Какие эксплуатационные свойства автомобиля зависят от трансмиссии и ее технического состояния кратко

Обновлено: 03.07.2024

Эксплуатационные свойства автомобилей связанные с движением.

Рациональное использование автомобилей с обеспечением безопасности движения определяется основными эксплуатационными свойствами подвижного состава, к которым относятся:

-грузоподъемность или вместимость;

-надежность и безопасность движения.

Грузоподъемность грузового или вместимость пассажирского автомобиля определяет максимальное количество груза или пассажиров, которое может быть перевезено на автомобиле за один рейс. При больших грузопотоках (пассажиропотоках) и крупных партиях грузов (групп пассажиров) грузоперевозки осуществляются автомобилями большой грузоподъемности (вместимости), что позволяет повысить производительность подвижного состава и снизить себестоимость перевозок.

При небольших партиях грузов и небольшом пассажиропотоке целесообразно использовать подвижной состав меньшей грузоподъемности или вместимости, чтобы избежать лишних расходов, связанных с неполной загрузкой автомобилей.

Тягово-скоростные свойства автомобиля определяют динамичность движения, то есть возможность перевозить грузы (пассажиров) с наибольшей средней скоростью. Они зависят от тяговых, тормозных свойств автомобиля и его проходимости — способности автомобиля преодолевать бездорожье и сложные участки дорог.

Тяговые свойства автомобиля характеризуются его максимальной скоростью, ускорением при трогании с места и максимальной величиной преодолеваемых подъемов. Все эти свойства зависят от мощности двигателя, передаточных отношений в трансмиссии и массы автомобиля.

Тормозные свойства автомобиля определяются значениями максимального замедления и длины тормозного пути. Эти свойства автомобиля зависят от устройства и технического состояния тормозных систем, типа и степени изношенности протекторов шин.

Динамические свойства автомобиля в немалой степени зависят от легкости управления — то есть от усилий, затрачиваемых водителем, и степени его утомляемости при управлении автомобилем, а также маневренности — возможности автомобиля осуществлять повороты и развороты на минимальной площади.

Топливная экономичность автомобиля оценивается по расходу топлива в литрах на 100 километров пробега, отнесенному к единице транспортной работы (т/км). В средних условиях эксплуатации расход топлива автомобилями должен укладываться в технически обоснованные нормы. Увеличение расхода горюче-смазочных материалов может быть вызвано тяжелыми условиями эксплуатации и ухудшением технического состояния подвижного состава. Для облегчения оценки технического состояния автомобилей заводами-изготовителями указывается контрольный расход топлива на ровной дороге с полной нагрузкой и при определенной скорости движения. Превышение контрольного расхода топлива при соблюдении этих условий будет свидетельствовать о неисправности или нарушении регулировок систем и механизмов автомобиля.

Надежность определяет способность автомобиля работать долгое время (долговечность) без неисправностей и отказов, без ремонта или замены деталей и механизмов. Надежность прежде всего зависит от конструкции автомобиля, качества материалов и соблюдения технологических процессов их обработки при изготовлении автомобиля. Большое влияние на долговечность и поддержание надежности автомобиля оказывают условия его эксплуатации и соблюдение правил технического содержания автомобиля.

Легкость управления определяется усилием, затрачиваемым водителем, и степенью его утомляемости при управлении автомобилем.

Безопасность движения зависит от надежности и эффективности действия рулевого управления, тормозных систем, устойчивости автомобиля и безотказной работы световой сигнализации, а также от строгого выполнения правил дорожного движения и правильного выбора водителем режима движения автомобиля в конкретных дорожных условиях.

Трансми́ссия (силовая передача) — в машиностроении совокупность сборочных единиц и механизмов, соединяющих двигатель (мотор) с ведущими колёсами транспортного средства (автомобиля) или рабочим органом станка, а также системы, обеспечивающие работу трансмиссии. В общем случае трансмиссия предназначена для передачи крутящего момента от двигателя к колёсам (рабочему органу), изменения тяговых усилий, скоростей и направления движения. Трансмиссия входит в состав силового агрегата.


Содержание

Состав

В состав трансмиссии автомобиля входят:

В состав трансмиссии гусеничных машин (например, танка) в общем случае входят:

Основные требования



К трансмиссиям транспортных средств предъявляются следующие требования:

  • обеспечение высоких тяговых качеств и скорости машины при прямолинейном движении и повороте;
  • простота и лёгкость управления, исключающие быструю утомляемость водителя;
  • высокая надёжность работы в течение длительного периода эксплуатации;
  • малые масса и габаритные размеры агрегатов;
  • простота (технологичность) в производстве, удобство в обслуживании при эксплуатации и ремонте;
  • высокий КПД;
  • в машинах высокого класса добавляется требование бесшумности.

Техническое обслуживание трансмиссии

Основные признаки неисправности:

  • пробуксовывание;
  • неполное выключение;
  • рывки во время движения с места;
  • шум в сцеплении во время движения;
  • заедание педали;
  • подтекание жидкости в соединениях привода сцепления.

Пробуксовывание сцепления может происходить из-за:

  • ограничения свободного хода педали вследствие неправильного регулирования или износа фрикционных накладок;
  • износ фрикционных накладок ведомого диска.

При этом крутящий момент от двигателя передаётся не полностью, ухудшается разгон автомобиля, замедляется трогание с места, а в случае большого пробуксовывания автомобиль остаётся неподвижным, даже если передача включена и педаль сцепления отпущена.

Устройство и работа автоматической коробки передач (АКП)

Автоматическая трансмиссия (или автоматическая коробка переключения передач) переключает передачи самостоятельно в зависимости от скорости автомобиля и обеспечивает водителю приятные и комфортные условия для вождения автомобиля. От водителя лишь требуется вручную выбрать направление движения машины: вперёд или назад.

Отдельно выделяют роботизированную трансмиссию, где разъединение сцепления и переключение передач также происходит автоматически, но отсутствует механизм плавного переключения передач — гидротрансформатор.

Пока наиболее эффективным (с точки зрения плавного изменения коэффициента редукции) считается вариатор. Но использование в нём резинового ремня возможно лишь с агрегатами небольшой мощности (например, мини-скутеры). Компания Audi разработала вариатор с металлическим ремнем в виде многорядной цепи. Однако, ввиду большой стоимости, трансмиссия такого легкового автомобиля оказалась неконкурентоспособной.

Гидротрансформатор (ГТ) (или torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач и состоит из следующих основных частей:

  • насосное колесо или насос (pump);
  • плита блокировки гидротрансформатора (lock — up piston);
  • турбинное колесо или турбина (turbine);
  • статор (stator);
  • обгонная муфта (one — way clutch).

Гидротрансформатор работает по принципу передачи движения через слой жидкости. Степень связи насосного колеса с турбинным можно плавно изменять. Этим занимается автоматика. Минусом такого устройства являются большие потери на перемешивание жидкости (низкий КПД), что не даёт возможности использовать его непосредственно в качестве основного редуктора, а лишь в качестве жидкостной муфты сцепления.

Классификация трансмиссий

По способу передачи и трансформирования момента трансмиссии делятся на механические, гидромеханические и электромеханические.

Механические трансмиссии

Механические трансмиссии — (простые и планетарные) в коробках передач содержат лишь шестерёнчатые и фрикционные устройства. Преимущества их состоят в высоком коэффициенте полезного действия (КПД), компактности и малой массе, надёжности в работе, относительной простоте в производстве и эксплуатации. Недостатком механической трансмиссии является ступенчатость изменения передаточных чисел, снижающая использование мощности двигателя. Большое время на переключение передач рычагом усложняет управление машиной. Поэтому спортивные автомобили, снабжённые механической трансмиссией, оборудуют электронными переключателями передач (подрулевыми лепестками, кнопками на руле и пр.) и коробками передач со сверхбыстрыми синхронизирующими сервомеханизмами.

Применение механических транисмиссий характерно для советского танкостроения (простые механические — Т-55, Т-62; планетарные с гидросервоуправлением — Т-64, Т-72, Т-80).

Гидромеханические трансмиссии

Гидромеханические трансмиссии имеют гидромеханическую коробку передач, в состав которой входят гидродинамический преобразователь момента (гидротрансформатор, комплексная гидропередача) и механический редуктор. Преимущества этих трансмиссий состоят в автоматическом изменении крутящего момента в зависимости от внешних сопротивлений, возможности автоматизации переключения передач и облегчении управления, фильтрации крутильных колебаний и снижении пиковых нагрузок, действующих на агрегаты трансмиссии и двигатель, и в повышении вследствие этого надёжности и долговечности поршневого двигателя и трансмиссии.

Основным недостатком этих трансмиссий является сравнительно низкий КПД из-за низкого КПД гидропередачи. При КПД гидропередачи не ниже 0,8 диапазон изменения момента не более трёх, что вынуждает иметь механический редуктор на три-пять передач, считая передачу заднего хода. Необходимо иметь специальную систему охлаждения и подпитки гидроагрегата, что увеличивает габариты моторно-трансмиссионного отделения. Без специальных автологов или фрикционов не обеспечиваются торможение двигателем и пуск его с буксира.

Электромеханические трансмиссии

Электромеханическая трансмиссия состоит из электрического генератора, тягового электродвигателя (или нескольких), электрической системы управления, соединительных кабелей. Основным достоинством электромеханических трансмиссий, является обеспечение наиболее широкого диапазона автоматического изменения крутящего момента и силы тяги, а также отсутствие жёсткой кинематической связи между агрегатами электротрансмиссии, что позволяет создать различные компоновочные схемы.

Недостатком, препятствующим широкому распространению электрических трансмиссий, являются относительно большие габариты, масса и стоимость (особенно если используются электрические машины постоянного тока), сниженный КПД (по сравнению с чисто механической). Однако, с развитием электротехнической промышленности, массовым распространением асинхронного, синхронного, вентильного, индукторного и др. видов электрического привода, открываются новые возможности для электромеханических трансмиссий.

Трансмиссия автомобиля. Автоматическая и механическая. В чем разница?

Машина состоит из нескольких основных узлов, которые дают возможность создавать и преобразовывать энергию, полученную от сгорания топлива, в крутящий момент и передавать ее на колеса. К этим основным узлам относится трансмиссия.

Что такое трансмиссия?

В машиностроении трансмиссией называют совокупность сборочных единиц и различных механизмов, которые предназначены для соединения двигателя внутреннего сгорания с ведущими колесами. При этом можно выделить несколько назначений этого механизма:

  1. Передача крутящего момента от двигателя автомобиля к ведущим колесам.
  2. Изменение тяговой силы.
  3. Изменение скорости.
  4. Изменение направления движения автомобиля.

Трансмиссия является одним из основных узлов, который определяет показатели автомобиля при движении: максимальную скорость, скорость разгона. Назначение трансмиссии определяет ее как важный элемент автомобиля, за которым нужно постоянно следить, проводить диагностику и своевременный ремонт.

Какие бывают трансмиссии?

На сегодняшний день существует большое количество различных видов трансмиссий, которые отличаются друг от друга эксплуатационными свойствами, надежностью и принципом функционирования. По основному принципу работы можно выделить следующие виды механизмов переключения скоростей в автомобиле:

  1. Ручная коробка передач – наиболее простой вариант исполнения, который характеризуется простотой конструкции, надежностью и длительным сроком службы. Однако именно то, что данный тип коробки передач требует участия человека в процессе переключения скоростей, привело к образованию основных правил управления автомобиля: правильное взаимодействие со сцеплением, правильное включение скоростей во время движения. Пример: на машинах ВАЗ 2109, да и вообще, на всех ВАЗах до 2000 года выпуска, как правило, стоит ручная коробка передач (механика).
  2. Автоматическая коробка передач – усовершенствованная система, которая не требует участия человека в переключении передач во время движения автомобиля. Это привело к тому, что на автомобилях с автоматической коробкой передач отсутствует педаль сцепления. Однако автоматическая трансмиссия очень дорога в обслуживании, требует постоянной диагностики, имеет меньшую степень надежности в сравнении с ручной КПП.
  3. Смешанный тип коробки передач – позволяет переключать коробку передач самостоятельно без необходимости нажатия сцепления. Чаще всего, подобная трансмиссия автомобиля устанавливается на гоночные версии транспортного средства, или идет как дополнительная опция.

Как правило, вид установленной коробки передач зависит от стоимости автомобиля, его года выпуска и класса.

Из чего состоит трансмиссия?

Из-за наличия большого количества функций у данного агрегата его устройство можно назвать сложным. Устройство трансмиссии выглядит следующим образом:

  1. Сцепление – позволяет переключать передачу без нанесения вреда механизму КПП.
  2. Коробка передач – узел, который обеспечивает возможность регулирования скорости и подаваемой мощности на ведущие колеса путем использования сочетания различных по величине шестерни. От данного узла зависят основные свойства трансмиссии.
  3. Главная передача.
  4. Дифференциал.
  5. Шарниры равных угловых скоростей.
  6. Приводные валы.

Стоит учесть, что у переднеприводных автомобилей главная передача и дифференциал расположены в картере коробки передач.

Принцип работы трансмиссии заключается в следующем:

При нажатии на педаль, водитель приводит в действие механизм сцепления, который связывает ведущие колеса с двигателем. Крутящий момент передается от коленчатого вала на приводные валы, а оттуда в дифференциал. С помощью системы шестерен крутящий момент меняет свое направление и передается непосредственно на колеса.

Механическая трансмиссия – наиболее распространенный тип, который отличается максимальной простотой функционирования, именно поэтому она используется на шестерках и прочих тазах, даже после тюнинга ВАЗ 2106.

Необходимым атрибутом МКПП является рычаг переключения передач, который установлен в салоне автомобиля. Это необходимо для того, чтобы при необходимости переключении передачи водитель смог выполнить действия в соответствии с ситуацией. При помощи специального механизма тяги во время движения рычага происходит движение по осям трансмиссии ее шестерни.

Сцепление позволяет автомобиля стоять неподвижно или плавно переключать передачу во время движения. Во всех автомобилях первая передача дает меньшую максимальную скорость, но большую тягу и мощность; последняя передача наоборот дает большую скорость, но меньшую мощность.

Устройство трансмиссии зависит от ее вида и других особенностей автомобиля. Ведь существую автоматические и полуавтоматические типы КПП, которые имеют различные дополнительные механизмы для обеспечения быстрого и плавного переключения скоростей. Стоит отметить, что в современных автомобилях из Германии для улучшения показателя разгона автомобиля до первой сотни на спидометре применяют двойное сцепление.

Трансмиссия, как и любой другой агрегат автомобиля, нуждается в периодической диагностике и восстановлении.

Найди готовую курсовую работу выполненное домашнее задание решённую задачу готовую лабораторную работу написанный реферат подготовленный доклад готовую ВКР готовую диссертацию готовую НИР готовый отчёт по практике готовые ответы полные лекции полные семинары заполненную рабочую тетрадь подготовленную презентацию переведённый текст написанное изложение написанное сочинение готовую статью

Частица массой находится в одномерном потенциальном поле в стационарном состоянии, описываемом волновой функцией , где и - постоянные ( ). Найдите энергию частицы и вид функции , если .

Квантовый гармонический осциллятор находится в основном состоянии. Найдите вероятность обнаружения частицы в области , где - амплитуда классических колебаний.

Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками, имеющими ширину . В каких точках интервала плотность вероятности обнаружения частицы одинакова для основного и второго возбуждённого состояний?

Частица массой находится в кубической потенциальной яме с абсолютно непроницаемыми стенками. Найдите длину ребра куба, если разность энергий 6-ого и 5-ого уровней равна . Чему равна кратность вырождения 6-ого и 5-ого уровней?

Частица массой находится в основном состоянии в двумерной квадратной потенциальной яме с бесконечно высокими стенками. Найдите энергию частицы, если максимальное значение плотности вероятности местонахождения частицы равно .

Частица находится в двумерной квадратной потенциальной яме с бесконечно высокими стенками во втором возбуждённом состоянии. Сторона ямы равна а. Определите вероятность нахождения частицы в области: а) ; б) ; в) .

Частица находится в двумерной прямоугольной потенциальной яме с бесконечно высокими стенками. Координаты x и y частицы лежат в пределах 0 50 руб.

Волновая функция основного состояния электрона в атоме водорода имеет вид , где - расстояние электрона до ядра, - первый радиус боровской орбиты. Определите наиболее вероятное расстояние электрона от ядра.

Пользуясь решением задачи о гармоническом осцилляторе, найдите энергетический спектр частицы массой в потенциальной яме вида Здесь , а - собственная частота гармонического осциллятора.

Оцените с помощью соотношения неопределённостей Гейзенберга неопределённость скорости электрона в атоме водорода, полагая размер атома . Сравните полученную величину со скоростью электрона на первой боровской орбите.

Оцените относительную ширину спектральной линии, если известны время жизни атома в возбуждённом состоянии и длина волны излучаемого фотона .

Найти плотность сепарированной нефти 1-го горизонта при температуре 64 оС, если плотность ее при 20 оС равна 854 кг/м3, и нефти 2-го горизонта при 82 оС, если плотность ее при 20 оС равна 886 кг/м3.

При прохождении нефтегазовой смеси через штуцер в сепараторе образуются капли нефти диаметром 65 мкм. Смесь находится под давлением 0,4 МПа при 305 К. Найти скорость осаждения капель нефти и определить пропускную способность вертикального гравитацион

На дожимной насосной станции (ДНС) в сепараторе первой ступени поддерживают давление 0,4 МПа. Длина сборного коллектора, идущего от АГЗУ до ДНС, 12 км и (внутренний) диаметр его 0,3 м, разность геодезических отметок 10 м. Сборный коллектор горизонтал

Рассчитать основные параметры процесса освоения скважины, методом замены жидкости, выбрать промывочную жидкость и необходимое оборудование. Составить схему размещения оборудования при освоении скважины. Скважина заполнена буровым раствором плотностью

1.1. Общие сведения

1.2. Измерители и показатели эксплуатационных свойств

1.3. Эксплуатационные свойства и конструкция автомобиля

1.4. Условия эксплуатации автомобиля

1.1. Общие сведения

Автомобиль обладает целым рядом эксплуатационных свойств (рисунок 1.1), которые составляют две группы, связанные и не свя­занные с движением автомобиля.

Эксплуатационными свойствами автомобиля называются свой­ства, характеризующие выполнение им транспортных и специ­альных работ: перевозки пассажиров, грузов и специального обо­рудования. Эти свойства определяют приспособленность автомо­биля к условиям эксплуатации, а также эффективность и удоб­ство его использования.

Рекомендуемые материалы

Привод цепного транспортера с 2-х ступенчатым соосным однопоточным редуктором с косозубыми передачами

Тягово-скоростные и тормозные свойства, топливная эконо­мичность, управляемость, поворачиваемость, маневренность, устойчивость, проходимость, плавность хода, экологичность и безопасность обеспечивают движение автомобилей и определяют его закономерности.

Вместимость, прочность, долговечность, приспособленность к техническому обслуживанию и ремонту, погрузочно-разгрузочным работам, посадке и высадке пассажиров во многом опреде­ляют эффективность и удобство использования автомобиля.

Что же представляют собой эксплуатационные свойства авто­мобиля? Дадим определения этим свойствам.

Тягово-скоростными называются свойства автомобиля, опреде­ляющие диапазоны изменения скоростей движения и максималь­ные ускорения разгона в различных дорожных условиях при рабо­те в тяговом режиме.

Тяговым называется режим движения автомобиля, при кото­ром от двигателя к ведущим колесам через трансмиссию подво­дятся мощность и крутящий момент, необходимые для движения.

Тормозными называются свойства автомобиля, определяющие максимальные замедления при торможении в различных дорож­ных условиях и обеспечивающие неподвижное удержание его от­носительно поверхности дороги.

Топливная экономичность — это свойство автомобиля, опреде­ляющее расходы топлива при выполнении транспортной работы.


Рисунок 1.1. Эксплуатационные свойства автомобиля

Управляемостью называется свойство автомобиля изменять или сохранять параметры движения при воздействии водителя на ру­левое управление.

Поворачиваемость представляет собой свойство автомобиля от­клоняться вследствие увода колес от направления движения, за­данного рулевым управлением.

Маневренностью называется свойство автомобиля поворачиваться на минимальной площади и вписываться в дорожные габариты.

Устойчивость — это свойство автомобиля сохранять направле­ние движения и противостоять силам, стремящимся вызвать за­нос или опрокидывание автомобиля.

Проходимостью называется свойство автомобиля двигаться по плохим дорогам и вне дорог. Проходимость характеризует степень уменьшения средней скорости движения и производительности автомобиля в указанных условиях по сравнению с хорошими до­рогами.

Плавность хода представляет собой свойство автомобиля обес­печивать защиту перевозимых пассажиров и грузов, а также систем и механизмов автомобиля от воздействия неровностей дороги.

Экологичность — это свойство автомобиля минимально загряз­нять окружающую среду отработавшими газами и шумом.

Безопасностью движения называется свойство автомобиля дви­гаться с наименьшей вероятностью возникновения дорожно-транспортных происшествий. Это комплексное эксплуатационное свой­ство, связанное с управляемостью, поворачиваемостью, манев­ренностью, устойчивостью и тормозными свойствами. Безопас­ность движения — важнейшее эксплуатационное свойство, от которого зависят жизнь и здоровье людей, сохранность автомоби­ля, грузов и других материальных ценностей.

Вместимость представляет собой свойство автомобиля, опре­деляющее количество грузов или пассажиров, которые могут быть перевезены одновременно.

Прочностью называется свойство автомобиля работать без по­ломок и неисправностей.

Долговечность — это свойство автомобиля работать без интен­сивного изнашивания отдельных деталей, механизмов и систем, вызывающего прекращение эксплуатации автомобиля.

Приспособленностью к техническому обслуживанию и ремонту называется свойство автомобиля, определяющее простоту и тру­доемкость этих работ, а также время простоя при их выполнении.

Приспособленность к погрузочно-разгрузочным работам представ­ляет собой свойство автомобиля обеспечивать выполнение этих работ с наименьшими затратами времени и труда.

Приспособленностью к посадке и высадке пассажиров называет­ся свойство автомобиля, характеризующее продолжительность остановки и удобство пассажиров при входе и выходе.

1.2. Измерители и показатели эксплуатационных свойств

автомобиля

Эксплуатационные свойства автомобиля оцениваются с помо­щью их измерителей и показателей. Измерителем эксплуатационного свойства называется едини­ца измерения, характеризующая это свойство с качественной сто­роны (например, скорость движения автомобиля).

Показателем эксплуатационного свойства называется число, определяющее величину измерителя этого свойства, его количе­ство (например, значение максимальной скорости автомобиля).

Измерители и показатели эксплуатационных свойств автомо­биля устанавливаются ГОСТами, стандартами и другими норма­тивными документами. Для определения показателей эксплуата­ционных свойств проводят испытания автомобиля.

1.3. Эксплуатационные свойства и конструкция автомобиля

Эксплуатационные свойства, обеспечивающие движение авто­мобиля, существенно зависят от конструкции и технического со­стояния автомобиля, его систем и механизмов. Чем совершеннее конструкция автомобиля и лучше его техническое состояние, тем выше эксплуатационные свойства автомобиля. Поэтому автомо­биль, его системы и механизмы конструируют таким образом, чтобы он имел определенные эксплуатационные свойства, требу­емые для заданных условий эксплуатации и обеспечивающие его эффективное использование.


Рисунок 1.2. Связь эксплуатационных свойств с системами и механизмами

На рисунке 1.2 показана связь эксплуатационных свойств с теми системами и механизмами автомобиля, конструкция и техничес­кое состояние которых оказывают наибольшее влияние на эти свой­ства.

1.4. Условия эксплуатации автомобиля

Свойства автомобиля, представленные на рисунке 1.1, наиболее полно проявляются в условиях эксплуатации.

Условиями эксплуатации автомобиля называются условия, в которых осуществляются перевозки пассажиров, грузов, специ­ального оборудования и которые характеризуются различными внешними факторами.

К условиям эксплуатации относятся дорожные, транспортные и природно-климатические условия.

Дорожные условия эксплуатации характеризуются рельефом местности, продольным профилем дороги и извилистостью в плане, шириной проезжей части, числом полос движения, ровнос­тью и прочностью дорожного покрытия, стабильностью состоя­ния дороги, интенсивностью, режимом и видом движения, а так­же помехами.

В лекции "Классификация рекламных средств" также много полезной информации.

Основой дорожных условий эксплуатации являются дороги, которые по назначению подразделяются на дороги общего пользо­вания, автомагистрали, внутрихозяйственные (сельские) и город­ские (улицы). Дорожные условия эксплуатации оказывают наи­большее влияние на эксплуатационные свойства автомобиля.

Транспортные условия эксплуатации характеризуются видом и количеством перевозимых грузов, дальностью перевозок, спосо­бами погрузки и выгрузки грузов, режимом работы, видом марш­рутов, условиями хранения, техническим обслуживанием и ре­монтом автомобиля.

Транспортные условия эксплуатации определяют специализа­цию автомобиля, которая обеспечивает максимальную приспо­собленность к перевозке определенного вида груза.

Природно-климатические условия эксплуатации характеризуют­ся температурой окружающего воздуха, атмосферным давлением и осадками (туман, дождь, снег).

Территория России включает в себя в основном зоны умерен­ного и холодного климата. В зоне умеренного климата сосредото­чена наибольшая часть подвижного состава автомобильного транс­порта страны. Все автомобили общего назначения и специализи­рованный подвижной состав приспособлены к перевозкам в этой зоне.

В зоне холодного климата зимой температура опускается до -50 °С и ниже, а продолжительность зимнего периода со снежным по­кровом в отдельных районах с суровым климатом составляет 200 — 280 дней в году. Для этой зоны должны выпускаться специальные автомобили в северном исполнении: с морозостойкими шинами, легко запускаемыми при низких температурах двигателями и т. п.

27. Назначение, типы и конструктивные особенности трансмиссий автомобилей

27.1. Назначение и классификация

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля. Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

Крутящий момент Мк (рис. 3.1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила Рт, которая направлена в сторону движения и является движущей силой автомобиля.

Тяговая сила Рт вызывает возникновение на ведущем мосту толкающей силы Рх,


Рис. 3.1. Движущие силы автомобиля

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомо­биль является соответственно переднеприводным, заднеприводным и полноприводным. На автомобилях применяются трансмиссии различных типов (рис. 3.2). Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.


Рис. 3.2. Классификация трансмиссий

Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Трансмиссия оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии: сцепления, главной передаче и дифференциала повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля. В трансмиссию входят, Рис. 3.3:


Рис. 106. Схема трансмиссии автомобиля:

I — сцепление; 2 — коробка передач; з — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуось

27.2. Механические ступенчатые и гидрообъемная трансмиссии.

В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим коле­сам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (рис. 3.3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии.

На автомобиле с колесной формулой 4x2, передним расположением двигателя и задними ведущими колесами (рис. 3.4, α ÷ в) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам.

Механические трансмиссии легковых автомобилей с колесной формулой 4x2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 3.4, б) или передние ведущие колеса и двигатель 1 спереди (рис. 3.4, в).


Рис. 3.4. Схемы механических трансмиссий автомобилей с различными

колесными формулами: α , б, в – 4x2 1- двигатель; 2 -сцепление; 3— коробка передач; 4— карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 — карданный шарнир;10 — раздаточная коробка;

11 — межосевой дифференциал

Трансмиссии (Рис.3.4.а) переднее расположение двигателя обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.

Трансмиссии (Рис.3.4.б) заднее расположение двигателя и трансмиссии обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях.

Трансмиссии (Рис.3.4.б,в) не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей. Такие трансмиссии улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки.

Механическая трансмиссия автомобиля с колесной формулой 4x4 с передним расположением двигателя 1 (рис. 3.4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами.


Рис. 3.4. Схемы механических трансмиссий автомобилей с различными колесными формулами г - 4x4: 1- двигатель; 2 -сцепление; 3— коробка передач; 4— карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 — карданныйшарнир;10 — раздаточная коробка;

11 — межосевой дифференциал

Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля. Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам.

У автомобилей с колесной формулой 6x4 (рис. 3.4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал. У автомобиля с колесной формулой 6x6 (рис. 3.4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11 распределяющий крутящий момент между ведущими мостами.


Рис. 3.4. д,е Схемы механических трансмиссий автомобилей с различны колесными формулами д,– 6x4; е–6 x 6: 1- двигатель; 2 -сцепление; 3— коробка передач; 4— карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 — карданный шарнир;10 — раздаточная коробка; 11 — межосевой дифференциал

Автомобили с колесной формулой 8*8 (рис. 3.4, ж) обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются управляемыми.


Рис. 3.4. Схемы механических трансмиссий автомобилей с различными

колесными формулами ж - 8x8:

При установке двух двигателей 1 трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе. По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8. 0,95.

Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя.

Гидрообъемная трансмиссия. Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля.

В гидрообъемной трансмиссии (рис. 3.5 над осью симметрии) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля.


Рис. 3.5. Схемы гидрообъемной (над осью симметрии) и электрической (под осью симметрии) трансмиссий: 1– двигатель; 2 — гидронасос; 3 — гидромотор;

4— электродвигатель; 5 — генератор

При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами. На рис. 3.6 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса.

Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7кривошип 5 и приводит во вращение ведущее колесо 6.


Рис. 3.6. Схема гидрообъемной передачи: 1 — двигатель; 2, 5 — кривошипы;

3, 7 — шатуны; 4, 8 — поршни; 6 —колесо; 9 — трубопровод

В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 3.6. Так, они включают в себя роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны).

Достоинством гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Благодаря гидрообъемной трансмиссии повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Гидрообъемная трансмиссия сложна в изготовлении и требует надежных уплотнений.

Электрическая трансмиссия. Такая трансмиссия представляет собой бесступенчатую передачу, в которой крутящий момент изменяется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя. В электрической трансмиссии (см. рис. 3.5 под осью симметрии) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля.

Ведущее колесо с установленным внутри электродвигателем 1 (рис. 3.7) называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи.


Рис. 3.7. Электромотор-колесо: 1 — электродвигатель; 2 — редуктор

Достоинством электрической трансмиссии является бесступенча­тое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результа­те повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагру­зок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако КПД электрической трансмиссии не превыша­ет 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механической транс­миссией повышается на 10. 20 %. Электрическая трансмиссия так­же имеет большую массу и высокую стоимость.

27.3. Гидромеханическая, электромеханическая трансмиссии.

Гидромеханическая трансмиссия. Такая комбинированная трансмиссия состоит из механизмов механической и гидравли­ческой трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3.3, в).


Рис. 3.8. Схема гидромеханической трансмиссии: 1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача;

5 — дифференциал; 6 — полуоси

В гидромеханическую трансмиссию (рис. 3.8) входят гидроме­ханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6.

Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, почти в 2 раза повышает дол­говечность двигателя и механизмов трансмиссии. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля.

Электромеханическая трансмиссия. Такая комбинированная трансмиссия состоит из элементов механической и электрической трансмиссий. На рис. 3.9 показана схема электромеханической трансмиссии автобуса большой вместимости.


Рис. 3.9. Схема электромеханической трансмиссии: 1 — электродвигатель;

2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор

Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие гене­ратор 5. Ток, вырабатываемый генератором, подводится к элект­родвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса.

Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличива­ется на 15. 20%), а также большие габаритные размеры и масса.

Трансмиссии автопоездов. Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь трансмиссии различного типа в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами.

Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую трансмиссию. Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др.) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

Читайте также: