Как зависят период и частота свободных колебаний маятника от его длины запишите выводы кратко

Обновлено: 30.06.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ЕЛАБУЖСКОЕ СУВОРОВСКОЕ ВОЕННОЕ УЧИЛИЩЕ

(Елабужское суворовское военное училище МВД России)

Цикл гуманитарных и

Учебный предмет: Физика

Начальник цикла Г и МД – преподаватель
подполковник внутренней службы

____________________ О.Н. Кузнецов

Учитель цикла Г и МД

____________________ Ермаков М.А.

____________________ Заплаткина О.В.

Учитель цикла Г и МД

____________________ Егорова В.В.

Методическая разработка обсуждена и одобрена на заседании цикла Г и МД. Протокол № 9 от 25 мая 2020 года

Актуальность темы

Цель работы. Оборудование

Цель : выяснить, как зависит период и частота свободных колебаний математического маятника от его длины.

Образовательные задачи урока:

Формирование или продолжение формирования и закрепления основных знаний и умений;

Формирование необходимых трудовых навыков, включающих в себя понимание учебного задания, самостоятельное продумывание плана и хода его выполнения, осуществление подготовки к работе и соблюдение намеченного плана работы;

Формирование необходимых навыков практического характера: проведение учебно-практических и лабораторных работ, расчетов, измерений и т.д.

Развивающие задачи урока:

Формирование и развитие умения рассуждать логично, излагать свои мысли четко и исчерпывающе, уметь наблюдать и на основании наблюдения делать выводы и обобщения;

Развитие умения самостоятельно и логично рассуждать, экспериментировать, устанавливать взаимосвязь между предметами и явлениями;

Формирование и развитие умений по итогу наблюдения или эксперимента делать обобщения и выводы, видеть конкретные проявления научных законов.

Воспитательные задачи урока:

Воспитание у учащихся ответственного отношения к учебе, ответственности за результаты своего учебного труда, соблюдение правил и техники безопасности;

Воспитание искреннего интереса к воспитательно-образовательной деятельности, получению новых знаний, расширению собственного кругозора, доброжелательного отношения с одноклассниками и педагогами;

Развитие основных навыков учебной деятельности и учебно-организационных умений.

Формы организации учебно-познавательной деятельности:

Методы организации и осуществления учебно-познавательной деятельности:

Предметными результатами обучения по данной теме являются:

— понимание и способность описывать и объяснять физические явления;

— знание и способность давать определения физических понятий;

— владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити.

Оборудование : штатив с муфтой и лапкой, шарик с нитью, секундомер (рис. 1).

hello_html_88c916d.jpg

Рис. 1. Оборудование

Для выполнения работы нам потребуется таблица. Таблица будет состоять из следующих частей:

Во-первых, нужно определить количество экспериментов. В данном случае их 5. По вертикали записаны те самые величины, которые мы будем измерять. В первую очередь, длина самого маятника в сантиметрах. Следующая величина – количество колебаний. Далее – полное время колебаний. Следующие две графы – это период колебаний , который измеряется в секундах, и частота в Гц. Обратите внимание, что мы заранее записали те величины, которые будем использовать. В первую очередь, это длина нитяного маятника. Начальная длина: 5 см – это очень короткий маятник. Дальше 20, 45, 80 и 125. Число колебаний мы будем использовать постоянное. Это 30 колебаний. В каждом эксперименте мы будем использовать по 30 колебаний.

Проведение серии экспериментов

Соберем экспериментальную установку. Установка состоит из шарика на нити. Нить продернута через ластик. Это сделано для того, чтобы можно было регулировать его длину. Обратите внимание, что сам ластик укреплен в лапке штатива.

Рис. 2. Грузик на нити, закрепленный в штативе

Для измерения длины будем использовать линейку. Итак, мы отсчитали 30 колебаний, и время, которое мы зарегистрировали, оказалось равным 13,2 с (рис. 3).

Рис. 3. Первый эксперимент с длиной нити 5 см

Заносим эти данные в таблицу и можем приступать к расчетам периода и частоты колебаний. Следующий шаг: увеличиваем длину маятника до 20 см. И весь эксперимент повторяем сначала. Вновь результаты заносим в таблицу. Итак, проведя наши эксперименты, мы получили конечные результаты и занесли их в таблицу.

Период колебаний: (с). Частота колебаний: (Гц), где – это время, а – количество колебаний, совершенных за время .

Обратите внимание: когда длина маятника составляла 5 см, 30 колебаний прошли за время 13,2 с. Период колебаний составил , а частота .

Следующий результат: те же 30 колебаний, но длина маятника была уже 20 см. В этом случае увеличилось время колебаний – 26,59 с, а период колебаний составил . Частота уменьшилась почти в 2 раза, обратите внимание: .

Если мы посмотрим на третий результат, то увидим, что длина маятника еще больше, период стал больше, а частота уменьшилась еще на некоторое значение. Следующий, четвертый и пятый, постарайтесь посчитать сами. Обратите внимание на то, как при этом будет меняться период и частота колебаний нашего нитяного маятника.

Для 4 и 5 экспериментов посчитайте частоту и период самостоятельно.

Табл. 1. Значения частоты и периода для первых трех экспериментов

Можно сделать вывод: с увеличением длины маятника увеличивается период колебаний и уменьшается частота (рис. 4). Хотелось бы, чтобы четвертый и пятый опыты вы проделали сами и убедились, что все действительно так, как мы получили в наших опытах.

Формула для вычисления периода колебания математического маятника: , где – длина маятника, а g – ускорение свободного падения.

Формула для вычисления частоты колебаний: .

Рис. 4. Зависимость частоты и периода маятника от его длины

На этом лабораторная работа заканчивается, но есть дополнительная часть к лабораторной работе – дальнейшее исследование колебаний.

Дополнительная часть лабораторной работы заключается в том, чтобы лучше определить взаимосвязь периода колебаний и длины нитяного маятника. Эта зависимость должна определяться математически. Цель дополнительного задания в том, чтобы выявить математическую зависимость между периодом и длиной маятника. Как это можно сделать? Нужно рассмотреть отношение периодов колебаний маятника и отношение длин маятника. Посмотрим на таблицу, которую используем, и обсудим те величины, которые будем туда заносить.

В первой части мы рассмотрим отношение периода из второго опыта, когда длина маятника составляла 20 см. Отношение мы будем искать к периоду, который получили, когда длина маятника составляла 5 см. Отношение самих длин мы рассмотрим в нижней строке. Итак, в верхней строке отношение периодов , в нижней строке отношение длин маятника . Все необходимые данные мы возьмем из предыдущей таблицы. Обратим внимание, что эти вычисления в некоторых случаях получатся приближенными, но это зависит уже от чистоты эксперимента. Если мы обратимся к первой строке, то увидим, что во всех экспериментах отношение периодов будет составлять:

Далее рассмотрим отношение длин маятников. Обратите внимание: в первом случае это отношение равно 4, т. е. . Во втором случае – 9. В третьем случае – 16. Видно сразу, как будут связаны эти величины. Посмотрите: в первом случае у нас 2 и 4. В другом случае – 3 и 9 и т. д.

Делаем вывод о том, что период будет пропорционален корню квадратному из длины маятника. Эту зависимость мы можем использовать в дальнейшем для анализа подобных колебаний:

Из этого следует, что период мы можем записать как .

Другими словами, если мы увеличиваем длину маятника в 4 раза, то период увеличится в 2 раза. Если увеличим длину маятника в 3 раза, то увеличится период в раз. И т. д. В этом и заключается результат лабораторной работы.

Домашнее задание

Что такое математический маятник? Запишите формулу для периода такого маятника.

Один математический маятник имеет период 10 с, а другой – период 6 с. Определите период колебаний третьего математического маятника, длина которого равна разности длин указанных маятников.

Длина математического маятника 25 см. Определите период и частоту его колебаний на Земле.

Список литературы

Перышкин, А. В. Физика : 9 класс : учебник / А. В. Перышкин, Е. М. Гутник. — М.: Дрофа, 2017.

Маятник — твердое тело, которое совершает под действием приложенных сил механические колебания около неподвижной точки или оси.

Простейший маятник состоит из небольшого груза массой m, подвешенного на невесомой нити или тонком стержне длиной l и совершающего колебания под воздействием земного притяжения. Если нить считать нерастяжимой, размер груза незначительным по сравнению с длиной нити, а массу нити незначительной по сравнению с массой груза, то груз можно считать материальной точкой массой m, находящейся на постоянном расстоянии l от точки подвеса. Такой маятник называют математическим.

Определение модели системы

Математические модели динамических систем часто используют для анализа самых разных технических, социально-экономических, естественнонаучных систем, в которых происходят циклические процессы.
Существуют различные классификации динамических процессов. Одна из них изображена на схеме:
φ , тогда время t, за которое плоскость колебаний маятника совершает полный оборот, окажется равно

Отсюда следует, что если бы Земля не вращалась, данного эффекта просто не существовало бы. Это обстоятельство указывает на то, что причиной неинерциальности земной системы отсчета является вращение планеты.

Центробежное ускорение на экваторе равно 0 , 034 м / с 2 . По сравнению с экваториальным ускорением свободного падения g = 9 , 78 м / с 2 это величина малая, но она заметно влияет на изменение веса тела на экваторе по сравнению с его весом на полюсе. Если, например, взвешивать на пружинных весах тело массой 10 кг, то уменьшение веса на экваторе за счет действия центробежной силы составит около 35 г.

Период колебаний математического маятника

Период колебаний — время, за которое происходит одно полное колебание. В СИ измеряется в секундах.

Чему равен, от чего зависит частота

Если за время t совершается N колебаний, то период, обозначаемый буквой T, равен

где v — частота колебаний. Она обратно пропорциональна периоду.
Колебания можно изобразить в виде графика:

g — ускорение свободного падения. Не зависит от амплитуды колебаний и массы груза.

Циклическая частота — число колебаний, которые система совершает за 2 π секунды. Также циклическую частоту называют угловой, круговой или радиальной. Кратко ее записывают греческой буквой ω . Она позволяет упростить расчеты с использованием радианов, так как при ее введении сокращаются множители 2 π .

В случае математического маятника она определяется длиной подвеса и ускорением свободного падения:

Для физического маятника в уравнение добавляются инерция и масса подвеса:

Для пружинного маятника частоту определяет жесткость пружины k:

Уравнения движения и их решение, формулы с примерами

Математический маятник — это материальная точка, имеющая массу m и подвешенная на нити с неизменяемой длиной l. Покидая положение равновесия, подвес совершает колебательные движения по дуге.

M = - m g × l sin α .

Угол отклонения мал, поэтому мы учитываем только то, что он отрицателен. Синус угла α считаем приблизительно равным α . Тогда:

m l 2 × α ' ' = - m g l α ;

Это дает нам дифференциальное уравнение гармонических колебаний

Из уравнения следует, что при малых углах отклонения от положения равновесия маятник будет колебаться с периодом

T = 2 π ω = 2 π l g .

Все кинематические характеристики движения меняются по гармоническим законам, т. е. по закону синуса или косинуса. Рассмотрим, от чего зависят константы амплитуды А и начальной фазы движения φ 0 .
Амплитуда колебаний определяется энергией, переданной маятнику при отклонении от положения равновесия. В случае пружинного маятника в крайнем положении скорость груза и кинетическая энергия равны нулю, полная энергия состоит только из потенциальной энергии:

E п о л н а я = k A 2 2 .

Из этого следует, что

А = 2 E п о л н а я k .

Начальная фаза зависит от того, как маятник вывели из положения равновесия. Рассмотрим ситуацию, в которой маятник отклонили от положения равновесия на расстояние А и отпустили без начальной скорости. Запишем уравнение движения колеблющегося тела с учетом того факта, что в начальный момент координата тела будет равна А:

x = A × cos ω t + φ 0 ;

x ( 0 ) = A × cos ω × 0 + φ 0 = A × cos φ 0 = А ⇒ cos φ 0 = 1 ⇒ φ 0 = 1 .

Уравнение движения маятника:

Если маятник толкнули, когда он находился в положении равновесия, начальная координата колеблющейся точки будет равна нулю:

x ( 0 ) = A × cos ω × 0 + φ 0 = A × cos φ 0 = 0 ⇒ cos φ 0 = 0 ⇒ φ 0 = ± π 2 .

Уравнение движения маятника:

x ( 0 ) = A × cos ω t ± π 2 = ± A × sin ω t .

Рассмотрим задачи, для которых требуется составлять и решать уравнения движения.

Необходимо определить амплитуду и частоту колебаний точки, если известно, что при смещении точки от положения равновесия на 5 см ее скорость равна 6 см/с, а при смещении на 3 см — 10 см/с.

x = A × cos ω t + φ 0 v x = x ' = - A ω × sin ω t + φ 0

Исключаем время из системы:

x = A × cos ω t + φ 0 v x = x ' = - A ω × sin ω t + φ 0 ⇒ x = A × cos ω t + φ 0 v x ω = - A × sin ω t + φ 0 ⇒ x 2 = A 2 × cos 2 ω t + φ 0 v 2 ω 2 = A 2 × sin 2 ω t + φ 0

x 2 + v 2 ω 2 = А 2 .

x 2 А 2 + v 2 v 2 m a x = 1 .

x 1 2 + v 1 2 ω 2 = А 2 x 2 2 + v 2 2 ω 2 = А 2

Преобразовав выражения и подставив значения, данные в условиях задачи, получаем:

ω = v 2 2 - v 1 2 x 1 2 - x 2 2 = 2 c - 1 ;

A = x 1 2 v 2 2 - x 2 2 v 1 2 v 1 2 - v 2 2 ≈ 5 , 57 с м ;

v = ω 2 π ≈ 0 , 32 Г ц .

Необходимо вычислить циклическую частоту колебаний точки, если известно, что при скорости 13 см/с ускорение равнялось 6 с м / с 2 , а при уменьшении скорости до 12 см/с произошло увеличение ускорения до 10 с м / с 2 .

Решение:
Координата точки меняется по закону

Запишем уравнения скорости и ускорения точки:

v x = - A × ω × sin ω t a x = - A × ω 2 × cos ω t ⇒ v x A ω = - sin ω t a x A ω 2 = - cos ω t ⇒ v 2 ω 2 + a 2 ω 4 = A 2 .

Преобразуем уравнение, исключив из него А, и подставим значения, данные в условиях задачи:

ω = a 2 2 - a 1 2 v 1 2 - v 2 2 = 1 , 6 c - 1 .

Практическое применение математического маятника

С помощью математического моделирования динамических систем можно обнаружить схожесть динамических процессов в реальных физических, технических, биологических, химических и социально-экономических системах. Разработка моделей, позволяющих предсказывать время и другие характеристики периодических процессов в этих системах, является эффективным способом анализировать, например, сельскохозяйственные или производственно-экономические процессы.

Читайте также: