Какие особенности строения отличают поперечно полосатую мышечную ткань от сердечной кратко

Обновлено: 06.07.2024

Ткань — сочетание похожих по строению клеток, выполняющих общие функции. Мышечная ткань в организме многоклеточного животного и человека отвечает за движения, механическую прочность и защиту внутренних органов. Ходьба, продвижение пищи, биение сердца — функции, выполняемые различными мышцами.

Строение и функции

Строение и функции мышечной ткани

Виды мышечной ткани

Строение

Функции

Расположение в организме

Поперечно-полосатая

Состоит из длинных и толстых волокон (рис. 1). Они образованы путем слияния отдельных клеток. Ядер много. Полосатая исчерченность вызвана чередованием светлых и темных дисков. Волокна объединяются в пучки.

Произвольные движения тела, дыхание, мимика лица и ряд других действий.

Основа скелетных мышц, языка, глотки, начальной части пищевода.

Гладкая

Отдельные веретеновидные клетки имеют небольшие размеры, объединены в пучки (по 5–10 шт.). В каждой клетке одно ядро (рис. 1). Тонкие миофибриллы протянулись между концами клетки. Ткань лишена поперечной полосатости.

Непроизвольные сокращения стенок внутренних органов с под влиянием нервных импульсов.

Мышечные слои кожи и внутренних органов (пищеварительной системы, мочевого пузыря, кровеносных и лимфатических сосудов, матки).

Поперечно-полосатая сердечная

Клетки удлиненные, разветвленной формы, с небольшим количеством ядер, образуют единую сеть (рис. 1). Поперечная полосатость возникает за счет блестящих полосок на соединениях между клетками.

Основная масса сердца.

Строение и месторасположение мышечных тканей

Рис. 1. Строение и месторасположение мышечных тканей

Мышечные ткани обеспечивает передвижение организма в пространстве. Сокращения мышц необходимы для изменения положения отдельных частей тела. Мышцы, помимо двигательной, выполняют защитную и теплообменную функции.

Свойства

Мышечное волокно растягивается, но в состоянии покоя возвращается к своим первоначальным размерам. Это свойство — результат взаимодействия белковых нитей миофибрилл в цитоплазме клеток. Каждая миофибрилла состоит из протофибрилл: тонких, образованных актином, и более толстых — из миозина.

Свойства мышечной ткани:

  • электрическая возбудимость;
  • сократимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Мышечная ткань способна к произвольным или непроизвольным сокращениям в ответ на нервные импульсы. Происходит взаимодействие фибриллярных белков — актина и миозина. В этом процессе обязательно участвуют неорганические ионы кальция. При сокращении тонкие нити актина скользят по толстым протофибриллам миозина.

Сравнительная характеристика видов мышечной ткани

В теле позвоночных животных и человека три типа мышечной ткани: поперечнополосатая, гладкая, сердечная. В организме низших животных мышцы состоят из гладкой ткани. У позвоночных животных и человека этот тип ткани образует стенки внутренних органов, кроме сердца (рис. 2).

Сравнение видов мышечной ткани

Рис. 2. Сравнение видов мышечной ткани

Гладкая мышечная ткань

Медленные и продолжительные сокращения мышц контролирует вегетативная нервная система. Задача таких движений — сохранить или изменить объем полых органов против сил растяжения. Гладкие мышцы сокращаются и растягиваются больше, чем другие типы мышечной ткани. Сокращение длится намного дольше, что связано со скоростью прохождения ионов кальция, регулирующих процесс.

Свойства гладких мышц:

  • сокращаются в 10–20 раз медленнее, чем скелетные;
  • способны к длительным сокращениям;
  • не затрачивают много энергии;
  • медленнее наступает утомление.

Сокращения гладкой мышечной ткани происходят непроизвольно, то есть независимо от воли человека. Сигнал нервной системы проходит через всю массу клеток, что объясняется особенностями иннервации гладкой мускулатуры.

Поперечнополосатая ткань

Клетки имеют толщину от 10 до 100 мкм, длину от 10 до 40 см. Цитоплазма содержит большое количество ядер и миофибрилл, занимающих центральное положение (рис. 2). В зрелых клетках насчитывается сотни миофибрилл, более 100 ядер. Актиновые и миозиновые нити внутри миофибрилл сцеплены друг с другом (рис. 3). Способность к быстрому сокращению у этой ткани выше, чем у других.

Строение скелетной мышцы

Рис. 3. Строение скелетной мышцы

Мышечные волокна покрыты оболочкой — сарколеммой. Есть чередующиеся пластинки белков разной плотности, обладающие неодинаковыми коэффициентами преломления света. В оптический микроскоп такие мышцы кажутся исчерченными поперек. Сократительные элементы объединены в мышечные пучки, покрытые соединительнотканной оболочкой. Скелетные мышцы хорошо снабжены кровеносными сосудами и нервами.

Поперечнополосатая сердечная ткань

Особые свойства сердечной мышцы обусловлены строением волокон. Клетки длиной до 100 мкм встречаются только в сердце, не сливаются, как в поперечнополосатой мышечной ткани (рис. 2). Расположение актина и миозина, диски в мышце сердца такие же, как в волокнах скелетной мышечной ткани. Отличительная особенность — наличие глянцевых полосок в местах соединения клеток. Благодаря соединению волокон в единую сеть, возбуждение на одном участке быстро охватывает мышечную массу, участвующую в сокращении.

Мышечная ткань сердца способна к автоматической работе. Между сокращениями наступает рефракторный период, когда мышца находится в покое. При сокращении происходит уменьшении просвета полостей сердца — предсердий и желудочков.

Сердечная поперечнополосатая ткань сокращается в 10–15 раз дольше, чем скелетные мышцы. В нормальных условиях у человека сокращение и расслабление происходит 70–80 раз в минуту. Сокращение вызывают электрические импульсы, возникающие в самом сердце. Этот процесс связан носителем энергии — аденозинтрифосфатом (АТФ).

Полностью автономная работа, непрерывная ритмическая активность — физиологические отличия сердечной мышцы от скелетных. Нервные импульсы вегетативной нервной системы, иннервирующей сердце, не требуются для бесперебойной работы органа.

Мышечные ткани - это ткани, для которых способность к сокращению является главным свойством. Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей).

Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов - коротких одноядерных клеток. Между клетками имеются межклеточные контакты - нексусы (лат. nexus - связь). Благодаря нексусам возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру мочевого пузыря), сокращается медленно, практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает - сокращается и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов - миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим).

Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.

Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.

Гладкая мускулатура

Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.

Скелетная (поперечнополосатая) мышечная ткань

Скелетная мышечная ткань образует диафрагму (дыхательную мышцу), мускулатуру туловища, конечностей, головы, голосовых связок.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер - миосимпластами. Миосимпласт (греч. sim - вместе + plast - образованный) представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметров (соответствует длине мышцы).

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой. Сократительные элементы - миофибриллы (лат. fibra - волоконце) - длинные тяжеобразные органеллы в миосимпласте (около 1400).

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани - поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы - саркомер.

Саркомер (от греч. sarco - мясо (мышца) + mere - маленький)

Саркомер - элементарная сократительная единица поперечнополосатых мышц, структурная единица миофибриллы. В состав саркомера (и миофибриллы в целом) входят миофиламенты (лат. filamentum - нить) двух типов, которые обеспечивают сократимость мышечной ткани.

Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином, что приводит к изменению конформации тропомиозина (тропонин и тропомиозин - регуляторные белки между нитями актина), за счет чего становится возможно соединение актина и миозина. При сокращении мышц выделяется тепло (сократительный термогенез).

Регуляторные белки тропонин и тропомиозин

Замечу, что трупное окоченение (лат. rigor mortis) - посмертное затвердевание мышц - связано именно с ионами кальция, которые устремляются в область низкой концентрации (в саркоплазму миосимпласта), способствуя связыванию актина и миозина.

После смерти в мышце перестает синтезироваться АТФ, ее уровень быстро снижается. Как следствие этого перестает функционировать Ca-АТФаза - насос, выкачивающий ионы Ca из саркоплазмы в саркоплазматический ретикулум (мембранная органелла мышечных клеток (сходная с ЭПС), в которой запасаются ионы Ca).

В саркоплазме повышается концентрация ионов Ca - замыкаются мостики между актином и миозином, однако разомкнуться они уже не могут, в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura - стягивание, сужение): конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние миосимпласты (волокна) не возбуждают друг друга, в отличие от гладких миоцитов, где возбуждение предается между соседними клетками через нексусы. Скелетные мышцы сокращаются быстро и быстро утомляются (у гладких мышц фазы сокращения и расслабления растянуты во времени, мало утомляются) .

Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Строение мышцы

Сердечная поперечнополосатая мышечная ткань

Миокард

Сердечная мышечная ткань состоит из кардиомиоцитов - одиночных клеток, имеющих поперечную исчерченность. Соединяясь друг с другом, кардиомиоциты образуют функциональные волокна.

Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство - автоматизм.

Автоматизм - способность сердечной мышечной ткани возбуждаться и сокращаться самопроизвольно, без влияний извне. Это легко можно подтвердить, наблюдая сокращения изолированного сердца лягушки в физиологическом растворе: сокращения сердца в нем будут продолжаться несколько десятков минут после отделения сердца от организма.

Автоматизм сердца, изолированное сердце лягушки сокращается

Места контактов соседних кардиомиоцитов - вставочные диски (в их составе находятся нексусы), благодаря которым возбуждение одной клетки передается на соседние, таким образом волнообразно охватываются возбуждением и сокращаются новые участки миокарда.

Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.

На рисунке или микропрепарате узнать данную ткань можно по центральному положению ядер в клетках, поперечной исчерченности, наличию вставочных дисков и анастомозов (греч. anastomosis - отверстие) - мест соединений боковых поверхностей функциональных волокон (кардиомиоцитов).

Сердечная мышечная ткань

В норме возбуждение проводится по проводящей системе сердца от предсердий к желудочкам (однонаправленно). Участок сердечной мышцы, в котором генерируются импульсы, определяющие частоту сердечных сокращений - водитель сердечного ритма.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker - задающий ритм) клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή - еда, пища) - в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό - под и δύνᾰμις - сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии (греч. а – "не" + trophe – питание). В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца - состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка - мезодермы.

Зародыш человека

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Виды мышечной ткани_Muskuļu audu veidi_Types of muscle tissue (1).jpg

Так, более интенсивная работа сердечной и скелетных мышц обусловила особенности строения поперечно-полосатой ткани в отличие от гладкой.

Поперечно-полосатая мышечная ткань состоит из развитых многоядерных мышечных волокон, имеющих поперечную исчерченность. Она способна к быстрому сокращению.

В сердечной мышце волокна в некоторых местах переплетаются, чтобы вся мышца могла быстро сокращаться.

Гладкая ткань образована короткими одноядерными мышечными волокнами, которые сокращаются очень медленно.

Поперечно-полосатая скелетная мускулатура отвечает за передвижение тела, мимику лица. Её сокращение имеет произвольный характер, то есть зависит от воли человека.

Гладкая мускулатура осуществляет непроизвольное сокращение внутренних органов, сужение и расширение сосудов независимо от воли человека.

Нервная ткань_Nerve tissue_Nervu audi.jpg

Нервная ткань обеспечивает передачу возбуждения от нервных окончаний (рецепторов) к центральной нервной системе, а от неё к органу.

Нейрон имеет тело, длинный отросток (аксон) и короткие отростки (дендриты). Между собой нейроны соединяются при помощи особых контактов — синапсов.

Движение является одной из главных характеристик живого организма, а мышцы играют в нем самую главную роль.

Выделяют три основные группы мышц в теле человека– скелетные, гладкие мышцы и мышцы сердца. И если первый вид подразумевает организацию двигательной функции, то сердечная и гладкие мышцы находятся внутри организма и призваны обеспечивать работу самых важных жизненных функций.
Несмотря на некоторую схожесть, гладкие мышцы имеют свою специфику и отличаются от мышц сердца.

Особенности строения гладких мышц

Мышцы данной группы находятся практически во всех важных внутренних органах, таких, как кишечник, желудок, матка, также они присутствуют в стенках сосудов, коже и глазах. Гладкая мускулатура выполняет непроизвольные движения, подчиняясь лишь автоматическим сигналам нервной системы.


Важной особенностью гладких мышц является их способность сохранять форму, измененную растяжением или деформацией, а также высокая пластичность, что немаловажно для работы внутренних органов.
Мышцы этой группы характеризуются самым медленным сокращением и расслаблением, которое может продолжаться до нескольких десятков секунд. Также они могут долгое время находиться в состоянии тонуса, практически не утомляясь.
Основные функции гладкой мускулатуры:

  • поддержание давления в полых внутренних органах (мочеточник, кишечник, матка);
  • сокращаясь, они обеспечивают естественную перистальтику органов и их опорожнение;
  • регулируют давление в кровеносных сосудах;
  • в органах зрения обеспечивают расширение и сужение зрачка;
  • расположенные на кожных покровах, они способствуют выделению подкожного жира.

Сердечные мышцы

Кровообращение – одна из наиболее важных физиологических функций человека, работа которой обеспечивается благодаря работе сердца, выступающего в качестве некого насоса, перекачивающего кровь по всему организму.

Физиологическими особенностями сердечной мышцы являются:
• автоматизм – возбуждение возникает вследствие процессов, протекающих внутри самой мышцы;
• растяжимость – увеличение длины мышцы не нарушает ее структуры;
• эластичность – способность восстанавливать исходную форму по окончании действия деформирующей силы.
Сердечные мышцы во многом схожи с гладкими. Роль и тех и других сложно переоценить. Будучи незаметными и неподвластными воле человека, они обеспечивают работу, пожалуй, самых жизненно важных органов.

Читайте также: