Какие существуют основные показатели свойств материалов кратко

Обновлено: 07.07.2024

Механические свойства материалов характеризуют возможность их использования в изделиях, эксплуатируемых при воздействии внешних нагрузок. Основными показателями свойств материалов являются:

Их параметры существенно зависят от формы, размеров и состояния поверхности образцов, а также режимов испытаний (скорости нагружения, температуры воздействия окружающих сред и других факторов).

Прочность–свойство материалов сопротивляться разрушению, а также необратимому изменению формы под действием внешних нагрузок. Она обусловлена силами взаимодействия атомных частиц, составляющих материал.

Если при растяжении образца сила внешнего взаимодействия на пару атомов превосходит силу их притяжения, то атомы будут удаляться друг от друга. Напряжение, возникающее в материале и отвечающее силе межатомного притяжения, соответствует теоретической прочности.

При возникновении в материале локального напряжения больше теоретической прочности произойдет разрыв материала по этому участку. В результате образуется трещина. Рост трещин продолжается, пока в результате их слияния одна из трещин не распространится на все сечение образца и не произойдет его разрушение.

Деформирование–изменение относительного расположения частиц в материале (растяжение, сжатие, изгиб, кручение, сдвиг). Таким образом, деформация–изменение формы и размеров изделия или его частей в результате внешнего воздействия. Деформацию называют упругой, если она исчезает после снятия нагрузки, или пластичной, если она не исчезает (необратима)

Предел упругости–напряжение, при котором остаточные деформации , т.е.деформации, обнаруживаемые при разгрузке образца) достигают значения, установленного техническими условиями. Предел упругости ограничивает область упругих деформаций материала.

Предел текучести–напряжение, отвечающее нижнему положению площадки текучести на диаграмме (рис.1) для материалов разрушению которых предшествует заметная пластическая деформация. Прочие материалы характеризуют условным пределом текучести–напряжением, при котором остаточная деформация достигает значения, установленного ТУ.

Обычно остаточная деформация не превышает 0,2%. Отсюда и обозначение

Рис.1 Зависимость нормального напряжения σ в образце

от его относительного удлинения ε при растяжении:

предел упругости;предел текучести;

предел прочности (временное сопротивление)

Предел прочности–напряжение или деформация, соответствующие максимальному (в момент разрушения образца) значению нагрузки. Отношение наибольшей силы, действующей на образец, к исходной площади его поперечного сечения называют временным сопротивлением (разрушающим напряжением) и обозначают .

Предел прочности –основная характеристика, механических свойств хрупких материалов, т.е. материалов, которые разрушаются при малых пластических деформациях.

Правила определения характеристик технической прочности материалов при растяжении, сжатии, изгибе, кручении и других видах напряженного состояния установлены в ГОСТ.

У современных конструкционных материалов предел прочности составляет:

o Конструкционные стали – 600…3000 н/мм2

o Алюминиевые сплавы – 200…900 н/мм2;

o Титановые сплавы – 600…1600 н/мм2;

o Композиционные материалы – 300…20000н/мм2

Динамическая прочность–сопротивление материалов динамическим нагрузкам, т.е. нагрузкам, значение, направление и точка приложения которых быстро изменяется во времени.

Усталость материалов–процесс постепенного накопления повреждений под действием переменных напряжений, приводящих к изменению свойств материалов, образованию и разрастанию трещин. Свойство материалов противостоять усталости называется выносливостью.

Ползучесть–непрерывное пластическое деформирование материалов под действием постоянной нагрузки. Любые твердые материалы в той или иной степени подвержены ползучести во всем диапазоне температур эксплуатации. Вредные последствия ползучести материалов особенно проявляются при повышенных температурах.

Причиной неудовлетворительной прочности изделий может быть влияние поверхностных дефектов и напряжений, которые возникают из-за неравномерного распределения нагрузки, обусловленного особенностями конструкции. Поэтому прочность конструкционных элементов (сварных швов и болтов, валов и т.д.) –конструкционная прочность во многих случаях ниже технической прочности исходных материалов.

Твердость является механической характеристикой материалов, отражающей их прочность, пластичность и свойства поверхностного слоя изделия. Твердость во многом определяет износостойкость деталей машин, воспринимаемые ими без разрушения контактные нагрузки, таким образом существенно влияя на технические самой машины или прибора. Она выражается сопротивлением материала местному пластическому деформированию, возникающему при внедрении в материал более твердого тела–индентора. В зависимости от способа внедрения и свойств индентора твердость материалов оценивают по различным критериям, несколько методов:

— вдавливание индентора (закаленный шарик – по Бриннелю, алмазная пирамидка по Виккерсу, алмазный конус по Роквеллу);

Динамические методы измерения твердости не приводят к возникновению дефектов поверхности изделий. Распространен способ определения твердости в условных единицах по высоте отскакивания легкого ударника (бойка), падающего на поверхность испытываемого материала с определенной высоты. Применяется и метод измерения твердости с помощью ультразвуковых колебаний, основанный на регистрации изменения частоты колебаний измерительной системы в зависимости от твердости исследуемого материала.

Триботехнические характеристики определяют эффективность применения материалов в узлах трения.

Под триботехникой понимают совокупность технических средств, обеспечивающих оптимальное функционирование узлов трения.

Основные триботехнические характеристики материалов:

Износостойкость–свойство материала оказывать сопротивление изнашиванию в определенных условиях трения. Отношение величины износа к интервалу времени, в течение которого он возник, или пути, на котором происходило изнашивание–это, соответственно, скорость изнашивания и интенсивность изнашивания. Износостойкость материалов оценивают величиной обратной скорости и интенсивности изнашивания.

Прирабатываемость–свойство материала уменьшать силу трения, температуру и интенсивность изнашивания в процессе приработки. Обеспечение износостойкости напрямую связано с предупреждением катастрофического изнашивания и прирабатываемостью.

Коэффициент трения–отношение силы трения двух тел к нормальной силе, прижимающей эти тела друг к другу. Его значения зависят от скорости скольжения, давления и твердости материалов трущихся поверхностей.

Триботехнические характеристики материалов зависят от следующих основных групп факторов, влияющих на работу узлов трения:

· внутренних, определяемых природой материалов;

· внешних, характеризующих вид трения(скольжение, качение);

· режима трения (скорость, нагрузка, температура);

· среды и вида смазочного материала

Совокупность этих факторов обуславливает вид изнашивания: абразивное, адгезионное, эрозионное, усталостное и др.

Основная причина всех видов изнашивания-работа сил трения под воздействием которых происходит многократное деформирование поверхностных слоев трущихся тел, изменение их структуры и т.д.

Коррозионная стойкость.

Коррозия–физико-химический процесс изменения свойств, повреждения и разрушения материалов вследствие перехода их компонентов в соединения с компонентами окружающей среды.

Под корррозионным повреждением понимают любой дефект структуры материала, возникший в результате коррозии. Если механические повреждения ускоряют коррозию материалов, а коррозия облегчает их механические разрушения, имеет место коррозионно-механическое повреждение материалов.

Электрохимическая коррозия-процесс взаимодействия материалов и окружающей среды посредством электродных реакций. Металлы наиболее подвержены этому виду коррозии вследствие высокой электрической проводимости и химической активности.

Коррозионное повреждение различных участков материала может быть неодинаковым. По характеру разрушения материалов различают равномерную и местную коррозию. Последняя возникает из-за химической или физической неоднородности среды и материала на отдельных участках поверхности изделия.

С конструктивными особенностями изделий связаны щелевая и контактная коррозии. Первая протекает в непосредственной близости от узкого отверстия или зазора в конструкциях. Вторая вызвана контактированием металлов, различающихся по электродному потенциалу, например, пара металлов: медь–железо.

Для оценки сопротивления материалов коррозии используют следующие параметры:

фронт коррозии–воображаемая поверхность, отделяющая поврежденный материал от неповрежденного;

скорость коррозии–это скорость продвижения ее фронта;

техническая скорость коррозии–ее наибольшая скорость, вероятностью превышения которой нельзя пренебречь в конкретных условиях.

Сопротивление материалов коррозии характеризуют с помощью параметра коррозионной стойкости–величины обратной технической скорости коррозии в данной коррозионной системе (R=1/Vкорр.).Условность этой характеристики заключается в том, что она относится не к материалу, а в целом к коррозионной системе. Коррозионную стойкость материала нельзя изменить, не изменив других параметров коррозионной системы.

Противокоррозионная защита–это изменение коррозионной системы, ведущее к снижению скорости коррозии материала.

Классификация строительных материалов

Номенклатура материалов, применяемых в современном строительстве огромна. Чтобы легче ориентироваться в многообразии строительных материалов и изделий, чаще всего их классифицируют по назначению, исходя из условий работы материалов в сооружениях и по технологическому признаку, учитывая вид сырья, из которого получают материал, и способ изготовления (керамические, древесные, каменные, бетонные и железобетонные и т.д.).

Для архитектурного и строительного материаловедения наиболее удобна классификация по назначению: материалы условно делят на две группы: конструкционные и материалы специального назначения.

Иногда встречается разделение материалов на конструкционные, конструкционно-отделочные и отделочные, однако не совсем верно, т.к. классификация не включает огромную группу материалов, например, герметики.

Конструкционные материалы, применяемые главным образом для несущих конструкций, различают следующие:

1) природные каменные;

3) искусственные каменные, получаемые:

а) омоноличиванием с помощью вяжущих веществ (бетон, железобетон, растворы);

б) спеканием (керамические материалы и огнеупоры);

в) плавлением (стекло и ситаллы);

4) металлы (сталь, чугун, алюминий, сплавы);

7) композиционные материалы (асбестоцемент, железобетон, полимербетон, фибробетон, стеклопластик и др.).

Строительные материалы специального назначения, необходимые для защиты конструкций от вредных воздействий среды или повышения эксплуатационных свойств и создания комфорта, следующие:

3) гидроизоляционные, кровельные и герметизирующие;

7) материалы для защиты от радиационных воздействий и др.

Понятие свойство материала. Классификация свойств

Важным слагаемым, определяющим качество современной архитектуры, является качество применяемых в строительстве конструкционных и отделочных материалов и изделий. Борьба за повышение качества промышленной продукции неразрывно связана с его оценкой, управлением, контролем и аттестацией. Чтобы управлять качеством, необходимо, прежде всего, научиться его измерять.

Область науки, занимающаяся методами количественной оценки качества продукции, называется квалиметрией (от лат. gualis-какая по качеству и греч. metreo — измеряю). Количественная оценка качества продукции, т.е. определение численных значений показателей качества, применяется в различных областях для выбора оптимального варианта (из некоторого числа сравниваемых), для изучения динамики совершенствования качества, планирования, контроля и аттестации качества продукции и т.п.

Каждый материал обладает комплексом разнообразных свойств, определяющих область его рационального применения и возможность сочетания с другими материалами.

Свойство способность материала определенным образом реагировать на отдельный или чаще всего действующий в совокупности с другими внешний или внутренний фактор. Действие того или другого фактора обусловлено как составом и строением материала, так и эксплуатационными условиями материала в конструкции зданий и сооружений.

Свойство —характеристика материала (изделия), проявляющееся в процессе его переработки, применения или эксплуатации.

Например, термопластичность жесткого поливиннлхлорадного листа проявляется при изготовлении из него рельефных вакуумформованных облицовочных материалов, удобоукладываемость бетонной смеси — при применении (укладке), а износостойкость керамических плиток для полов — при эксплуатации покрытия.

Сложное свойство — такое свойство материала (изделия), которое может быть подразделено на два или большее количество менее сложных или простых свойств. Например, сложное свойство функциональность материала (изделия) определяется совокупностью эксплуатационно-технических и технологических свойств, характеризующих его функцию, назначение, утилитарную способность, т. е. то, для чего он разработан и изготовлен.

Качество— сложное свойство, совокупность всех функциональных и эстетических свойств материала (изделия), обусловливающих его способность удовлетворять определенным требованиям в соответствии с его назначением.

Интегральное качество (соотношение цена/качество)— наиболее сложное свойство материала (изделия), определяемое совокупностью его качества и экономичности.

Общие свойства строительных материалов и изделий можно классифицировать на три основные группы: функциональные, эстетические и экономические. Каждая группа представляет собой сложное свойство, которое, в свою очередь, является совокупностью менее сложных свойств.

Свойства строительных материалов и изделий по их природе классифицируют на три основные группы: — физические, механические и химические.Такое деление широко применяется для изучения методов оценки свойств, для выявления закономерных связей между строением и свойствами веществ и других исследовательских и прикладных целей.

К физическим свойствамматериалов относятся:

· характеристики структур и массы (плотность, пористость, пустотность и др.);

· свойства, определяющие отношение материалов к действию воды, пара, газов (гигроскопичность, водопоглощение, водопроницаемость, влагостойкость, водостойкость, паропроницаемость, газопроницаемость и др.);

· отношение материалов к действию тепла, огня, холода, электрического тока, звуковых волн, излучений (теплопроводность, термостойкость, огнестойкость, огнеупорность, хладостойкость, электропроводность, звукоизолирующая и звукопоглощающая способность, радиационная стойкость и др.);

· отношение к комплексному действию внешней среды, например, одновременного действия воды и холода (морозостойкость) и т.п.

Одни физические свойства материалов проявляются в процессе их производства и переработки (плавкость, ковкость, свариваемость, спекаемость, формуемость, растворимость и др.) их называют технологическими, другие – непосредственно в процессе эксплуатации или через характеристики тех свойств материала, которые определяют его функциональность и эстетичность. Свойства материалов обычно взаимосвязаны. Так, плотность и пористость материала влияют на его весовые и теплотехнические характеристики, поверхностное водопоглощение — на морозостойкость и загрязняемость, воздухопроницаемость — на звукопоглощение материалов и т.п.

Для архитектора не менее важны физические свойства материалов, характеризующие их цвет, блеск, фактуру, текстуру и др.

Под механическими свойствами материалов понимают их способность сопротивляться деформированию и разрушению (в сочетании с упругим и пластическим поведением) под действием внешних сил.

К этим свойствам относятся: прочность (при сжатии, растяжении, изгибе, ударе, срезе, кручений и т.д.), твердость, упругость, деформативность, хрупкость, ударная вязкость, пластичность, текучесть, ползучесть, выносливость (усталость), истираемость и др.

Химические свойства материалов характеризуют их способность сопротивляться действию химически агрессивной среды, вызывающей в них обменные реакции и приводящие к разрешению материалов. Это -кислотостойкость, щелочестойкость, стойкость к одновременному действию комплекса химически активных агентов и др.

Кроме этих основных групп свойств можно выделить биологические свойства строительных материалов и изделий, характеризующих их стойкость к действию грибков, микроорганизмов, насекомых и их личинок, и др. Однако все биологические процессы могут быть сведены к химическим.

Следует отметить, что в эксплуатационных условиях строительные материалы и изделия подвергаются, как правило, одновременному действию физических, механических, химических, биологических, физико-химических, химико-биологических и других факторов. Так, например, материалы для наружных ограждающих конструкций здания подвергаются действию различных механических нагрузок, воды, тепла, холода, ультрафиолетового облучения и других факторов внешней среды. Свойства материалов, характеризующие их стойкость к такому одновременному или циклическому действию различных агрессивных (разрушающих) факторов, являются комплексными.Это — долговечность, надежность, совместимость, длительная прочность, износостойкость, теплостойкость, жаропрочность и жаростойкость, кавитационная стойкость, сопротивление коррозии и эрозии.

Санитарно-гигиеническиехарактеристики материалов, в основном, зависят от их химического состава и оцениваются методами санитарно-химического анализа. Исключение составляет характеристика загрязняемости, которая определяется, главным образом, наличием на поверхности материала открытых пор. Санитарно-гигиенические свойства правомерно выделить в отдельную группу, однако обычно они рассматриваются в группе химических свойств.

Свойства материалов можно разбить на следующие основные группы:

2) тепловые (температурные);

3) химические (сопротивление металлов коррозии);

5) электрические и магнитные.

Для конструкционных материалов особенно важны механические свойства: прочность, твердость, выносливость и др. Количественные характеристики механических нагрузок определяют в результате испытаний. Многообразие условий службы материалов обуславливает проведение большого числа механических испытаний

Испытание на растяжение. Этот вид испытанийотносится к числу наиболее распространенных статических испытаний, позволяющих определить основные характеристики механических свойств металла. К преимуществам такого испытания относятся сравнительная простота эксперимента и возможность получить растяжение в чистом виде. Для испытания используются стандартные образцы с рабочей частью в виде цилиндра (цилиндрические образцы) или стержни с прямоугольным сечением (плоские образцы). Размеры образцов устанавливает ГОСТ 1497-84.

Перед испытанием образец закрепляют в вертикальном положении в зажимы испытательной машины. В процессе испытания диаграммный механизм машины непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах: нагрузка (P) – абсолютное удлинение образца (). По диаграмме растяжения определяют следующие характеристики механических свойств металла.

Прочность – это свойство материала сопротивляться деформации или разрушению. Показатели прочности характеризуются не прилагаемой нагрузкой P, а удельной величиной – условным напряжением σ, определяемым отношением нагрузки к площади начального поперечного сечения образца Fо (σ = P/Fо).

Предел пропорциональности (σпц) – это напряжение, при котором отступление от линейной зависимости достигает некоторого значения, установленного техническими условиями (в качестве технического условия обычно берут следующее: при напряжении σпц тангенс угла наклона, образованного касательной к кривой деформации с осью нагрузок, увеличивается на 50 % по сравнению с линейным участком).

Предел текучести (σт) – это напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки.

У большинства материалов диаграмма растяжения не имеет площадки текучести. В этом случае задаются допуском на остаточную деформацию образца и определяют условный предел текучести.

Предел прочности (временное сопротивление, σB) – это напряжение, соответствующее наибольшей нагрузке.

Пластичностью называют свойство материалов необратимо изменять свою форму и размеры под действием внешней нагрузки. Под ее действием материал деформируется. В качестве основного показателя пластичности обычно принимают относительное остаточное удлинение δ,равное остаточному удлинению

к первоначальной длине образца .

Испытание на твердость. Это самый простой вид механических испытаний.

Твердость – это свойство материала оказывать сопротивление деформации или хрупкому разрушению при внедрении индентора в его поверхность. Под инденторомпонимается твердосплавный наконечник (в виде шара, пирамиды или конуса), твердость которого существенно превосходит твердость испытуемого материала.

Наибольшее распространение получили статические методы испытания на твердость при вдавливании индентора: методы Бринелля, Виккерса и Роквелла.

При испытании на твердость по методу Бринелля (ГОСТ 9012-59) в поверхность материала вдавливается твердосплавный шарик диаметром D под действием нагрузки P и после снятия нагрузки измеряется диаметр отпечатка d. Число твердости по Бринеллю (HB) определяется как отношение нагрузки P к площади поверхности сферического отпечатка M. Твердость по Бринеллю обозначается символом HB с указанием числа твердости. При этом размерность (кгс/мм²) не ставится, например 200 HB.

При испытании на твердость по методу Виккерса (ГОСТ 2999-75) в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине α = 136º. После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV определяется как отношение нагрузки P к площади пирамидального отпечатка M. Твердость по Виккерсу обозначается символом HV, при этом размерность не ставится (кгс/мм²).




Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.

При испытании на твердость по методу Роквелла (ГОСТ 9013-59) в поверхность материала вдавливается алмазный конус с углом 120º при вершине или стальной шарик диаметром 1,588 мм. Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Число твердости, определенное методом Роквелла, обозначается символом HR и выражается в условных безразмерных единицах.

Испытание на усталость. Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Металл, подверженный такому нагружению, может разрушаться при более низких напряжениях, чем при однократном плавном нагружении. Процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушений, называют усталостью. Свойство материалов противостоять усталости называют выносливостью.

Схема испытаний на усталость следующая. Циклическое напряжение осуществляется подвешенным на подшипнике неподвижным грузом при вращении консольно закрепленного образца. В результате у образца верхняя поверхность работает на растяжении (σmax), а нижняя – на сжатии (σmin). За один оборот образца каждая поверхность проходит полный цикл напряжения, от максимального до минимального.

Методика проведения испытаний материалов на усталость регламентирована ГОСТ 25.502-79. В результате таких испытаний снимают кривую (диаграмму) усталости – это зависимость между максимальным приложенным напряжением и числом циклов. Обычно диаграммы принимают одну из форм: а) имеющих предел выносливости; б) не имеющих предела выносливости.

У части материалов кривая усталости переходит в горизонталь: у сталей это обычно наблюдается после 10 7 циклов нагружения, для цветных металлов это значение составляет обычно 10 8 циклов. Для этих материалов сопротивление усталости характеризуется пределом выносливости (σR), под которым понимают максимальное напряжение, которое не вызывает разрушение образца при любом числе циклов (физический предел выносливости).

У других материалов кривая усталости не переходит в горизонталь, а продолжает снижаться. Для таких материалов обычно задают базу испытаний (Nn) – предварительно заданная наибольшая продолжительность испытаний на усталость. Под пределом ограниченной выносливости σRN понимают максимальное напряжение, при котором материал может выдержать Nn циклов.

Свойства материалов можно разбить на следующие основные группы:

2) тепловые (температурные);

3) химические (сопротивление металлов коррозии);

5) электрические и магнитные.

Для конструкционных материалов особенно важны механические свойства: прочность, твердость, выносливость и др. Количественные характеристики механических нагрузок определяют в результате испытаний. Многообразие условий службы материалов обуславливает проведение большого числа механических испытаний

Испытание на растяжение. Этот вид испытанийотносится к числу наиболее распространенных статических испытаний, позволяющих определить основные характеристики механических свойств металла. К преимуществам такого испытания относятся сравнительная простота эксперимента и возможность получить растяжение в чистом виде. Для испытания используются стандартные образцы с рабочей частью в виде цилиндра (цилиндрические образцы) или стержни с прямоугольным сечением (плоские образцы). Размеры образцов устанавливает ГОСТ 1497-84.

Перед испытанием образец закрепляют в вертикальном положении в зажимы испытательной машины. В процессе испытания диаграммный механизм машины непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах: нагрузка (P) – абсолютное удлинение образца (). По диаграмме растяжения определяют следующие характеристики механических свойств металла.

Прочность – это свойство материала сопротивляться деформации или разрушению. Показатели прочности характеризуются не прилагаемой нагрузкой P, а удельной величиной – условным напряжением σ, определяемым отношением нагрузки к площади начального поперечного сечения образца Fо (σ = P/Fо).

Предел пропорциональности (σпц) – это напряжение, при котором отступление от линейной зависимости достигает некоторого значения, установленного техническими условиями (в качестве технического условия обычно берут следующее: при напряжении σпц тангенс угла наклона, образованного касательной к кривой деформации с осью нагрузок, увеличивается на 50 % по сравнению с линейным участком).

Предел текучести (σт) – это напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки.

У большинства материалов диаграмма растяжения не имеет площадки текучести. В этом случае задаются допуском на остаточную деформацию образца и определяют условный предел текучести.

Предел прочности (временное сопротивление, σB) – это напряжение, соответствующее наибольшей нагрузке.

Пластичностью называют свойство материалов необратимо изменять свою форму и размеры под действием внешней нагрузки. Под ее действием материал деформируется. В качестве основного показателя пластичности обычно принимают относительное остаточное удлинение δ,равное остаточному удлинению

к первоначальной длине образца .

Испытание на твердость. Это самый простой вид механических испытаний.

Твердость – это свойство материала оказывать сопротивление деформации или хрупкому разрушению при внедрении индентора в его поверхность. Под инденторомпонимается твердосплавный наконечник (в виде шара, пирамиды или конуса), твердость которого существенно превосходит твердость испытуемого материала.

Наибольшее распространение получили статические методы испытания на твердость при вдавливании индентора: методы Бринелля, Виккерса и Роквелла.

При испытании на твердость по методу Бринелля (ГОСТ 9012-59) в поверхность материала вдавливается твердосплавный шарик диаметром D под действием нагрузки P и после снятия нагрузки измеряется диаметр отпечатка d. Число твердости по Бринеллю (HB) определяется как отношение нагрузки P к площади поверхности сферического отпечатка M. Твердость по Бринеллю обозначается символом HB с указанием числа твердости. При этом размерность (кгс/мм²) не ставится, например 200 HB.

При испытании на твердость по методу Виккерса (ГОСТ 2999-75) в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине α = 136º. После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV определяется как отношение нагрузки P к площади пирамидального отпечатка M. Твердость по Виккерсу обозначается символом HV, при этом размерность не ставится (кгс/мм²).

Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.

При испытании на твердость по методу Роквелла (ГОСТ 9013-59) в поверхность материала вдавливается алмазный конус с углом 120º при вершине или стальной шарик диаметром 1,588 мм. Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Число твердости, определенное методом Роквелла, обозначается символом HR и выражается в условных безразмерных единицах.

Испытание на усталость. Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Металл, подверженный такому нагружению, может разрушаться при более низких напряжениях, чем при однократном плавном нагружении. Процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушений, называют усталостью. Свойство материалов противостоять усталости называют выносливостью.

Схема испытаний на усталость следующая. Циклическое напряжение осуществляется подвешенным на подшипнике неподвижным грузом при вращении консольно закрепленного образца. В результате у образца верхняя поверхность работает на растяжении (σmax), а нижняя – на сжатии (σmin). За один оборот образца каждая поверхность проходит полный цикл напряжения, от максимального до минимального.

Методика проведения испытаний материалов на усталость регламентирована ГОСТ 25.502-79. В результате таких испытаний снимают кривую (диаграмму) усталости – это зависимость между максимальным приложенным напряжением и числом циклов. Обычно диаграммы принимают одну из форм: а) имеющих предел выносливости; б) не имеющих предела выносливости.

У части материалов кривая усталости переходит в горизонталь: у сталей это обычно наблюдается после 10 7 циклов нагружения, для цветных металлов это значение составляет обычно 10 8 циклов. Для этих материалов сопротивление усталости характеризуется пределом выносливости (σR), под которым понимают максимальное напряжение, которое не вызывает разрушение образца при любом числе циклов (физический предел выносливости).

У других материалов кривая усталости не переходит в горизонталь, а продолжает снижаться. Для таких материалов обычно задают базу испытаний (Nn) – предварительно заданная наибольшая продолжительность испытаний на усталость. Под пределом ограниченной выносливости σRN понимают максимальное напряжение, при котором материал может выдержать Nn циклов.

совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм 2 или Мн/м 2 ), деформациями (в %), удельной работой деформации и разрушения (обычно в кгсм/см 2 или Мдж/м 2 ), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл). М. с. м. определяются при механических испытаниях образцов различной формы.

В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам (рис. 1): работать на Растяжение, сжатие, Изгиб, Кручение, срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, Твёрдость, ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.

Диаграмма деформации. Приложенная к образцу нагрузка вызывает его деформацию (См. Деформация). Соотношения между нагрузкой и деформацией описываются т. н. диаграммой деформации (рис. 2). Вначале деформация образца (при растяжении — приращение длины Δl ) пропорциональна возрастающей нагрузке Р, затем в точке n эта пропорциональность нарушается, однако для увеличения деформации необходимо дальнейшее повышение нагрузки Р; при Δl > Δlв деформация развивается без приложения усилия извне, при постепенно падающей нагрузке. Вид диаграммы деформации не меняется, если по оси ординат откладывать напряжение

Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца

при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузке Р 0; (σ2 = σ3 = 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): δ1>0; δ2 = δ3 Рв наряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении — удлинение) достигает заданной величины (по ГОСТ — 0,2 %), называется условным пределом текучести и обозначается

Практически точность современных методов испытания такова, что σп и σе определяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 — α) на 25—50 %] и на величину остаточной деформации (0,003—0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2) или обрываться при достижении наибольшей нагрузки Рв. Отношение

У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром D под нагрузкой Р характеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d:

Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением

(где h0 и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца Θ, рад или относительным сдвигом γ = Θr (где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется

Характеристики разрушения. Разрушение происходит не мгновенно (в точке k), а развивается во времени, причём начало в разрушения может соответствовать какой-то промежуточной точке на участке вк, а весь процесс заканчиваться при постепенно падающей до нуля нагрузке. Положение точки к на диаграмме деформации в значительной степени определяется жёсткостью испытательной машины и иннерционностью измерительной системы. Это делает величину Sk в большой мере условной.

Многие конструкционные металлы (стали, в том числе высокопрочные, жаропрочные хромоникелевые сплавы, мягкие алюминиевые сплавы и др.) разрушаются при растяжении после значительной пластической деформации с образованием шейки. Часто (например, у высокопрочных алюминиевых сплавов) поверхность разрушения располагается под углом примерно 45° к направлению растягивающего усилия. При определенных условиях (например, при испытании хладноломких сталей в жидком азоте или водороде, при воздействии растягивающих напряжений и коррозионной среды для металлов, склонных к коррозии под напряжением) разрушение происходит по сечениям, перпендикулярным растягивающей силе (прямой излом), без макропластической деформации.

Прочность материалов, реализуемая в элементах конструкций, зависит не только от механических свойств самого металла, но и от формы и размеров детали (т. н. эффекты формы и масштаба), упругой энергии, накопленной в нагруженной конструкции, характера действующей нагрузки (статическая, динамическая, периодически изменяющаяся по величине), схемы приложения внешних сил (растяжение одноосное, двухосное, с наложением изгиба и др.), рабочей температуры, окружающей среды. Зависимость прочности и пластичности металлов от формы характеризуется т. н. чувствительностью к надрезу, оцениваемой обычно по отношению пределов прочности надрезанного и гладкого образцов

(у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос — в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной (рис. 3). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2ry (на рис. 3, б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.

Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации K1C и вязкость разрушения

При этом процесс разрушения рассматривается во времени и показатели K1C(G1C) относятся к тому критическому моменту, когда нарушается устойчивое развитие трещины; трещина становится неустойчивой и распространяется самопроизвольно, когда энергия, необходимая для увеличения её длины, меньше энергии упругой деформации, поступающей к вершине трещины из соседних упруго напряжённых зон металла.

Коэффициент интенсивности напряжений К учитывает не только значение нагрузки, но и длину движущейся трещины:

(λ учитывает геометрию трещины и образца), выражается в кгс/мм 3/2 или Мн/м 3/2 . По K1C или G1C можно судить о склонности конструкционных материалов к хрупкому разрушению в условиях эксплуатации.

Для оценки качества металла весьма распространены испытания на ударный о изгиб призматических образцов, имеющих на одной стороне надрез. При этом оценивают ударную вязкость (См. Ударная вязкость) (в кгсм/см 2 или Мдж/м 2 ) работу деформации и разрушения образца, условно отнесённую к поперечному сечению в месте надреза. Широкое распространение получили испытания на ударный изгиб образцов с искусственно полученной в основании надреза трещиной усталости. Работа разрушения таких образцов ату находится в целом в удовлетворительном соответствии с такой характеристикой разрушения, как K1C, и ещё лучше с отношением

Временна́я зависимость прочности. С увеличением времени действия нагрузки сопротивление пластической деформации и сопротивление разрушению понижаются. При комнатной температуре у металлов это становится особенно заметным при воздействии коррозионной (коррозия под напряжением) или др. активной (эффект Ребиндера) среды. При высоких температурах наблюдается явление ползучести (См. Ползучесть), т. е. прироста пластической деформации с течением времени при постоянном напряжении (рис. 4, а). Сопротивление металлов ползучести оценивают условным пределом ползучести — чаще всего напряжением, при котором пластическая деформация за 100 ч достигает 0,2 %, и обозначают его σ0,2/100. Чем выше температура t, тем сильнее выражено явление ползучести и тем больше снижается во времени сопротивление разрушению металла (рис. 4, б). Последнее свойство характеризуют т. н. пределом длительной прочности, т. е. напряжением, которое при данной температуре вызывает разрушение материала за заданное время (например, σ t 100, σ t 1000 и т. д.). У полимерных материалов температурно-временная зависимость прочности и деформации выражена сильнее, чем у металлов. При нагреве пластмасс наблюдается высокоэластическая обратимая деформация; начиная с некоторой более высокой температуры развивается необратимая деформация, связанная с переходом материала в вязкотекучее состояние. С ползучестью связано и др. важное механическое свойство материалов — склонность к релаксации напряжений, т. е. к постепенному падению напряжения в условиях, когда общая (упругая и пластическая) деформация сохраняет постоянную заданную величину (например, в затянутых болтах). Релаксация напряжений обусловлена увеличением доли пластической составляющей общей деформации и уменьшением её упругой части.

ниже которой сталь при повторно-переменной нагрузке не разрушается. При |σmin| = |σmax| предел усталости обозначают символом σ-1. Кривые усталости алюминиевых, титановых и магниевых сплавов обычно не имеют горизонтального участка, поэтому сопротивление усталости этих сплавов характеризуют т. н. ограниченными (соответствующими заданному N) пределами усталости. Сопротивление усталости зависит также от частоты приложения нагрузки. Сопротивление материалов в условиях низкой частоты и высоких значений повторной нагрузки (медленная, или малоцикловая, усталость) не связано однозначно с пределами усталости. В отличие от статической нагрузки, при повторно-переменных нагрузках всегда проявляется чувствительность к надрезу, т. е. предел усталости при наличии надреза ниже предела усталости гладкого образца. Для удобства чувствительность к надрезу при усталости выражают отношением

характеризует асимметрию цикла). В процессе уставания можно выделить период, предшествующий образованию очага усталостного разрушения, и следующий за ним, иногда довольно длительный, период развития трещины усталости. Чем медленнее развивается трещина, тем надёжнее работает материал в конструкции. Скорость развития трещины усталости dl/dN связывают с коэффициентом интенсивности напряжений степенной функцией:

Различают сопротивление термической усталости, когда появляющиеся в материале напряжения обусловлены тем, что в силу тех или иных причин, например из-за формы детали или условий её закрепления, возникающие при циклическом изменении температуры тепловые перемещения не могут быть реализованы. Сопротивление термической усталости зависит и от многих других свойств материала — коэффициентов линейного расширения и температуропроводности, модуля упругости, предела упругости и др.

Лит.: Давиденков Н. Н., Динамические испытания металлов, 2 изд., Л. — М., 1936; Ратнер С. И., Разрушение при повторных нагрузках, М., 1959; Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Прикладные вопросы вязкости разрушения, пер. с англ., М., 1968; Фридман Я. Б., Механические свойства металлов, 3 изд., М., 1974; Методы испытания, контроля и исследования машиностроительных материалов, под ред. А. Т. Туманова, т. 2, М., 1974.

Рис. 1. Схемы деформации при разных способах нагружения: а — растяжение, б — сжатие, в — изгиб, г — кручение (пунктиром показана начальная форма образцов).

Рис. 3. Образец со специально созданной в вершине надреза трещиной усталости для определения K1C. Испытания на внецентренное (а) и осевое (б) растяжение.

Рис. 4. Изменение механических свойств конструкционных материалов в функции времени (или числа циклов).

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Механические свойства материалов" в других словарях:

Механические свойства материалов — Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие … Википедия

МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов реакция материала на приложенные механич. нагрузки. Осн. характеристиками механич. свойств являются напряжения и деформации. Напряжения характеристики сил, к рые относят к единице сечения образца материала или изделия, конструкции из… … Физическая энциклопедия

Механические свойства — материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие основные методы… … Википедия

Механические свойства — – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры. К механическим относят деформативные свойства: прочность, твердость, истираемость,… … Энциклопедия терминов, определений и пояснений строительных материалов

Механические свойства горной породы — – свойства, характеризующие возникновение, распределение и изменение механических напряжений и деформаций в горной породе при воздействии механических нагрузок. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов

Свойства материалов — Термины рубрики: Свойства материалов Агрегация материала Активация материалов Активность вещества Анализ вещественный … Энциклопедия терминов, определений и пояснений строительных материалов

СВОЙСТВА МАТЕРИАЛОВ — совокупность показателей, характеризующих все стороны материала. Различают следующие свойства материалов (например, для металлов): механические, физические (плотность, тепловые, электрические, магнитные и тому подобные свойства), химические… … Металлургический словарь

МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов, определяют их поведение под действием мех. нагрузки. Основные М. с. твердых тел деформационные (жесткость, пластичность, ползучесть, твердость, предельные деформации при разрушении e), прочностные (предел прочности s, долговечность,… … Химическая энциклопедия

Механические свойства некоторых керметных материалов — Составные части Предел прочности на растяжение, МПа Относительное удлинение при 20 °С, % Металлическая Неметалл … Химический справочник

МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА — Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и… … Энциклопедия Кольера

У любого из материалов имеются физические, механические, теплофизические, прочностные, химические, гидрофизические и многие другие свойства. Но в этой статье мы конкретно разберем именно первые - физические свойства материала. Дадим определение, перечислим конкретно, что под ними скрывается, а также подробно охарактеризуем каждое из свойств.

Определение

Физические свойства материала - все свойства, которые присущи веществам без химического воздействия на них.

Любой материал остается неизменным (самим собой) при одном условии - до тех пор, пока неизменен его состав, а также строение его молекул. Если вещество немолекулярное - пока сохраняется одинаковым его состав и связь между атомами. А уже различия в физических свойствах и иных характеристиках материала помогают разделять смеси, состоящие из него.

Вам будет интересно: Праздное любопытство - это безопасно?

Важно знать и то, что физические свойства материала могут быть различными для различных его агрегатных материалов. Скажем, тепловые, электрические, механические, физические, оптические свойства вещества зависят от избранного направления в кристалле.


Наполнение термина

Физические свойства вещества включают такие как:

  • Вязкость.
  • Температура плавления.
  • Плотность.
  • Температура кипения.
  • Теплопроводность.
  • Цвет.
  • Консистенция.
  • Проницаемость диэлектрическая.
  • Абсорбция.
  • Теплоемкость.
  • Эмиссия.
  • Радиоактивность.
  • Индуктивность.
  • Текучесть.
  • Электропроводность.

Вам будет интересно: Что означает многоточие в разных случаях?

А физические свойства материала представлены в основном следующим:

  • Плотность.
  • Пустотность.
  • Пористость.
  • Гигроскопичность.
  • Водопроницаемость.
  • Влагоотдача.
  • Водопоглощение.
  • Воздухостойкость.
  • Морозостойкость.
  • Термическое сопротивление.
  • Теплопроводность.
  • Огнестойкость.
  • Огнеупорность.
  • Радиационная стойкость.
  • Химическая стойкость.
  • Долговечность.

И физические, и химические, и технологические свойства материалов одинаково важны. Но мы разберем подробнее первую категорию. Представим характеристику самых важных физических свойств конструкционных материалов.


Плотность

Одно из важнейших свойств в материаловедении. Плотность разделяется на три категории:

  • Истинная. Масса единицы объема материала, признанного абсолютно плотным.
  • Средняя. Это уже масса единицы объема при естественном состоянии материала (с порами и пустотами). Таким образом, средняя плотность изделий из одного и того же материала может быть разной - в зависимости от пустотности и пористости.
  • Насыпная. Используется для сыпучих материалов - это песок, щебень, цемент. Так называется отношение массы порошкообразных и зернистых материалов к ко всему занимаемому ими объему (включается в расчеты и пространство между частицами).

Вам будет интересно: Трон Ивана Грозного: описание, откуда появился, легенды, с ним связанные

Плотность материала влияет на его технологические характеристики - прочность, теплопроводность. Она будет прямо зависеть от пористости и влажности. С увеличением влажности, соответственно, плотность будет повышаться. Это и характерный показатель для определения экономичности материала.


Пористость

Среди физических, технологических и механических свойств материалов не последнее место занимает и пористость. Это степень заполнения объема изделия порами.

В данном контексте поры - это мельчайшие ячейки, заполненные водой или воздухом. Они могут быть крупными и мелкими, открытыми и закрытыми. Если мелкие поры, к примеру, заполнены воздухом, это повышает теплоизоляционные свойства материала. Величина пористости помогает судить и о других важных характеристиках - долговечности, прочности, водопоглощении, плотности.

Открытые поры сообщаются как с окружающей средой, так и между собой, могут искусственно заполняться водой при погружении материала в жидкость. Обычно чередуются с закрытыми. В звукопоглощающих материалах, к примеру, искусственно создается открытая пористость и перфорация - для более интенсивного поглощения звуковой энергии.

Закрытые поры по распределению и размеру характеризуется следующим:

  • Интегральная кривая распределения объема пор в единице объема по их радиусам.
  • Дифференциальная кривая распределения по радиусам объема пор.


Пустотность

Продолжаем рассматривать физические свойства материалов (плотность, морозостойкость и прочие). Следующее здесь - пустотность. Так именуется количество пустот, которые образуются между отдельными зернами рыхлого, рассыпчатого материала. Это щебень, песок и проч.

Водопроницаемость

Водопроницаемостью называется способность материала отдавать жидкость при его высушивании и поглощать воду при увлажнении.

Во время исследования физических свойств материалов нужно обратить внимание на то, что насыщение водой может проходить двумя путями: при воздействии вещества в жидком состоянии или при воздействии только его пара.

Отсюда выходят и два других важных свойства - это гигроскопичность и водопоглощение.


Гигроскопичность

Как определяется данное физическое свойство материалов в материаловедении? Гигроскопичность - способность поглощать водяные пары и удерживать их внутри себя как следствие капиллярной конденсации. Напрямую зависит от относительной влажности и температуры воздуха, размера, разновидности и количества пор вещества, его природы.

Если материал активно притягивает своей поверхностью молекулы воды, то он называется гидрофильным. Если материал, напротив, отталкивает их от себя, то он носит имя гидрофобного. Помимо этого, отдельные гидрофильные материалы отлично растворяются в воде, в то время как гидрофобные стойко сопротивляются воздействию водных сред.

Водопоглощение

Если рассказывать кратко о физических свойствах строительных материалов, то нельзя не упомянуть о водопоглощении - способности удерживать и впитывать жидкость. Свойство характеризуется объемом воды, впитываемым сухим материалом при его полном погружении в воду. Выражается в процентах от массы (материала).

Водопоглощение будет меньше истинной пористости изделия, так как определенное количество пор в нем остается закрытыми. Поэтому оно будет изменяться от их количества, объема, степени открытости. На величину будет влиять и природа материала, его гидрофильность.

В результате насыщения материала водой остальные его физические свойства порой значительно изменяются: возрастает теплопроводность и плотность, увеличивается объем (характерно для глины, древесины), понижается прочность из-за нарушения связей между отдельными частицами.


Влагоотдача

Это способность материала отдавать влагу в окружающую среду. Находясь на воздухе, сырье и изделия сохраняют свою влажность только в определенных условиях - при относительной равновесной влажности воздуха. Если показатель ниже этой величины, то материал начинает отдавать влагу в атмосферу, высушиваться.

Скорость этого процесса зависит от нескольких факторов: от разности между влажностью самого материала и влажностью воздуха (чем она больше, тем интенсивнее высушивание), от свойств самого материала - его пористости, природы, гидрофобности. Так, сырье с крупными порами, гидрофобное будет легче отдать жидкость, нежели материал гидрофильный, с мелкими порами.

Воздухостойкость

Воздухостойкостью называется способность материала в течение длительного времени выдерживать многократное систематическое высушивание и увлажнение без потерь своей механической плотности, а также без значительных деформаций.

Какие-то материалы при периодическом увлажнении начинают разбухать, какие-то - дают усадку, какие-то - слишком коробятся. Древесина, например, подвергается знакопеременным деформациям. Цемент при частом увлажнении-высыхании склонен разрушаться, осыпаться.

Водопроницаемость

Это физическое свойство - способность материалов пропускать через себя жидкость под давлением. Характеризуется объемом воды ,которая за 1 час проходит через 1 кв. м материала под давлением в 1 МПа.

Важно отметить, что встречаются и полностью водонепроницаемые материалы. Это сталь, битум, стекло, основные разновидности пластмасс.


Морозостойкость

Важное физическое свойство в российских реалиях. Так зовется способность материала, насыщенного водой, выдерживать многократные попеременные замораживания и оттаивания без значительного уменьшения прочности, появления видимых признаков разрушения.

Разрушение при этом процессе нередко из-за того, что при замораживании вода увеличивается в своем объеме примерно на 9 %. При этом наибольшее ее расширение при переходе в лед наблюдается при отметке -4 °С. При заполнении пор материала водой, ее расширении и и замерзании, поровые стенки испытывают значительные повреждения, которые и ведут к разрушению материала.

Соответственно, морозостойкость будет определять степень насыщения пор водой, его плотность. Морозостойкими считаются именно плотные материалы. Из пористых в эту категорию можно отнести только те, которые отличаются большим присутствие закрытым пор. Или чьи поры вода заполняет не более чем на 90 %.

Физические свойства способны представить важные способности материалов. Некоторые из них мы уже подробно разобрали в статье. Это способность выдерживать холод, многократные наполнения водой и высушивания, удерживать, впитывать, отдавать жидкость и другие важные характеристики.

Читайте также: