Какие функции выполняют клетки нейроглии биология 8 класс кратко

Обновлено: 05.07.2024

Секреторные нейроны. Нейроглия. Функции и состав нейроглии.

Секреторные нейроны. В некоторых ядрах переднего гипоталамуса головного мозга (например, в супраоптических и паравентрикулярных) имеются клеточные системы, состоящие из специализированных нейронов — крупных секреторных нейронов.

Последним присущи типичные для нейронов органеллы. Они подвергаются воздействию других нейронов через синаптические контакты. Однако их ответы наряду с деполяризацией мембран и освобождением нейромедиатора включают также выделение в кровь или тканевые жидкости пептидных нейрогормонов. По внешнему виду эти клетки сходны с мультиполярными нейронами.

Они имеют несколько коротких дендритов и один аксон. На дендритах и теле секреторных нейронов выявляются многочисленные синапсы — места переключения импульсов от нейронов, расположенных в ядерных центрах головного мозга. В цитоплазме и по ходу аксона секреторных нейронов определяются гранулы нейросекрета (например, окситоцин и вазопрессин). Гранулы нейросекрета выводятся в кровь или жидкость желудочков мозга. Секреторные нейроны гипоталамуса участвуют во взаимодействиях нервной и гуморальной систем регуляции.

секреторные нейроны

Нейроглия. В процессе развития тканей нервной системы из материала нервной трубки, а также нервного гребня происходит развитие глиобластов. Результатом глиобластической дифференцировки является образование нейроглиальных клеточных дифферонов. Они выполняют опорную, разграничительную, трофическую, секреторную, защитную и другие функции. Нейроглия создает постоянную, стабильную внутреннюю среду для нервной ткани, обеспечивая тканевый гомеостаз и нормальное функционирование нервных клеток. По строению и локализации клеток различают эпендимную глию, астроцитную глию и олигодендроглию. Нередко эти разновидности глии объединяют обобщенным понятием "макроглия".

Эпендимная глия имеет эпителиоидное строение. Она выстилает центральный канал спинного мозга и мозговые желудочки. В качестве эпендимного эпителия эта разновидность нейроглии относится к нейроглиальному типу эпителиальных тканей. Выпячивания мягкой оболочки мозга в просвет его желудочков покрыты эпендимоцитами кубической формы. Они принимают участие в образовании спинномозговой жидкости. В стенке Ш-го желудочка мозга находятся специализированные клетки — танициты, обеспечивающие связь между содержимым желудочка и кровью за счет ультрафильтрации элементов спинномозговой жидкости.

Астроцитная глия является опорной структурой (каркасом) спинного и головного мозга. В астроцитной глии различают два вида клеток: протоплазматические и волокнистые астроциты. Первые из них располагаются преимущественно в сером веществе мозга. Они имеют короткие и толстые, часто распластанные отростки. Вторые — находятся в белом веществе мозга. Волокнистые астроциты имеют многочисленные отростки, содержащие аргирофильные фибриллы. За счет этих фибрилл формируются глиальные остов и разграничительные мембраны в нервной системе, пограничные мембраны вокруг кровеносных сосудов и так называемые "ножки" астроцитных отростков на кровеносных сосудах.

Олигодендроглия состоит из различно дифференцированных клеток — олигодендроцитов. Они плотно окружают тела нейронов и их отростки на всем протяжении до концевых разветвлений. Есть несколько видов олигодендроцитов. В органах центральной нервной системы олигодендроглия представлена мелкими отростчатыми клетками, называемыми глиоцитами. Вокруг тел чувствительных нейронов спинномозговых ганглиев находятся глиоциты ганглия (мантийные глиоциты).

Отростки нервных клеток сопровождают нейролеммоциты, или шванновские клетки. Источник их развития в периферических нервах, по данным некоторых авторов, эктомезенхима нервного гребня.

Функции олигодендроглиоцитов многообразны и чрезвычайно важны для нормальной деятельности нервных клеток. Они обеспечивают трофику нейронов. В единой метаболической системе "нейрон-глия" происходит взаимообмен некоторыми ферментами, белками и РНК. Олигодендроциты играют существенную роль в процессах возбуждения и торможения нейронов и проведения по их отросткам нервных импульсов.

Так, нейролеммоциты совместно с отростками нейронов образуют миелиновые и безмиелиновые нервные волокона периферической нервной системы, выполняя при этом роль изоляторов, препятствующих рассеиванию импульсов. Олигодендроциты принимают участие в регуляции водно-солевого баланса в нервной системе. Они могут набухать, перераспределять ионы и т. д. Специализированные глиоциты нервных окончаний участвуют в процессах рецепции, а также в передаче нервного импульса на рабочие структуры.

Помимо макроглии в нервной системе есть еще микроглия. Источником ее развития является мезенхима, а клетки микроглии представляют собой глиальные макрофаги и относятся к нейроглии лишь на основании гистотопографии. Клетки микроглии могут размножаться, проявлять фагоцитарную активность, синтезировать не свойственные организму антигены, что наблюдается при некоторых заболеваниях.

Вопрос 1. Что называют тканью?
Ткань - система клеток и неклеточных образований, имеющих общее происхождение, строение и выполняющих в организме сходные функции.

Вопрос 2 Какие виды тканей вы знаете?.
Выделяют четыре основных группы тканей: эпителиальную, соединительную, мышечную и нервную.

Вопрос 3. Чем соединительная ткань отличается от эпителиальной?
Эпителиальные ткани состоят из тесно прилегающих друг к другу клеток. Межклеточного вещества мало. Эпителиальные ткани (эпителий) образуют покровы тела, а также слизистые оболочки всех внутренних органов и полостей. Эпителий образует также большинство желез. Он обладает высокой способностью к регенерации.
Соединительные ткани состоят из клеток и большого количества межклеточного вещества. Межклеточное вещество представлено основным веществом и волокнами коллагена или элластина. Соединительные ткани хорошо регенерируют.

Вопрос 4. Какие виды эпителиальной и соединительной ткани вы знаете?
К эпителиальным тканям относятся: плоский эпителий, кубический эпителий, мерцательный эпителий, цилиндрический эпителий, а также железистая ткань, вырабатывающая различные секреты (пот, слюну, желудочный сок, сок поджелудочной железы). К соединительным тканям относятся: опорные ткани хрящевая и костная, жидкая ткань — кровь, эластичная рыхлая соединительная ткань, разделяющая мышечные волокна, жировая ткань, плотная соединительная ткань, входящая в состав сухожилий.

Вопрос 5. Какими свойствами обладают клетки мышечной ткани — гладкой, поперечнополосатой, сердечной?
Мышечная ткань любого вида обладает такими свойствами, как возбудимость и сократимость.
Гладкая (неисчерченная) мышечная ткань обеспечивает работу кровеносных сосудов и внутренних органов, например желудка, кишечника, бронхов, т. е. органов, работающих помимо нашей воли, автоматически. С помощью гладких мышц изменяются размеры зрачка, кривизна хрусталика глаза и т.д.
Поперечнополосатая (исчерченная) мышечная ткань входит в состав скелетной мускулатуры, которая работает как рефлекторно, так и по нашей воле (произвольно), образует мышцы языка, глотки, верхней части пищевода.
Сердечная (слабоисчерченная) мышечная ткань тоже состоит из мышечных волокон, но они имеют ряд особенностей. Во-первых, здесь соседние мышечные волокна соединены между собой в сеть. Во-вторых, они имеют небольшое число ядер, расположенных в центре волокна. Благодаря такому строению возбуждение, возникшее в одном месте, быстро охватывает всю мышечную ткань, участвующую в сокращении.

Вопрос 6. Какие функции выполняют клетки нейроглии?
Нейроглия выполняет несколько функций. Одна из них барьерная. Все вещества из кровеносного сосуда поступают сначала в клетки нейроглии, которые пропускают к нейронам необходимые вещества и задерживают токсичные. Кроме этого, клетки нейроглии выполняют и опорную роль, механически поддерживая нейроны.

Вопрос 7. Каково строение и свойства нейронов?
Нейрон имеет тело, от которого отходят отростки — короткие, ветвящиеся дендриты и длинный отросток, разветвляющийся на конце, — аксон. Дендриты проводят нервные импульсы к телу нейрона, а аксон — от тела нейрона на другой нейрон или на рабочий орган. По количеству отростков нейроны делятся на мультиполярные — многоотростчатые нейроны (более трех отростков), биполярные — клетки с двумя отростками, униполярные нейроны — с одним отростком, который на некотором расстоянии от клетки раздваивается.

Вопрос 8. Каковы различия по строению и функциям между дендритами и аксонами?
Дендрит — отросток, передающий возбуждение к телу нейрона. Чаще всего у нейрона несколько коротких разветвленных дендритов. Однако бывают нейроны, у которых имеется только один длинный дендрит. Дендрит, как правило, не имеет белой миелиновой оболочки.
Аксон — это единственный длинный отросток нейрона, который передает информацию от тела нейрона к следующему нейрону или к рабочему органу. Аксон ветвится только на конце, образуя короткие веточки — терминали. Аксон обычно покрыт белой миелиновой оболочкой.

Вопрос 9. Что такое синапс?
Синапсами называются места контактов нервных клеток.

Кроме нейронов в ЦНС имеются клетки нейроглии.

Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты.

Нейроны и глиальные клетки разделены узкой (20 нМ) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами.

Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада.

Предполагают, что глия участвует в формирование условных рефлексов и памяти.

В нервную ткань, кроме нейронов, входят и клетки — спутницы нейронов — нейроглия (рис. 1.20). Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их примерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в периферической нервной системе) обхватывает участок нервного волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (цитоплазма при этом выдавливается). Таким образом, слои миелина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану.

Нейроглия выполняет также защитную функцию. Она заключается, во-первых, в том, что глиальные клетки (в основном астроциты) вместе с эпителиальными клетками капилляров образуют барьер между кровью и нейронами, не пропуская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоцитов. Осуществляя трофическую функцию, нейроглия снабжает нейроны питательными веществами, управляет водно-солевым обменом и т. п.


Рудольф Вирхов. 1856. Нервный клей.

Типы нейроглии:

А - протоплазматические астроциты ( в сером веществе),

Б - фиброзные астроциты (в белом веществе),

Нейроглия. Астроциты. Astrocytes:largest&most numerous

A silvered preparation of astrocytes, showing their many fine cytoplasmic processes. Notice their close association with the capillaries (the heavy black structures). Since astrocytes touch both cappillaries and neurons they are thought to play an intermediary role in the nutrition and metabolism of neurons.

Функции астроцитов:

- опора нервных клеток,

- восстановление нервных волокон при повреждении,

- изоляция и объединение нервных волокон,

- участие в процессах обмена веществ между капиллярами и нейронами,

- участие в процессах миграции нейронов в эбриогенезе.

Кроме нейронов в ЦНС имеются клетки нейроглии.

Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты.

Нейроны и глиальные клетки разделены узкой (20 нМ) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами.

Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада.

Предполагают, что глия участвует в формирование условных рефлексов и памяти.

В нервную ткань, кроме нейронов, входят и клетки — спутницы нейронов — нейроглия (рис. 1.20). Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их примерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в периферической нервной системе) обхватывает участок нервного волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (цитоплазма при этом выдавливается). Таким образом, слои миелина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану.




Нейроглия выполняет также защитную функцию. Она заключается, во-первых, в том, что глиальные клетки (в основном астроциты) вместе с эпителиальными клетками капилляров образуют барьер между кровью и нейронами, не пропуская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоцитов. Осуществляя трофическую функцию, нейроглия снабжает нейроны питательными веществами, управляет водно-солевым обменом и т. п.


Рудольф Вирхов. 1856. Нервный клей.

Типы нейроглии:

А - протоплазматические астроциты ( в сером веществе),

Б - фиброзные астроциты (в белом веществе),

Нейроглия. Астроциты. Astrocytes:largest&most numerous

A silvered preparation of astrocytes, showing their many fine cytoplasmic processes. Notice their close association with the capillaries (the heavy black structures). Since astrocytes touch both cappillaries and neurons they are thought to play an intermediary role in the nutrition and metabolism of neurons.

Информация носит справочный характер. Не занимайтесь самодиагностикой и самолечением. Обращайтесь ко врачу.

Строение нейроглии

Нейроглия – это часть нервной системы, представляет из себя ткань, которая окружает нейроны и защищает их. Являются вспомогательными клетками системы, но активно участвует в ее деятельности.

К функциям нейроглии относится защита нейронов и их капилляров, секреторная деятельность, участие в метаболизме и клеточном питании. По сути дела, нейроглия является средой, которая формирует условия для работы нейронов.

Виды и подвиды, функции глиальных клеток

Глии имеют следующие типы:

  1. Макроглию или глиоциты.
  2. Микроглию или глиальные макрофаги.

Строение нервной ткани

Глиоциты

К глиоцитам относятся:

Глиальные клетки

Эпендимоциты образуют защитный слой клеток, прежде всего, в канале спинного мозга, а также желудочках головного. Эти элементы органической субстанции образуются первыми в нервных трубках и на начальной стадии имеют функции опоры и разграничения.

Данные клетки снабжены небольшими ответвлениями в виде ресничек, которые помогают движению церебральной жидкости. По мере развития организма реснички теряются, оставаясь только на отдельных участках. На поверхности нервных волокон эпендимоциты формируют мембрану, которая отделяет ЦНС от других тканей организма.

Эпендимоциты - функции

Астроциты представляют из себя клетки с отростками, они похожи на изображение звезды. Бывают двух типов: протоплазматических и волокнистых (фиброзных).

Протоплазматические астроциты имеются исключительно в сером веществе мозговых тканей. Отростки у них короткие, но толстые, и обладают ответвлениями на концах. Имеют своей задачей разграничение и участие в обмене веществ.

Волокнистые астроциты составляют основу глии в белом веществе. Отростки у них длинные, благодаря им формируются волокна, поддерживающие мозговой аппарат. Концы этих видов астроцитов образуют пограничные мембраны. Кроме защиты нейронов, волокнистые астроциты обеспечивают метаболизм и питание клеток. Астроглия является одной из важнейших тканей, формирующих среду для функционирования головного мозга.

Астроцит - внешний вид

Самой большой группой глиоцитов являются олигодендроциты. Эта группа окружает нейроны как в центральной нервной системе, так и в периферической. Вырабатывая миелин, создает электроизолирующую оболочку.

При помощи олигодендроцитов происходит обмен воды и солей в клеточных образованиях, а также процессы разрушения и восстановления. Защитная и трофическая деятельность этих групп формирует поддержку для нейронов и доставляет им необходимое питание.

Олигодендроциты - строение

Микроглия

Микроглия представляет из себя сообщество клеток небольшого размера, с двумя-тремя отростками. На концах отростков выделяются небольшие разветвления. Клетки микроглии имеют способность к небольшим движениям по типу амёб.

В отличии от ядер клеток макроглии, которые имеют круглую или овальную формы, у микроглии они вытянутой или треугольной формы. При раздражении клетки способны втягивать отростки внутрь и округлять свою форму. В таком виде их называют зернистыми шарами.

Одним из свойств микроглии является участие в синтезе белков. Но основная функция – защита нейронов от попадания субстанций, способных нарушить деятельность нервной системы. Микроглия выполняет роль макрофагов, поглощая и разлагая все вредные вещества.

Три типа микроглии

Таким образом, строение и функции нейроглии заключаются в следующем:

Нейроглия не выполняет проводящих функций и не распространяет нервный сигнал, за это отвечают нейроны.

Для измерения количества разных видов ткани в нервной системе применяют нейроглиальный коэффициент.

Нейролиальный коэффициент — это процентное соотношение нейроглии и нейронов в центральной нервной системе. Так как нейроглия формирует среду для работы нейронов, то ее клеточный материал доминирует в системе и составляет до 90% всей массы.

Патологии

Центральная нервная система, как и любая другая ткань организма, может подвергаться повреждениям. Нейроглия испытывает патологические воздействия в первую очередь. Защитные функции позволяют принять удар на себя.

Все вирусы, способные воздействовать на нервную систему, начинают деятельность с изменения глии. В результате клетки дают доброкачественные новообразования, формируют кисты в спинном и головном мозге.

При сильном воздействии на микроглию начинает разрушаться миелиновая оболочка нейронов, что способствует возникновению таких тяжелых заболеваний как:

Разрушение защитного барьера глии приводит к тяжелым заболеваниям нервной системы и нарушениям работы головного мозга. Новейшие исследования в этой области позволяют надеяться на прорыв в лечении многих патологий, связанных органическими изменениями тканей нейроглии.

Нервная ткань — одна из четырех основных тканей многоклеточных животных и человека. Способна возбуждаться и передавать возбуждение посредством электрических импульсов и химических веществ. Нервная ткань обеспечивает наиболее сложную и точную регуляцию функций организма (в отличие от гормонов).

Нейроны: строение, виды и типы

Нервная ткань содержит клетки нервные клетки и нейроглию (рис. 1). Ткань образует головной и спинной мозг, нервные волокна и узлы. Нервная система отвечает за согласованную работу органов и систем органов, обеспечивает связь организма с окружающей средой.

Нервные клетки сетчатки лошади

Рис. 1. Нервные клетки сетчатки лошади

Нейрон — основная, высокоспециализированная клетка нервной ткани. Она осуществляет прием, обработку и передачу информации. Состоит из тела или сомы, в котором заключены ядро с основной массой цитоплазмы, и отростков. Диаметр тела нервной клетки составляет 15–150 мк или 0,001 мм.

Виды нейронов по количеству отростков (рис. 2):

  • биполярные;
  • униполярные;
  • мультиполярные;
  • псевдоуниполярные.

Виды нейронов.

Рис. 2. Виды нейронов

Тела нейронов сконцентрированы, главным образом, в сером веществе головного и спинного мозга. Длинные отростки тянутся на большие расстояния от места, где находятся нервные клетки с ядром. Длина аксона может достигать 1 м и более.

Составные части двигательного (мультиполярного) нейрона (рис. 3):

  1. Тело нервной клетки с расположенным в центре ядром.
  2. Короткие ветвящиеся отростки дендриты, несущие информацию к телу клетки.
  3. Длинный клеточный отросток аксон, несущий информацию от тела нейрона.
  4. Изолирующая миелиновая оболочка аксона из шванновских клеток (входят в состав нейроглии).
  5. Перехваты Ранвье — узкие промежутки, разделяющие шванновские клетки.
  6. Чувствительные окончания — рецепторы.

Строение нейрона

Рис. 3. Строение нейрона

Типы нейронов в зависимости от выполняемой функции

Основное название

Дополнительные названия

Функции

Проводят информацию об ощущении (импульс) от поверхности тела и внутренних органов в мозг.

Ассоциативные, связывающие, переключающие

Составляют около 99% всех нервных клеток, обрабатывают, анализируют информацию, вырабатывают решения.

Проводят импульс от головного и спинного мозга к исполнительным органам.

Нейроглия

Клетки нейроглии лежат между нейронами и выполняют роль опоры, защиты, питания нервной ткани. Они участвуют в образовании миелиновой оболочки нервных волокон (нервов). Оболочка состоит из шванновских клеток, заполненных жироподобным веществом.

Различают в составе нейроглии астроциты, имеющие звездчатую форму и небольшие размеры. Они имеют многочисленные отростки, входят в состав серого вещества мозга, участвуют в образовании гематоэнцефалического барьера.

Олигодендроциты отвечают за выполнение основных функций нейроглии — опоры, питания, изолирования и регенерации. Микроглия — клетки с 2– отростками, способные к фагоцитозу. Такие клеточные элементы нервной ткани обеспечивают защиту нейронов от чужеродных веществ и тел, удаляют продукты распада.

Нейроглия отличается от нейронов по ряду свойств. Вспомогательные клетки размножаются, но не способны возбуждаться, не образуют и не проводят импульсы. Формирование миелиновых оболочек с помощью шванновских клеток происходит постепенно в первые 3–10 лет жизни.

Свойства нервной ткани

Возбудимость и проводимость — характерные особенности нейронов. Информация передается по отросткам в виде электрических импульсов возбуждения (рис. 4). Это быстрые и кратковременные изменения электрического заряда наружной клеточной мембраны.

Передача возбуждения в нейронах

Рис. 4. Передача возбуждения в нейронах

  1. Аксон.
  2. Пресинаптическая мембрана.
  3. Синаптический пузырек.
  4. Синаптическая щель.
  5. Постсинаптическая мембрана.
  6. Рецепторы для медиатора.

При возбуждении нейрона импульс достигает окончания аксона. Медиатор выходит из пузырьков и передается через синаптическую щель аксону (дендриту, телу другой нервной клетки или другим клеткам организма). В этих соседних клетках возникает возбуждение или торможение.

Пучки аксонов в изолирующей оболочке образуют нервы. По этим волокнам распространяются нервные импульсы. Передача сигналов происходит только в одном направлении благодаря асимметричной конструкции синапса.

Нервная ткань способна выполнять сложные функции благодаря особому строению нервных клеток и наличию вспомогательных элементов, образующих нейроглию. Основные свойства ткани — раздражимость и возбудимость.

Читайте также: