Какие структуры клетки способствуют ее движению кратко

Обновлено: 05.07.2024

Изучение динамических процессов, происходящих в клетке во время жизни, является по-прежнему одной из наиболее трудных и увлекательных областей исследований современной науки. Она содержит множество тайн, и каждая раскрытая тайна спасает сотни тысяч жизней, поскольку дает ключ к созданию уникальных способов сохранения здоровья и улучшения самочувствия человека. Именно поэтому над раскрытием тайн природы, заложенных в клетке, сегодня трудятся не только биологи и генетики, но и биофизики, биохимики, системные аналитики, специалисты в области информатики, лингвистики и других областей знаний.

Клетка является сложной физической системой. В один и тот же момент времени в ней происходят десятки тысяч разнообразных динамических процессов. Для их изучения ученые используют модели. Модель клетки должна отражать свойства и функции живой клетки. Например, свойство клетки приспосабливаться при изменении параметров внешней среды (температуры, давления, влажности воздуха и других). Однако ни в какой модели нельзя учесть все свойства реальной клетки. Даже если бы нам и удалось встроить в модель значительную часть этих свойств, то задача получилась бы столь сложной, что решение ее было бы чрезвычайно затруднено или даже вовсе невозможно.

Тем не менее, ученые постоянно трудятся над созданием различных моделей, обладающих свойствами живой системы. По совокупности процессов, происходящих в клетке, ее можно сравнить с биороботом, наделенным, с точки зрения современной науки, фантастически совершенными свойствами: самовоспроизведения, самообучения и самонастройки.

В технике робот представляет собой информационно-вычислительный комплекс. Систему его функционирования можно разделить условно на пять основных подсистем: техническую, программную, лингвистическую, информационную и организационную. В свою очередь данные подсистемы можно разделить на два класса. Первый класс включает техническую подсистему, представляющую собой материальные средства комплекса (специалисты называют их “железом”), и второй класс – остальные четыре подсистемы, отвечающие за организацию информационного процесса.

Аналогом технической подсистемы в клетке являются ее биологическая субстанция, имеющая определенную форму и строение. В качестве строительного материала в ней используются органические вещества (биополимеры). Подробно об этом написано в разделе 1.3.2. Второй класс объединяет подсистемы, отвечающие за организацию динамических процессов – информационную жизнь клетки. Устройство клетки является настолько сложным, что воспроизвести искусственно подобную ей систему не по силам ни одной лаборатории мира.

В последние полвека ученые создали немало моделей разных искусственных систем: самолетов, ядерных реакторов, роботов. Более сложным оказалось моделирование природных явлений. Одним из таких примеров является моделирование процессов, позволяющее предсказывать погоду. Опыт, накопленный при проведении таких работ, позволил разработать общую теорию систем, обобщающую и раскрывающую фундаментальные свойства сложных объектов.

Для упрощения понимания протекания внутриклеточных процессов используем разные подходы к рассмотрению динамических процессов (биофизических, биохимических, энергетических, информационных). При этом мы будем вынуждены в большей или меньшей степени идеализировать свойства описываемой системы, учитывая только те решающие факторы, которые определяют черты поведения, обусловленные конкретным видом динамических процессов. Данный подход к рассмотрению вопроса позволит представить нам общие свойства клеток, тканей, органов или систем органов, организма в целом как системы.

Клетка является сложной открытой динамической системой, содержащей множество входов и выходов (смотри рисунок 1.4.1).

Рисунок 1.4.1. Системная модель клетки. Общие входы и выходы

В процессе жизнедеятельности клетка выполняет две основные задачи: обеспечивает поддержание стабильности жизнеобеспечения клеточной системы и реализует специфические функции, присущие определенному виду клеток (смотри рисунок 1.4.2).

Рисунок 1.4.2. Системная модель клетки. Разделение функций клетки

Основные функции клетки =
поддержание стабильности
подсистемы жизнеобеспечения +
выполнение специфических функций

Поддержание стабильности подсистемы жизнеобеспечения происходит за счет выработки энергии, трансмембранного переноса вещества, синтеза клеточных и тканевых структур, размножения клеток.

Выработка необходимой для жизни клетки и организма в целом энергии происходит в процессе протекания процессов распада клеточных и тканевых структур (катаболизма), а также сложных соединений, содержащих энергию.

Трансмембранный перенос веществ обеспечивает поступление на входы клетки необходимых веществ и выведение через ее выходы продуктов обмена и веществ, используемых другими клетками организма.

В процессе синтеза тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений (анаболизма) энергия расходуется и накапливается. С пищей питательные вещества поступают, как правило, в виде продуктов, образующихся в результате гидролиза белков, жиров и углеводов. К ним относятся моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур клетки, подвергающихся распаду.

Размножение клеток в организме обеспечивает его рост и развитие, восстановление клеточных структур, способствует сохранению целостной структуры и нормальному функционированию организма.

Жизнедеятельность самой клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны. Как было сказано ранее в разделе 1.3.2, клеточные органеллы находятся в гиалоплазме, состоящей из воды и находящихся в ней различных ионов и органических веществ (глюкозы, аминокислот, белков, фосфолипидов и других). Гиалоплазма составляет внутреннюю среду клетки, обеспечивающую взаимодействие всех клеточных структур посредством транспорта веществ, потребляемых и синтезируемых клеткой. Гиалоплазма также хранит гликоген, липиды, пигменты. Большинство внутренних органелл имеют свои мембраны (ядро, эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы). Они построены по тому же принципу, что и клеточные мембраны. Некоторые внутриклеточные органеллы не имеют собственной мембраны (рибосомы, микротрубочки, микрофиламенты и промежуточные филаменты). Каждая органелла выполняет свои специфические функции (таблица 1.4.1).

Таблица 1.4.1. Структура и функции основных клеточных элементов

Специфические функции характеризуются выполнением каждой клеткой определенной задачи, которая, в свою очередь, определяется генетически запрограммированным алгоритмом. Например, работа нервных клеток заключается в восприятии сигнала, его передаче, переработке и хранении информации. Возбуждение мембраны нейрона заканчивается выбросом медиатора в синаптическую щель. Таким образом, путем трансформации электрического импульса в химический сигнал происходит передача информации по всем звеньям нервной системы. Каждая секреторная клетка осуществляет синтез и выделение специфических веществ, важных для функционирования организма. В результате секреции выделяются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Секреторные клетки участвуют в работе и регулировании функций многих органов: желудка, поджелудочной железы, щитовидной железы и других. Мышечные клетки в организме выполняют сократительную функцию: сокращения клеток поперечнополосатой мускулатуры обеспечивают работу опорно-двигательного аппарата, гладкой мускулатуры – работу внутренних органов.

В реальности организм человека существует, постоянно подвергаясь воздействию самых разнообразных и изменчивых внешних факторов. К ним могут быть отнесены температура окружающей среды, давление и влажность воздуха, концентрация в атмосфере вредных для организма веществ и так далее. Они могут меняться во времени как закономерным, так и случайным образом. На клеточном уровне схема внешних воздействий приведена на рисунке 1.4.3.

Рисунок 1.4.3. Системная модель клетки. Воздействие внешних факторов

Работа подсистемы жизнеобеспечения характеризуется поддержанием на генетически определенном уровне набора параметров: температура, концентрация белков, содержания воды, уровень кислотно-щелочного равновесия внутри клетки, ее мембранный потенциал и множество других. В процессе эволюции клетка научилась сохранять благоприятную внутреннюю среду, несмотря на изменение внешних условий. Главный механизм клетки как самоорганизующейся системы, способствующий поддержанию определенных величин в физиологически допустимых границах и заложенный в основу подсистемы жизнеобеспечения, называется гомеостатом. Само свойство клетки поддерживать постоянство внутренней среды на генетически заданном уровне называется гомеостазом. Клетка хранит информацию о значениях всех параметров, обеспечивающих ее жизнедеятельность и выполнение свойственных ей функций. Гомеостаз реализуется за счет использования механизма обратной связи (смотри рисунок 1.4.4). Более подробно об этом будет рассказано в разделе “Принципы и алгоритмы регуляции функций организма (информационный подход)”.

Рисунок 1.4.4. Системная модель клетки. Механизм обратной связи

Каждое мгновение жизни клетки характеризуется набором значений текущих параметров (показателей): температурой внутри клетки, концентрацией питательных веществ и других. Совокупность значений этих параметров в некоторый момент времени определяет состояние клетки как системы. Одни из данных параметров поддерживаются на неизменном уровне, другие могут меняться без потери устойчивости системы в целом.

Сам по себе известен и хорошо понятен принцип работы механизма обратной связи. Схема регулирования параметров клетки изображена на рисунке 1.4.4. Но, как внутри клетки одновременно и слаженно (синхронно) работают тысячи таких механизмов, и при этом происходит сравнение их текущих параметров с генетически заданными? Это остается загадкой природы.

Благодаря приспособительным (адаптационным) механизмам физические и химические параметры, определяющие жизнедеятельность клетки, меняются в сравнительно узких пределах, несмотря на значительные изменения внешних условий.

Зоны устойчивости характеризуются пределами изменений значений параметров входных сигналов подсистемы жизнеобеспечения, при которых процессы в клетке протекают нормально. В качестве входных сигналов можно рассматривать количество питательных веществ, содержание кислорода, углекислого газа, гормонов в крови и другие. Внутриклеточные параметры, например показатель кислотно-щелочного равновесия (рН), поддерживаются на заданном относительно постоянном уровне.

В цитоплазме клеток рН составляет 6,7-7,3 (разница, определяющая зону устойчивости, составляет 0,6). Более строгими являются требования к изменению этого показателя со стороны крови: рН крови может изменяться только в пределах 7,35-7,45 (зона устойчивости составляет 0,1, что в 6 раз меньше, чем для рН цитоплазмы клеток).

При отклонении значений этих параметров за пределы зон устойчивости изменяется скорость протекания биохимических реакций, вплоть до торможения. Активность большинства клеточных ферментов зависит от показателя рН, так как при его повышении внутри клеток нарушается структура белка и, в частности, ферментов. Считается, что увеличение рН внутри клеток поджелудочной железы служит одним из сигналов начала реакций запрограммированной их гибели (апоптоза).

Постоянство температуры внутри клетки также способствует оптимальному течению в ней химических реакций. Организм человека удерживает температуру тела на определенном уровне. Жизненные процессы в организме протекают в узких температурных границах: при температуре от 22 °C до 43 °C. Повышение температуры живых тканей выше 45-47 °С сопровождается необратимыми изменениями и прекращением жизни из-за свертывания белков и инактивации ферментов. При температуре ниже 22 °C наступает торможение работы клетки, обусловленное значительным замедлением обмена веществ и энергии.

Функционирование подсистемы, обеспечивающей выполнение специальных функций, также невозможно без механизма обратной связи, поддерживающего гомеостаз в клетке. Например, в системе гормональной регуляции постоянный уровень, в частности, кортикостероидов поддерживается благодаря такому механизму. Гипофиз отслеживает концентрацию данных гормонов в крови и при ее уменьшении выделяет в кровь адренкортикотропный гормон (АКТГ). АКТГ стимулирует образование кортикостероидов в корковом веществе надпочечников, концентрация гормонов увеличивается. При повышенном уровне гормонов, наоборот, идет сигнал на прекращение выработки АКТГ.

Существуют диапазоны колебаний внешних воздействий (температуры окружающей среды, уровня электромагнитных излучений и других), в пределах которых клетка остается устойчивой и работоспособной независимо от времени их воздействия. Приведем несколько примеров зон устойчивости при внешних воздействиях. Зимой и летом, при температуре окружающего воздуха в диапазоне от –70 до +50 °С температура тела человека остается практически постоянной, изменяясь всего на несколько долей градуса. В жаркий день даже небольшое повышение температуры тела дает сигнал к усилению активности потовых желез, кожа становится влажной, испарение воды с ее поверхности способствует охлаждению тела. И напротив, в холодную погоду поверхностные сосуды сужаются, потеря тепла уменьшается, а выработка – увеличивается, возникает защитная реакция – дрожь, “мурашки”.

Внутренние параметры клетки остаются в норме после прекращения действия возмущающего фактора, если он не превысил допустимые пределы. Таким образом, можно выделить допустимые интервалы внешних параметров (температуры, влажности, атмосферного давления, ионизирующего излучения и других), при которых система клеточного гомеостаза поддерживает относительное постоянство внутренней среды то есть возвращает параметры в нормальное состояние, при условии, что внешние воздействия не выводят их значения за пределы зон устойчивости.

Устойчивость в малом, но неустойчивость в большом. Будем говорить, что система устойчива в малом, но неустойчива в большом, если ограниченное изменение входного сигнала (набора входных сигналов) ведет к изменению в ограниченном диапазоне значений выходного сигнала (набора выходных сигналов).

Существование клетки в определенном диапазоне значений параметров хорошо прослеживается при воздействии радиации, или радиоактивного облучения. Учитывая, что каждый человек подвергается воздействию природной радиации, можно проследить, как ионизирующее излучение оказывает воздействие на клетку. Основу этого воздействия составляет передача энергии радиации клеткам организма.

На Земле всегда есть природный радиоактивный фон, который создают космическое излучение и радионуклиды, рассеянные в окружающей среде и всегда находящиеся в живых организмах. Радиация непрерывно воздействует на все живые организмы, в том числе на каждую клетку. Но ее уровень чрезвычайно мал, в среднем 0,2 сГрэй в год для человека, что в миллион раз меньше вредной для организма дозы облучения. Данный природный радиоактивный фон необходим для нормального существования клеточной системы.

Однако случайное облучение радиацией большой мощности способно привести к разрушению, повреждению и изменению определенных клеточных структур (белков, ДНК, РНК и их комплексов), гибели клеток. Большие дозы могут вызвать полное прекращение деления клеток.

К примеру, доказано, что кожа не выдерживает радиоактивного облучения или длительного и интенсивного облучения солнечным светом, так как разрушаются соединительнотканные структуры (коллаген и эластин), обеспечивающие плотность и упругость кожи, появляются признаки преждевременного старения.

Таким образом, если действует внешнее воздействие, при котором клетка теряет устойчивость, и нарушаются допустимые параметры ее существования, то возникает ряд патологических процессов, приводящих к гибели системы клетки в целом.

Управляемость клеточной системы. Каждая система, в том числе и система клетки, в любой момент времени находится в определенном состоянии, характеризуемом набором конкретных значений ряда параметров. Например, на мембранах нервных клеток существует определенная разность потенциалов, изменение которой приводит к возникновению и распространению нервного импульса по аксону. Переход из одного состояния системы в другое осуществляется за счет изменения значений параметров входных сигналов с учетом внешних воздействий. Так поступление внешнего стимула (света, шума) на рецепторную клетку приводит к изменению ее состояния (возбуждению), активации различных биохимических процессов. Будем говорить о том, что система управляема, если за счет изменения значений входных сигналов мы можем перевести ее состояние из начального в заранее определенное. Например, при избыточном поступлении кислорода в организм, происходит увеличение содержания кислорода в крови и соответствующая активация некоторых процессов в клетке (например, дыхания). Клетка начинает усиленно работать. Таким образом, управляемость системы – это способность перевода из текущего состояния в другие запланированные.

В данном разделе были отмечены и рассмотрены общие характеристики клетки как системы. Жизнедеятельность клетки связана с биофизическими, биохимическими, информационными и энергетическими процессами.

Цитоскелет клетки и ее форма

• Цитоскелет эукариотической клетки представляет собой внутреннюю сеть фибриллярных компонентов, включающую микротрубочки, актиновые филаменты и промежуточные филаменты.

• Цитоскелет обладает различными функциями, в т.ч. фиксирует органеллы в клетке.

Термином цитоскелет обозначают сеть фибриллярных компонентов, которая присутствует в большинстве клеток эукариот. Эта сеть создает довольно жесткую внутреннюю структуру, определяющую форму клетки. Например, эпителиальные клетки имеют кубическую форму, а нейроны характеризуются наличием очень протяженных и тонких аксонов. Наряду с поддержанием клеточной структуры, цитоскелет обладает и другими функциями.

Например, белковые субстраты могут связываться с цитоскелетом с помощью молекулярных моторов, использующих филаменты как направляющие для транспортировки белковых субстратов к местам их локализации.

Микротрубочки фибробласта

Фотография фибробласта под флуоресцентным микроскопом.
Микротрубочки окрашены специфическим красителем.
Показано положение ядра и мембраны клетки.

Цитоскелет представляет собой динамическую структуру. Он состоит из трех фибриллярных компонентов. Каждый компонент представляет собой полимерную структуру, образованную повторами белковых субъединиц. Филаменты представляют собой динамические структуры. Возможно добавление к ним или отщепление от них субъединиц. В результате тредмиллинга с одного конца происходит сборка филаментной структуры, а с другого ее диссоциация. Три компонента фибриллярной сети называются микротрубочки, актиновые филаменты и промежуточные филаменты.

Микротрубочки представляют собой полимеры тубулина, димера, состоящего из двух близких по структуре белков, а- и b-тубулина. Они образуют полые трубочки около 25 нм в диаметре. Микротрубочки отличаются динамической нестабильностью, и взаимодействие с другими белками оказывает на них стабилизирующее воздействие. Микротрубочки участвуют в поддержании структуры клетки.

При действии на большинство клеток веществ, вызывающих диссоциацию микротрубочек, клетки теряют форму и превращаются в сферические образования. При диссоциации микротрубочек эндоплазматический ретикулум собирается вокруг ядра, и происходит фрагментация аппарата Гольджи, что свидетельствует о важной роли, которую играют микротрубочки в поддержании структуры этих органелл.

Разнообразие клеточных структур, формируемых с участием микротрубочек, можно проиллюстрировать на примере отростков фибробластов и нейронов. Фибробласты представляют собой подвижные клетки, способные мигрировать в организме. У этих клеток, как показано на гиг. микротрубочки образуют звездчатое образование, выходящее из одной точки, расположенной поблизости от ядра.

Напротив, длинные отростки (аксоны и дендриты), отходящие от тела нейрона, содержат параллельные пучки очень длинных микротрубочек. Оба типа расположения МТ представляют собой структурные элементы, которые при растяжении развивают усилие, и служат в качестве направляющих для перемещения белков с помощью молекулярных моторов.

Микротрубочки нейрона

Выросты нейрона содержат очень длинные микротрубочки.

Каждый раз при наступлении деления микротрубочки претерпевают сильные изменения, вплоть до полной реорганизации их структуры. На рисунке ниже показаны изменения, происходящие в митозе, когда сеть микротрубочек полностью диссоциирует и заменяется веретеном.

Актиновые филаменты состоят из субъединиц белка актина. Актин является одним из наиболее распространенных белков эукариотической клетки и наиболее консервативных с эволюционной точки зрения. В филаменте все актиновые субъединицы имеют одинаковую полярность, при которой сайт связывания АТФ на одном ее конце контактирует со следующей субъединицей.

Актиновый филамент представляет собой полимер, состоящий из двух нитей, расположенных подобно двум перекрученным ниткам бус, образующим связку около 8 нм в диаметре.

Актиновые филаменты не только пересекают клетку, но и переходят в специализированные структуры, являющиеся выростами клеточной поверхности, которые обеспечивают клетке движение. На рисунке ниже показана актиновая сеть фибробласта. Движение осуществляется при выполнении механической работы, а энергия поставляется за счет гидролиза АТФ. Подвижность обеспечивается полимеризацией актиновой нити, что является важнейшим свойством клеток как одноклеточных, так и многоклеточных организмов.

В делящейся клетке присутствует веретено, образующееся из микротрубочек.
На фотографии, сделанной во флуоресцентном микроскопе, микротрубочки,
хромосомы и центриоли окрашены зеленым, синим и желтым соответственно.
Фотография фибробласта в электронном микроскопе.
По краю клетки видна сеть актиновых филаментов.
Фотография парамеции, сделанная в сканирующем электронном микроскопе.
Видны ряды ресничек.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Цитоскелетные филаменты обеспечивают основу для движения клеток. Например, реснички и (эукариотические) жгутики движутся в результате скольжения микротрубочек вдоль друг друга. Фактически, поперечные сечения этих клеточных расширений показывают организованные массивы микротрубочек.

Другие движения клеток, такие как отрыв клеточной мембраны на заключительном этапе деления клетки (также известный как цитокинез), производятся сократительной способностью актиновых филаментных сетей. Актиновые филаменты чрезвычайно динамичны и могут быстро образовываться и разбираться. Фактически, это динамическое действие лежит в основе ползающего поведения клеток, таких как амебы.

Биологическое, химическое, физическое, механическое (реактивное, колебательное, поступательное, вращательное, прямо — и криволинейное).

Вопрос 2. Какой механизм лежит в основе движения организмов?

Механическое движение способны вызвать химические превращения в клетках организма. Субстратом жизни служат полимерные молекулы белков и нуклеиновых кислот. Все процессы в живом организме происходят вследствие химических реакций между этими и другими молекулами, составляющими живой организм или поступающими в организм.

Также у живых организмов в основе некоторых движений лежат ответные реакции на раздражение.

Вопрос 3. Из каких элементов состоит цитоплазма клетки?

Цитоплазма представляет собой полужидкую внутреннюю среду клетки — гиалоплазму — и расположенные в ней органоиды клетки и клеточные включения.

Вопрос 4. Какие компоненты образуют цитоскелет?

В состав цитоскелета входят три вида компонентов: микрофиламенты — тонкие нити белка актина, микротрубочки — более толстые нити, построенные из белка тубулина, и промежуточные филаменты, которые представляют собой наименее изменчивую часть данного образования.

Вопрос 5. Какова роль клеточного центра в клетке?

Клеточный центр участвует в построении цитоскелета, а во время митоза и мейоза участвует в построении веретена деления. Образует цитоскелет клетки: цитоплазматические микротрубочки расходятся во все стороны из этой области и определяют геометрию клетки, действуя как рельсы, ориентирующие перемещение различных органелл.

Вопрос 6. Чем представлены органоиды движения клетки? Каково их строение?

Органоиды движения клетки представлены ресничками и жгутиками. В основании как первых, так и вторых лежат базальные тельца, совершенно идентичные центриолям (центриоли являются их матрицами).

Тело жгутика образовано девятью группами микротрубочек, расположенных по кругу, и двумя микротрубочками в центре.

Ресничка имеет точно такое же внутреннее строение. Она отличается от жгутика размерами (длина жгутика в среднем составляет 200 нм, тогда как реснички не бывают длиннее 10 нм).

Вопрос 7. Составьте сравнительную таблицу, характеризующую клеточное строение растительной, животной и грибной клеток. Продолжайте её заполнение при изучении последующих параграфов.

Составьте сравнительную таблицу, характеризующую клеточное строение растительной, животной и грибной клеток. Продолжайте её заполнение при изучении последующих параграфов

Все живые организмы пребывают в постоянном движении. В повседневной жизни мы сталкиваемся в основном с движением, которое осуществляется благодаря работе мышц, — это и бег кота, и полет бабочки, и ползание дождевого червя, и плавание карася. В основе этих внешне столь различных форм движения лежит активность мышечных волокон. Но не только сокращение мышц обеспечивает движение. Одноклеточные организмы, например амебы, жгутиконосцы, инфузории, тоже обладают способностью к перемещению в пространстве (движение с помощью жгутиков и ресничек, а амебовидное движение — один из самых распространенных способов перемещения клеток). Перемещения разного рода осуществляются и внутри самих клеток — движение вакуолей, транспортных пузырьков, содержащих выработанный клеткой секрет, изменение формы клетки и образование перетяжки между дочерними клетками в ходе клеточного деления, расхождение хромосом делящейся клетки.

Из приведенных примеров следует, что движение всех живых организмов является механическим движением, т.е. оно является универсальным для всех живых организмов. Значит, несмотря на огромное разнообразие форм движения живых существ, все они оказываются достаточно сходными и основанными на одних и тех же молекулярных механизмах.

Все процессы в живом организме происходят вследствие химических реакций между молекулами белков, нуклеиновых кислот и другими молекулами, составляющими живой организм или поступающими в организм. Именно химические реакции и являются причиной механического движения живых организмов. Каким же образом?

Среди различных белков, составляющих организм, важную роль играют молекулы, получившие название белки–молекулярные моторы. Они химические превращения способны вызвать механическое движение. Характерным свойством таких молекул является способность изменять свою форму, т.е. взаиморасположение отдельных составляющих молекулы. Примером такого белка является миозин, молекула которого при наблюдении в электронный микроскоп видна как короткая толстая нить с утолщением — головкой на одном из концов. Эта головка способна поворачиваться относительно нити.

При повороте головка способна совершать механическую работу. Откуда берется энергия для такой работы? Ее поставляет молекула АТФ — универсальный источник энергии для клеток всех живых организмов.

Это доказывает исследование амебоидного движения, которое показало, что в прилежащем к наружной плазматической мембране амеб слое цитоплазмы имеется сеточка из нитей актина и миозина. Сокращение и расслабление этой сеточки фактически изменяет упругость наружной оболочки, в результате чего цитоплазма перетекает в область, где эта упругость меньше. В этой области образуется вырост — псевдоподия, которая закрепляется на окружающих амебу телах. Затем вещество амебы постепенно перекачивается в область, где закрепилась псевдоподия, после чего цикл повторяется. Подобный способ движения характерен также для лейкоцитов. Перемещаясь, как амебы, эти клетки скапливаются вокруг проникших в организм инородных объектов и нейтрализуют их вредное воздействие на организм.

Движение при помощи жгутиков и ресничек чрезвычайно распространено среди одноклеточных организмов. Изгибаясь, жгутики и реснички совершают сложное движение. Движение жгутика напоминает движение гребного винта. Движение реснички напоминает движение рук человека, плывущего брассом: вначале следует прямой удар ресничкой, затем она изгибается и медленно возвращается в исходное положение.

Жгутики и реснички не содержат мышц. Под микроскопом видно, что жгутики и реснички состоят из микротрубочек, образованных молекулами белков. К каждой микротрубочке прикреплены ручки, образованные белком — молекулярным мотором. А сам цикл движения состоит в том, что ручки микротрубочки цепляются за соседнюю микротрубочку, затем, изгибаясь, подтягивают соседнюю микротрубочку, после чего, отцепляясь, возвращаются в исходное положение. Таким образом, функцию актина в актин — миозиновом комплексе в данном случае выполняют микротрубочки. Если микротрубочки одним концом скреплены между собой, то при циклическом движении ручек происходит изгиб микротрубочек.

Вопрос 9. Почему в процессе эволюции в роли основных структурных элементов мембран стали выступать именно липиды, а не белки или углеводы?

Физико — химические свойства компонентов мембраны были тщательно подобраны в ходе эволюции так, чтобы:

• но в то же время осуществляла взаимодействие клетки с внешней средой, избирательно пропуская многие вещества;

• мембрана была функционально динамичной (микровязкость и фазовые переходы липидов позволяют это).

• создалась среда для протекания множества биохимических и энергетических процессов;

• создалась эффективная платформа для функционирования и взаимодействия мембранных белков.

• компоненты мембраны активно участвовали в процессах, протекающих в мембранах и клетке в целом.

Вопрос 10. Обсудите с одноклассниками, какие известные вам структуры клетки не входят в состав её цитоплазмы и почему.

Цитоплазма представляет собой полужидкую внутреннюю среду клетки, которую называют гиалоплазмой. Но в клетке есть структуры, которые не входят в состав её цитоплазмы, — это цитоскелет, клеточный центр и органоиды движения (реснички и жгутики). Эти структуры созданы тонкими белковыми нитями и микротрубочками. Также в состав цитоплазмы не входят цитоплазматическая мембрана и ядро. Потому что их функции кардинально отличаются от функций цитоплазмы. Так мембрана выполняет барьерную, структурную, защитную, регуляторную функции, а ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Цель: познакомиться с плазмолизом растительной клетки.

Оборудование: микроскоп, покровные и предметные стёкла, препаровальная игла, пипетка, фильтровальная бумага, репчатый лук.

Реактивы: вода, дистиллированная вода, раствор йода, 3 % — ный раствор хлорида натрия.

Ход работы:

1.Приготовьте временный препарат растительной клетки. Для этого отделите от кусочка луковицы мясистую чешуйку. Пинцетом снимите с внутренней стороны чешуйки тонкую плёнку. Положите кусочек плёнки на предметное стекло, нанесите на него каплю раствора йода и накройте покровным стеклом.

2. Рассмотрите препарат при малом, а затем при большом увеличении. Найдите клеточную стенку, окрашенное йодом ядро (возможно, и ядрышки), цитоплазму, неокрашенные вакуоли. Зарисуйте и подпишите увиденное.

Рассмотрите препарат при малом увеличении

На малом увеличении

Рассмотрите препарат при большом увеличении

На большом увеличении

4. Нанесите на один край покровного стекла 3 % — ный раствор хлорида натрия, а с противоположной стороны положите полоску фильтровальной бумаги, которая впитает часть воды. Наблюдайте за состоянием цитоплазмы в клетках (при большом увеличении). Вода из цитоплазмы клетки будет переходить в окружающую среду. Объём цитоплазмы при этом уменьшится, и она начнёт отходить от клеточных стенок. Постепенно цитоплазма примет форму шара. Это явление называют плазмолизом. Зарисуйте увиденное, объясните происходящий процесс.

Зарисуйте увиденное, объясните происходящий процесс.

Плазмолиз происходит в результате того, что под воздействием более концентрированного внешнего раствора вода выходит из клетки (изменяется осмотическое давление), наблюдается отхождение протоплазма от клеточных стенок, в результате потери вакуолями (уменьшаются в размерах) и протоплазмой части воды.

5. Добавьте под покровное стекло дистиллированную воду. Что происходит с цитоплазмой? Это явление называют деплазмолизом. Зарисуйте увиденное. Сделайте вывод.

Добавьте под покровное стекло дистиллированную воду. Что происходит с цитоплазмой? Это явление называют деплазмолизом. Зарисуйте увиденное. Сделайте вывод

Цитоплазма клеток насыщается водой и востанавливает исходное состояние.

Вывод: цитоплазма эластична, вследствие этого она способна в гипертоническом растворе отставать от оболочки клетки, а в гипотоническом вновь восстанавливать первоначальное положение. Мембрана полупроницаема: пропускает воду и не пропускает растворенные в ней вещества. Плазмолиз и деплазмолиз можно наблюдать только в живых клетках.

Читайте также: