как “электрический ветер”, “электрический душ” и т.д.[ . ]


Экологические факторы — совокупность всех признаков среды (температура, влажность, свет, давление воздуха, свойства почвы, состав воздуха, рельеф, живые организмы и др.), оказывающих воздействие на организм или экологическую систему в целом. Не все факторы одинаковые по своему значению, влияние некоторых из них является незначительным.

Классификация экологических факторов


Все известные экологические признаки среды в зависимости от их происхождения и характера влияния делят на три основные группы:

К абиотическим относятся факторы неорганической и неживой природы, к биотическим — воздействие живой природы (в том числе и человека), к антропогенным — влияние человека на природу как умышленное, так и неосознанное или неконтролируемое. Это разделение является условным, поскольку каждый фактор существует и проявляет себя как результат общего воздействия среды.

Давайте рассмотрим каждый вид экологических факторов среды более подробно.

Абиотические факторы (влияние неживой природы)


Неживая природа оказывает косвенное или прямое воздействие на всех живых существ. Значительные изменения условий окружающей среды (температура, свет, влажность, свойства почв, состав воздуха и т. п.) могут стать для живого организма критическими и даже привести к его гибели. К абиотическим факторам среды относятся:

  • Климатические — осадки, температура, свет, атмосферное давление и другие;
  • Орографические — особенности рельефа, высота над уровнем моря;
  • Эдафические — состав почв, ее физические свойства, плодородие, кислотность (pH), минерализация и другие;
  • Химические — газовый состав атмосферы и воды, содержание солей в воде, почвенный состав и другие химические свойства среды;
  • Гидрографические — плотность воды, ее проточность, скорость течения, световой режим и другие;
  • Пирогенные — воздействие пожаров, возникших по естественным причинам.

Биотические факторы (влияние живой природы)


Живые организмы находятся в постоянном взаимодействии друг с другом, выстраивая различные типы внутривидовых и межвидовых отношений. В зависимости от того, к какому царству относиться живой организм, классификация биотических факторов осуществляется следующим образом:

  • Фитогенные — факторы влияния растений;
  • Зоогенные — факторы воздействие животных;
  • Микогенные — факторы влияние грибов;
  • Микробиогенные — факторы воздействие микроорганизмов.

Антропогенные факторы (влияние человека)


Антропогенные факторы — изменения в природе, которые происходят в результате деятельности человека. Осваивая природу и адаптируя ее к своим потребностям, люди воздействуют на флору и фауну преобразовывая среду обитания. Влияние может быть косвенное, прямое или условное.

  • Косвенное антропогенное воздействие— опосредствованное вмешательство человека в живую природу путем трансформации среды обитания (например, климатические изменения, нарушение физического или химического состава атмосферы, воды, почв и т.п.).
  • Прямое антропогенное воздействие— проявляется непосредственным влиянием людей на основные компоненты экологической системы (вырубка лесов, охота на животных, сбор растений или грибов и т.п.).
  • Условное антропогенное воздействие— влияния факторов живой и неживой природы, которые были нарушены в результате человеческой деятельности.

Адаптация живых организмов к окружающей среде

Газель-доркас, животное, среда обитания, пустыня, на песке,

Чтобы выжить и размножаться, все живые существа должны приспосабливаться к условиям, предоставляемым им средой обитания. Окружающая среда организма включает в себя все, что на него воздействует, а также все, на что воздействует сам организм. Соответствие между живым организмом и окружающей средой в биологии называют адаптацией.

Растения и животные адаптировались к окружающей среде генетически и посредством физиологической, поведенческой или эволюционной гибкости, включая как инстинктивное поведение, так и обучение. Адаптация имеет много измерений в том смысле, что большинство организмов должны одновременно приспосабливаться к многочисленным различным факторам окружающей среды. Адаптация включает в себя совладание не только с физической абиотической средой (свет, темнота, температура, вода, ветер), но и со сложной биотической средой (другие организмы, такие как конкуренты, паразиты, хищники и т.п.). Противоречивые требования этих различных компонентов экосистемы часто требуют, чтобы организм находил компромисс в своих адаптациях для каждого из них.

Соответствие любому заданному измерению требует определенного количества энергии, которая затем больше не будет доступна для остальных адаптаций. Присутствие хищников, например, может потребовать от животного осторожности, что, в свою очередь, снизит его эффективность кормления и, следовательно, его конкурентоспособность.

Организмы могут сравнительно легко приспособиться к хорошо предсказуемой среде и справляться с ней, даже если она регулярно меняется, при условии, что изменения не слишком экстремальные. Адаптация к непредсказуемой среде обычно труднее; адаптация к чрезвычайно неустойчивой среде может даже оказаться невозможной. Многие организмы развили в стадии покоя, которые позволяют им пережить неблагоприятные периоды, как предсказуемые, так и непредсказуемые. Креветки в пустынях и однолетние растения повсюду являются хорошими примерами. Яйца морских креветок годами сохраняются в соленой корке сухих пустынных озер. Когда редкий пустынный дождь заполняет одно из этих озер, из яиц вылупляются креветки, быстро вырастают и откладывают много новых яиц. Некоторые семена растений, которым уже много десятилетий, все еще жизнеспособны и способны прорасти.


Изменение условий внешней среды оказывает воздействие на жизнедеятельность микроорганизмов. Физические, химические, биологические факторы среды могут ускорять или подавлять развитие микробов, могут изменять их свойства или даже вызывать гибель.

К факторам среды, оказывающим наиболее заметное действие на микроорганизмы, относятся влажность, температура, кислотность и химический состав среды, действие света и других физических факторов.

Влажность

Микроорганизмы могут жить и развиваться только в среде с определенным содержанием влаги. Вода необходима для всех процессов обмена веществ микроорганизмов, для нормального осмотического давления в микробной клетке, для сохранения ее жизнеспособности. У различных микроорганизмов потребность в воде не одинакова. Бактерии относятся в основном к влаголюбивым, при влажности среды ниже 20 % их рост прекращается. Для плесеней нижний предел влажности среды составляет 15%, а при значительной влажности воздуха и ниже. Оседание водяных паров из воздуха на поверхность продукта способствует размножению микроорганизмов.

При снижении содержания воды в среде рост микроорганизмов замедляется и может совсем прекращаться. Поэтому сухие продукты могут храниться значительно дольше продуктов с высокой влажностью. Сушка продуктов позволяет сохранять продукты при комнатной температуре без охлаждения.

Некоторые микробы очень устойчивы к высушиванию, некоторые бактерии и дрожжи в высушенном состоянии могут сохраняться до месяца и более. Споры бактерий и плесневых грибов сохраняют жизнеспособность при отсутствии влаги десятки, а иногда и сотни лет.

Температура

Температура — важнейший фактор для развития микроорганизмов. Для каждого из микроорганизмов существует минимум, оптимум и максимум температурного режима для роста. По этому свойству микробы подразделяются на три группы:

  • психрофилы — микроорганизмы, хорошо растущие при низких температурах с минимумом при -10-0 °С, оптимумом при 10-15 °С;
  • мезофилы — микроорганизмы, для которых оптимум роста наблюдается при 25-35 °С, минимум — при 5-10 °С, максимум — при 50-60 °С;
  • термофилы — микроорганизмы, хорошо растущие при относительно высоких температурах с оптимумом роста при 50-65 °С, максимумом — при температуре более 70 °С.

Большинство микроорганизмов относится к мезофилам, для развития которых оптимальной является температура 25-35 °С. Поэтому хранение пищевых продуктов при такой температуре приводит к быстрому размножению в них микроорганизмов и порче продуктов. Некоторые микробы при значительном накоплении в продуктах способны привести к пищевым отравлениям человека. Патогенные микроорганизмы, т.е. вызывающие инфекционные заболевания человека, также относятся к мезофилам.

Низкие температуры замедляют рост микроорганизмов, но не убивают их. В охлажденных пищевых продуктах рост микроорганизмов замедленно, но продолжается. При температуре ниже О °С большинство микробов прекращают размножаться, т.е. при замораживании продуктов рост микробов останавливается, некоторые из них постепенно отмирают. Установлено, что при температуре ниже О °С большинство микроорганизмов впадают в состояние, похожее на анабиоз, сохраняют свою жизнеспособность и при повышении температуры продолжают свое развитие. Это свойство микроорганизмов следует учитывать при хранении и дальнейшей кулинарной обработке пищевых продуктов. Например, в замороженном мясе могут длительно сохраняться сальмонеллы, а после размораживания мяса они в благоприятных условиях быстро накапливаются до опасного для человека количества.

При воздействии высокой температуры, превышающей максимум выносливости микроорганизмов, происходит их отмирание. Бактерии, не обладающие способностью образовывать споры, погибают при нагревании во влажной среде до 60-70 °С через 15-30 мин, до 80-100 °С — через несколько секунд или минут. У спор бактерий термоустойчивость значительно выше. Они способны выдерживать 100 °С в течение 1-6 ч, при температуре 120-130 °С споры бактерий во влажной среде погибают через 20-30 мин. Споры плесеней менее термостойки.

Тепловая кулинарная обработка пищевых продуктов в общественном питании, пастеризация и стерилизация продуктов в пищевой промышленности приводят к частичной или полной (стерилизация) гибели вегетативных клеток микроорганизмов.

При пастеризации пищевой продукт подвергается минимальному температурному воздействию. В зависимости от температурного режима различают низкую и высокую пастеризацию.

Низкая пастеризация проводится при температуре, не превышающей 65-80 °С, не менее 20 мин для большей гарантии безопасности продукта.

Высокая пастеризация представляет собой кратковременное (не более 1 мин) воздействие на пастеризуемый продукт температуры выше 90 °С, которая приводит к гибели патогенной неспороносной микрофлоры и в то же время не влечет за собой существенных изменений природных свойств пастеризуемых продуктов. Пастеризованные продукты не могут храниться без холода.

Стерилизация предусматривает освобождение продукта от всех форм микроорганизмов, в том числе и спор. Стерилизация баночных консервов проводится в специальных устройствах — автоклавах (под давлением пара) при температуре 110-125°С в течение 20-60 мин. Стерилизация обеспечивает возможность длительного хранения консервов. Молоко стерилизуется метолом ультравысокотемпературной обработки (при температуре выше 130 °С) в течение нескольких секунд, что позволяет сохранить все полезные свойства молока.

Реакция среды

Жизнедеятельность микроорганизмов зависит от концентрации водородных (Н + ) или гидроксильных (ОН - ) ионов в субстрате, на котором они развиваются. Для большинства бактерий наиболее благоприятна нейтральная (рН около 7) или слабощелочная среда. Плесневые грибы и дрожжи хорошо растут при слабокислой реакции среды. Высокая кислотность среды (рН ниже 4,0) препятствует развитию бактерий, однако плесени могут продолжать расти и в более кислой среде. Подавление роста гнилостных микроорганизмов при подкислении среды имеет практическое применение. Добавление уксусной кислоты используется при мариновании продуктов, что препятствует процессам гниения и позволяет сохранить продукты. Образующаяся при квашении молочная кислота также подавляет рост гнилостных бактерий.

Концентрация соли и сахара

Поваренная соль и сахар издавна используются для повышения стойкости продуктов к микробной порче и лучшей сохранности пищевых продуктов.

Повышение содержания растворенных веществ (соли или сахара) в питательной среде сказывается на величине осмотического давления внутри микроорганизмов, вызывает их обезвоживание. При повышении концентрации поваренной соли в субстрате более 3-4 % размножение многих, в том числе гнилостных, микроорганизмов замедляется, при концентрации более 7-12% — прекращается.

Некоторые микроорганизмы нуждаются для своего развития в высоких концентрациях соли (20 % и выше). Их называют солелюбивыми, или галофилами. Они могут вызывать порчу соленых продуктов.

Высокие концентрации сахара (выше 55-65 %) прекращают размножение большинства микроорганизмов, это используется при приготовлении из плодов и ягод варенья, джема или повидла. Однако эти продукты тоже могут подвергаться порче в результате размножения осмофильных плесеней или дрожжей.

Некоторым микроорганизмам свет необходим для нормального развития, но для большинства из них он губителен. Ультрафиолетовые лучи солнца обладают бактерицидным действием, т. е. при определенных дозах облучения приводят к гибели микроорганизмов. Бактерицидные свойства ультрафиолетовых лучей ртутно-кварцевых ламп используют для дезинфекции воздуха, воды, некоторых пищевых продуктов. Инфракрасные лучи тоже могут вызвать гибель микробов за счет теплового воздействия. Воздействие этих лучей применяют при тепловой обработке продуктов. Негативное воздействие на микроорганизмы могут оказывать электромагнитные поля, ионизирующие излучения и другие физические факторы среды.

Химические факторы

Некоторые химические вещества способны оказывать на микроорганизмы губительное действие. Химические вещества, обладающие бактерицидным действием, называют антисептиками. К ним относятся дезинфицирующие средства (хлорная известь, гипохлориты и др.), используемые в медицине, на предприятиях пищевой промышленности и общественного питания.

Некоторые антисептики применяются в качестве пищевых добавок (сорбиновая и бензойная кислоты и др.) при изготовлении соков, икры, кремов, салатов и других продуктов.

Биологические факторы

Между различными микроорганизмами могут устанавливаться разные взаимоотношения: симбиоз- взаимовыгодные отношения; метабиоз — жизнедеятельность одного за счет другого без принесения вреда; паразитизм — жизнедеятельность одного за счет другого с причинением ему вреда; антагонизм — один из видов микроорганизмов угнетает развитие другого, что может привести к гибели микробов. Например, развитие молочнокислых бактерий угнетает рост гнилостных, эти антагонистические взаимоотношения используют при квашении овощей или для поддержания нормальной микрофлоры в кишечнике человека.

Антагонистические свойства некоторых микроорганизмов объясняются способностью их выделять в окружающую среду вещества, обладающие антимикробным (бактериостатическим, бактерицидным или фунгицидным) действием, — антибиотики. Антибиотики продуцируются в основном грибами, реже бактериями, они оказывают свое специфическое действие на определенные виды бактерий или грибов (фунгицидное действие). Антибиотики применяются в медицине (пенициллин, левомицетин, стрептомицин и др.), в животноводстве в качестве кормовой добавки, в пищевой промышленности для консервирования пищевых продуктов (низин).

Антибиотическими свойствами обладают фитонциды — вещества, обнаруженные во многих растениях и пищевых продуктах (лук, чеснок, редька, хрен, пряности и др.). К фитонцидам относятся эфирные масла, антоцианы и другие вещества. Они способны вызывать гибель патогенных микроорганизмов и гнилостных бактерий.

В яичном белке, рыбной икре, слезах, слюне содержится лизоцим — антибиотическое вещество животного происхождения.

Читайте также: