Как выращивают чипы кратко

Обновлено: 02.07.2024


Специфика производства

Производство микрочипов – дело сложное, так как состоит из пяти основных этапов, каждый из которых включает множество мелких операций. Начинается все с механической обработки полупроводниковых пластин (чаще всего кремниевых), которые должны соответствовать высочайшим стандартам качества: правильная геометрия и кристаллографическая ориентация, а также стопроцентная чистота поверхности.

Чистота достигается путем тщательной химической обработки (жидкостным или газовым травлением), чтобы удалить поврежденный слой полупроводника, если таковой имеется. Очищенные пластины могут быть как заготовками для дальнейшего производства, так и всего лишь подложками.

Обыкновенное чудо: превращение песка в полупроводниковые микрочипы

На втором этапе наращивают слой полупроводника (опять-таки кремния) путем осаждения атомов на подложку. Так формируют новый слой полупроводника, по своей кристаллической структуре напоминающий подложку. Наращенный слой полупроводника легируют для защиты от последующих примесей.

Третий этап подразумевает фотолитографию рельефа на пластине, а затем добавление электрически активных примесей для разделения кремния на p- и n-зоны. Делается это методом термической диффузии фосфора и бора в слой кристаллического кремния.

На четвертом этапе формируют контакты и пассивные элементы на полупроводниковой пластине. Путем вакуумного напыления тончайшего слоя металла создают дорожки, а добавлением оксидов специальных сплавов – резисторы и конденсаторы.

На завершающем этапе полупроводниковые пластины тестируют зондовыми головками на специальных установках, после чего разрезают на отдельные кристаллы. К кристаллам крепятся контакты и все это вместе упаковывается в герметичный корпус. Готовые чипы еще раз тестируют, чтобы избежать попадания брака в продажу.

Intel (Санта-Клара, штат Калифорния, США)

В 1989 году Intel сумела первой среди производителей полупроводников преодолеть психологический рубеж в 1 мкм: с 1,5-мкм техпроцесса она перешла сразу на 0,8 мкм. И вот уже два десятилетия Intel, следуя закону Мура, с интервалом в два года переходит на новые, более утонченные нормы производства.

Заводов во владении компании Intel полтора десятка, причем разбросаны они по всему миру: США, Китай, Ирландия, Израиль. Покупая участок земли, Intel заведомо берет больше, чем нужно для строительства одного завода, чтобы в будущем достроить рядом дополнительные производственные мощности. Старейшие из нынче действующих заводов Intel – Fab 25 в городе Остин (штат Техас, США) и Fab 10 в Лейкслип (Ирландия) – были введены в эксплуатацию еще в 1994 году.

Производственный комплекс Intel (заводы Fab 10, Fab 14 и Fab 24) в Ирландии

Производственный комплекс Intel (заводы Fab 10, Fab 14 и Fab 24) в Ирландии

Новенький завод Intel D1X в Хиллсборо

Новенький завод Intel D1X в Хиллсборо

А вот в китайском городе Далянь у Intel всего лишь один завод под названием Fab 68, да и выпускаются на нем чипы, так сказать, не первой свежести – 65-нм. Выпускать в других странах чипы по новейшему техпроцессу, и соответственно подвергать научные разработки риску утечки, компании Intel строго-настрого запретили власти США.

На заводе Intel кипит работа

На заводе Intel кипит работа

Долгое время Intel выпускала на принадлежащих ей фабриках исключительно собственные процессоры и чипсеты. Но времена меняются и поговаривают, что вскоре заводы Intel откроют двери всем желающим. Первым же возможным заказчиком Intel называют американского гиганта сетевого оборудования Cisco.

TSMC (Синьчжу, Тайвань)

Если Intel является крупнейшим производителем полупроводников в мире, то TSMC (Taiwan Semiconductor Manufacturing Company) – крупнейшим контрактным производителем. Все производственные линии загружены сторонними заказами, тогда как под своим брендом компания чипы не выпускает. Лишь на некоторых чипах, помимо названия заказчика, проставляется крохотный, еле заметный логотип TSMC.

Завод TSMC Fab 6 в Синьчжу

Завод TSMC Fab 6 в Синьчжу

Оборудование на заводе TSMC

Оборудование на заводе TSMC

Samsung (Сеул, Южная Корея)

Компания Intel является примером производителя полупроводников, который штампует чипы исключительно для себя, а TSMC – наоборот только на сторону. Нейтральную же позицию заняла южнокорейская компания Samsung, которая помимо чипов оперативной памяти успевает производить ARM-процессоры не только для себя (линейка Exynos), но и для Apple (A5 и A6). Это при том что заводов у Samsung всего лишь два: Line-16 в городе Хвасон (Южная Корея) и S2 в Остине (штат Техас, США).

Производственные линии Samsung

Производственные линии Samsung

UMC (Синьчжу, Тайвань)

Второй по величине тайваньский производитель полупроводников UMC (United Microelectronics Corporation) построил свои заводы точно там же, где TSMC – в Парке науки и промышленности города Синьчжу. Видимо, власти Тайваня сумели создать действительно благоприятный инвестиционный климат. Пожалуй, самым известным клиентом UMC является компания Qualcomm, которая разместила на тайваньских фабриках крупный заказ на производство мобильных процессоров Snapdragon.

Завод UMC в Синьчжу

Завод UMC в Синьчжу

IBM (Армонк, штат Нью-Йорк, США)

В 1980-х и начале 1990-х годов IBM наравне с Intel проводили революции на рынке полупроводников – планку 0,8 мкм, а затем и 0,6 мкм компании взяли почти синхронно. Спустя два десятилетия IBM работает исключительно в серверном сегменте рынка ПК, что впрочем не мешает ей выпускать процессоры POWER на собственных производственных линиях. В отличие от исследовательских лабораторий, которые разбросаны по всему миру, заводов у IBM осталось всего два и оба находятся в США: Building 323 в городе Ист-Фишкилл (штат Нью-Йорк) и Burlington Fab в Эссекс-Джанкшн (штат Вермонт).

Завод IBM в Сан-Хосе, который в 1960 году посетил король Таиланда, больше не функционирует

Завод IBM в Сан-Хосе, который в 1960 году посетил король Таиланда, больше не функционирует

GlobalFoundries (Милпитас, штат Калифорния, США)

В 2009 году в процессе реорганизации бизнеса от компании AMD отделили подразделение, которое занималось непосредственно производством полупроводников, и превратили его в самостоятельное предприятие под названием GlobalFoundries. По наследству GlobalFoundries перешли восемь заводов в США, Германии и Сингапуре. Самые большие заказы GlobalFoundries получает от компаний AMD и IBM. А недавно клиентом GlobalFoundries стала Qualcomm, которой производственных мощностей UMC, видимо, оказалось мало.

Рабочий день на заводе GlobalFoundries в немецком городе Дрезден

Рабочий день на заводе GlobalFoundries в немецком городе Дрезден

STMicroelectronics (Женева, Швейцария)

Корпорация STMicroelectronics появилась в 1987 году в результате слияния итальянской компании Generale Semiconduttori и французской Thomson Semiconducteurs. Позже к STMicroelectronics присоединились и другие компании: британская Inmos, канадская Nortel и микроэлектронное подразделение Alcatel. Заводы STMicroelectronics находятся в Италии (города Катанья и Аграте-Брианца), а также во Франции (Кроль и Руссе). Выпускает STMicroelectronics контроллеры и сенсоры, которые применяются в измерительных приборах, медицинском оборудовании, наземном и воздушном транспорте.

Завод STMicroelectronics

Завод STMicroelectronics

Итоги

Но в этом-то и заключается главная особенность современной индустрии микрочипов: одни придумывают, а другие штампуют. В результате работа находится и для одних, и для других.

В последние годы к стадии возможности использования в коммерческом производстве подошел целый ряд технологий, позволяющих заметно увеличить скорость работы транзисторов, либо столько же заметно уменьшить размер чипа без перехода на более тонкий технологический процесс. Некоторые из этих технологий уже начали применяться в течение последних месяцев, их названия упоминаются в новостях, относящихся к компьютерам, все чаще. Эта статья – попытка сделать краткий обзор подобных технологий, попытавшись заглянуть в самое ближайшее возможное будущее чипов, находящихся в наших компьютерах.


Первая интегральная схема, где соединения между транзисторами сделаны прямо на подложке, была сделана более 40 лет назад. За это время технология их производства претерпела ряд больших и малых улучшений, пройдя от первой схемы Джека Килби до сегодняшних центральных процессоров, состоящих из десятков миллионов транзисторов, хотя для серверных процессоров впору уже говорить о сотнях миллионов.

Здесь пойдет речь о некоторых последних технологиях в этой области, таких, как медные проводники в чипах, SiGe, SOI, перовскиты. Но сначала необходимо в общих чертах затронуть традиционный процесс производства чипов из кремниевых пластин. Нет необходимости описывать процесс превращения песка в пластины, поскольку все эти технологии не имеют к столь базовым шагам никакого отношения, поэтому начнем с того, что мы уже имеем кремниевую пластину, диаметр которой на большинстве сегодняшних фабрик, использующих современные технологии, составляет 20 см. Ближайшим шагом на ее превращении в чипы становится процесс окисления ее поверхности, покрытия ее пленкой окислов — SiO2, являющейся прекрасным изолятором и защитой поверхности пластины при литографии.

Дальше на пластину наносится еще один защитный слой, на этот раз — светочувствительный, и происходит одна из ключевых операций — удаление в определенных местах ненужных участков его и пленки окислов с поверхности пластины, до обнажения чистого кремния, с помощью фотолитографии.

На первом этапе пластину с нанесённой на её поверхность плёнкой светочувствительного слоя помещают в установку экспонирования, которая по сути работает как фотоувеличитель. В качестве негатива здесь используется прецизионная маска — квадратная пластина кварцевого стекла покрытая плёнкой хрома там, где требуется. Хромированные и открытые участки образуют изображение одного слоя одного чипа в масштабе 1:5. По специальным знакам, заранее сформированным на поверхности пластины, установка автоматически выравнивает пластину, настраивает фокус и засвечивает светочувствительный слой через маску и систему линз с уменьшением так, что на пластине получается изображение кристалла в масштабе 1:1. Затем пластина сдвигается, экспонируется следующий кристалл и так далее, пока не обработаются все чипы на пластине. Сама маска тоже формируется фотохимическим способом, только засвечивание светочувствительного слоя при формировании маски происходит по программе электронным лучом примерно также, как в телевизионном кинескопе.

В результате засвечивания химический состав тех участков светочувствительного слоя, которые попали под прозрачные области фотомаски, меняется. Что дает возможность удалить их с помощью соответствующих химикатов или других методов, вроде плазмы или рентгеновских лучей.

После чего аналогичной процедуре (уже с использованием других веществ, разумеется) подвергается и слой окислов на поверхности пластины. И снова, опять же, уже новыми химикатами, снимается светочувствительный слой:

Поверхность пластины тщательно очищается, чтобы вместе с примесями в кремний не попали лишние вещества, после чего она попадает в камеру для высокотемпературной обработки и на нее, в том или ином агрегатном состоянии, с использованием ионизации или без, наносится небольшое количество требуемых примесей. После чего, при температуре порядка от 700 до 1400 градусов, происходит процесс диффузии, проникновения требуемых элементов в кремний на его открытых в процессе литографии участках. В результате на поверхности пластины получаются участки с нужными свойствами. И в конце этого этапа на их поверхность наносится все та же защитная пленка из окисла кремния, толщиной порядка одного микрона.

Все. Осталось только проложить по поверхности чипа металлические соединения (сегодня для этой роли обычно используется алюминий, а соединения сегодня обычно расположены в 6 слоев), и дело сделано. В общих чертах, так в результате и получается, к примеру, классический МОП транзистор: при наличии напряжения на затворе начинается перемещение электронов между измененными областями кремния.

Теперь, слегка пробежавшись по классическому процессу создания сегодняшних чипов, можно более уверенно перейти к обзору технологий, которые предполагают внести определенные коррективы в эту картину.

Медные соединения



IBM, техпроцесс CMOS 7S, первая медная технология, начавшая применяться при коммерческом производстве чипов

Первая из них, уже начавшая широко внедряться в коммерческое производство — это замена на последнем этапе алюминия на медь. Медь является лучшим проводником, чем алюминий (удельное сопротивление 0,0175 против 0,028 ом*мм2/м), что, в полном соответствии с законами физики, позволяет уменьшить сечение межкомпонентных соединений. Вполне своевременно, учитывая постоянное движение индустрии в сторону уменьшения размеров транзисторов и увеличения плотности их размещения на чипе, когда использование алюминия начинает становиться невозможным. Индустрия начала сталкиваться с этой проблемой уже в первой половине 90-х. Вдобавок, что толку в ускорении самих транзисторов, если соединения между ними будут съедать весь прирост скорости?

Проблемой при переходе на медь являлось то, что алюминий куда лучше образует контакт с кремнием. Однако после не одного десятка лет исследований, ученым удалось найти принцип создания сверхтонкой разделительной области между кремниевой подложкой и медными проводниками, предотвращающей диффузию этих двух материалов.

По данным IBM, применение в технологическом процессе меди вместо алюминия, позволяет добиться снижения себестоимости примерно на 20-30 процентов за счет снижения площади чипа. Их технология CMOS 7S, использующая медные соединения, позволяет создавать чипы, содержащие до 150-200 миллионов транзисторов. И, наконец, просто увеличение производительности чипа (до 40 процентов) за счет меньшего сопротивления проводников.

IBM начала предлагать клиентам эту технологию в начале 98 года, в конце этого года своим заказчикам предложили использовать медь при производстве их чипов TSMC и UMC, AMD начинает выпуск медных Athlon в начале 2000 года, Intel переходит на медь в 2002 году, одновременно с переходом на 0.13 мкм техпроцесс.

Соединения — соединениями, но уже на скорости чипа в несколько ГГц перестает справляться с нагрузкой сама кремниевая подложка. И если для традиционных областей применения чипов кремния пока достаточно, в области беспроводной связи уже давно дефицит на дешевые скоростные чипы. Кремний — дешево, но медленно, арсенид галлия — быстро, но дорого. Решением здесь стало использование в качестве материала для подложек соединения двух основ полупроводниковой индустрии — кремния с германием, SiGe. Практические результаты по этой технологии стали появляться с конца 80-х годов. Первый биполярный транзистор, созданный с использованием SiGe (когда германий используется как материал для базы), был продемонстрирован в 1987 году. В 1992 году уже появилась возможность применения при производстве чипов с SiGe транзисторами стандартной технологии КМОП с разрешением 0.25 мкм.

Результатом применения становится увеличение скорости чипов в 2-4 раза по сравнению с той, что может быть достигнута путем использования кремния, во столько же снижается и их энергопотребление. При этом, в ход вступает все тот же решающий фактор — стоимость: SiGe чипы можно производить на тех же линиях, которые используются при производстве чипов на базе обычных кремниевых пластин, таким образом отпадает необходимость в дорогом переоснащении производственного оборудования. По информации IBM, потенциальная скорость транзистора (не чипа!) с их технологией составляет сегодня 45-50 ГГц (что далеко не рекорд), ведутся работы над увеличением этой цифры до 120 ГГц. Впрочем, в ближайшие годы прихода SiGe в компьютер ждать не стоит — при тех скоростях, что потребуется PC чипам в ближайшем будущем вполне хватает кремния, легированного такими технологиями, как медные соединения или SOI.

Кремний на изоляторе (silicon-on-insulator, SOI)

Еще одна технология, позволяющая достаточно безболезненно повысить скорость чипов, не требуя от производителей отказаться от всех их сегодняшних наработок. Как и технология медных соединений, SOI позволяет создателям чипов убить двух зайцев одним выстрелом — поднять скорость, до 25 процентов, одновременно снизив энергопотребление. Что из себя представляет эта технология? Вспомним начало обработки кремниевой пластины — она покрывается тонкой пленкой окисла кремния. А в SOI к этому бутерброду добавляется еще один элемент — сверху опять наносится тонкий слой кремния:

Вот и получается — кремний на изоляторе. Зачем это понадобилось? Чтобы уменьшить емкость. В идеале МОП транзистор должен выключаться, как только будет исчезнет питание с затвора (или наоборот, появится, в случае с КМОП). Но наш мир далеко не идеален, это справедливо и в данном конкретном случае. На время срабатывания транзистора напрямую влияет емкость области между между измененными участками кремния, через которую и идет ток при включении транзистора. Он начинает и заканчивает идти не мгновенно, а только после, соответственно, зарядки и разрядки этой промежуточной зоны. Понятно, что чем меньше это время, тем быстрее работает транзистор, можно сказать, что тем меньше его инерция. Для того и придумана SOI — при наличии между измененными участками и основной массой кремния тонкой пластинки изолирующего вещества (окисел кремния, стекло, и т.д.), этот вопрос снимается и транзистор начинает работать заметно быстрее.

Основная сложность в данном случае, как и в случае с медными соединениями, заключается в разных физических свойствах вещества. Кремний, используемый в подложке — кристалл, пленка окислов — нет, и закрепить на ее поверхности, или же не поверхности другого изолятора еще один слой кристаллического кремния весьма трудно. Вот как раз проблема создания идеального слоя и заняла весьма много времени. Не так давно IBM уже продемонстрировала процессоры PowerPC и чипы SRAM, созданные с использованием этой технологии, просигнализировав этим о том, что SOI подошла к стадии возможности коммерческого применения. Совсем недавно, IBM объявила о том, что она достигла возможности сочетать SOI и медные соединения на одном чипе, пользуясь плюсами обеих технологий. Тем не менее, пока что никто кроме нее не заявил публично о намерении использовать эту технологию при производстве чипов, хотя о чем-то подобном речь идет.

Перовскиты

Поиски замены на роль изолирующей пленки на поверхности подложки идут давно, учитывая, что как и алюминий, диоксид кремния начинает сдавать в последнее время — при постоянном увеличении плотности транзисторов на чипе необходимо уменьшать толщину его изолирующего слоя, а этому есть предел, поставленный его электрическими свойствами, который уже довольно близок. Однако пока, несмотря на все попытки, SiO2 по прежнему находится на своем месте. В свое время IBM, предполагала использовать в этой роли полиамид, теперь пришла очередь Motorola выступить со своим вариантом — перовскиты.

Этот класс минералов в природе встречается довольно редко — Танзания, Бразилия и Канада, но может выращиваться искусственно. Кристаллы перовскитов отличаются очень высокими диэлектрическими свойствами: использованный Motorola титанат стронция превосходит по этому параметру диоксид кремния более чем на порядок. А это позволяет в три-четыре раза снизить толщину транзисторов по сравнению с использованием традиционного подхода. Что, в свою очередь, позволяет значительно снизить ток утечки, давая возможность заметно увеличить плотность транзисторов на чипе, одновременно сильно уменьшая его энергопотребление.

Пока что эта технология находится в достаточно ранней стадии разработки, однако Motorola уже продемонстрировала возможность нанесения пленки перовскитов на поверхность стандартной 20 см кремниевой пластины, а также рабочий КМОП транзистор, созданный на базе этой технологии.

В данной статье мы постараемся многое рассказать о процессе изготовления современных процессоров. Забегая вперед, стоит отметить, что производство чипов – дело сложное и затратное, но также и весьма интересное.


Выбор сырья и начало производства

Полученную заготовку обязательно необходимо проверить на чистоту, а также правильность размещения решетки из молекул. Для этого активно применяются не только рентгеноскопические, но и разнообразные химические исследования. Если с кристаллом все хорошо, то его отправляют на физическую обработку. Речь идет о специальной установке, которая способна эффективно резать кремний, чтобы получились 1-миллиметровые пластины. После нарезки потребуется полировка материала, так как проволочная пила все-таки оставляет небольшие микродефекты на поверхности, а и ничего подобного быть не должно.

Чистота как залог успеха

Производители процессоров строят огромные стерильные цеха, чтобы пыль никак не могла проникнуть внутрь таких помещений. Цех не только должен быть полностью изолированным, но и иметь продвинутую систему очистки воздуха. Профессиональные кондиционеры и прогрессивные конструкции для воздушной очистки делают подобные помещения невероятно стерильными. Так, по чистоте воздуха такие производственные сооружения в тысячи раз опережают даже палаты в хирургических отделениях.

Потрясающая стерильность достигается путем как воздушной очистки, так и нахождения работников в перчатках, масках и специальных костюмах. Более того, последние тенденции в отношении тотальной роботизации повысило уровень стерильности до каких-то сумасшедших показателей. Но и процент брака благодаря промышленным роботам стал заметно ниже. Все это на фоне того, что даже единственной микроскопической пылинки достаточно, чтобы испортить будущий процессор.

Что же представляет собой эта технологическая цепочка, благодаря которой идеально ровный кусок кремния чудесным образом превращается в продвинутый процессор для наших гаджетов и приборов? Тут бытует очень много догадок и размышлений, потому что никто из крупнейших производителей в лице Intel, Qualcomm и AMD не собирается раскрывать собственные секреты. Для начала конструкторы и инженеры компании-изготовителя должны создать 3D-схемы с взаимным расположением всех элементов чипа. Это по-настоящему сложный процесс, требующий особого подхода.

После этого на кремниевую подложку наносятся многочисленные элементы, разделенные на отдельные слои с множеством уровней. Так как данный процесс является чрезвычайно тонким, то его невозможно осуществить вручную. Поэтому изготовление процессоров полностью автоматизировано. Стоит отметить, что технический процесс постоянно совершенствуется, а нанометры все уменьшаются и уменьшаются, позволяя микрочипам с каждым годом бить рекорды производительности.

Когда слои будут нанесены на подложку, а также соединены при помощи атомов меди с возможностью пропускания тока, то остается проверить чип на работоспособность. Примечательно, что на прилавки магазинов могут попадать только на 100% качественные процессоры. Для этого роботизированные машины тщательным образом выбирают, а потом вырезают из общей пластины полностью работоспособные чипы. Происходит сортировка по частотам, энергоэффективности и другим параметрам.


Косметические процедуры

Финишная прямая в процессе изготовления заключается в приклеивании подложки к микросхеме. Для этого конструкция направляется в печь, нагретую до 360-градусной температуры. Когда процессор остывает, то на него одевается крышка, чтобы достаточно хрупкий кремень был надежно защищен.

Вот так мы получаем микрочипы, благодаря которым функционируют наши смартфоны, ноутбуки, планшеты, компьютеры, телевизоры и многие другие электрические устройства.

tag. * * If you do not want to deal with the intricities of the noscript * section, delete the tag (from ). On * average, the noscript tag is called from less than 1% of internet * users. */-->

tag. * * If you do not want to deal with the intricities of the noscript * section, delete the tag (from ). On * average, the noscript tag is called from less than 1% of internet * users. */-->

Политехникум


Производство микропроцессоров 1: от песка до кремния


Василий Панюшкин


1. Получение кремния из кварца

Кремний – второй по распространенности элемент в земной коре после кислорода[i]. По массе он составляет 27.7% земной коры. В природе он обычно встречается в виде сложных силикатов, то есть соединений оксида кремния с оксидами металлов, составляющих до 90% массы земной коры, а также, более редко, в виде чистого SiO2, кварца, Рис. 1[ii]. Тот же диоксид кремния, только мелкокристаллический, является основным компонентом обычного песка.


Именно переработкой такого песка и получают кремний, используемый в промышленности. Самым распространенным современным методом получения элементного кремния является восстановление диоксида кремния коксом в дуговых электрических печах, Рис. 2[iii]:


Смесь песка с коксом поступает в кратер печи, где она нагревается до 2000°С электрической дугой, образующейся между углеродными электродами. При таких температурах углерод кокса и электродов взаимодействует с оксидом кремния, превращаясь в газообразный монооксид углерода, и восстанавливает песок до элементного кремния:

SiO2 + 2C → Si + 2CO

Получающийся расплавленный кремний стекает через специальное отверстие внизу печи. После первичной очистки от шлака и газов, кремнию дают остыть, а потом дробят до нужного размера. В результате, в зависимости от используемых на производстве методов очистки, получается кремний либо технической (95 – 98%)[iv] либо металлургической (98 – 99.9%) чистоты, Рис. 3[v]. Основными примесями в получаемом кремнии являются углерод и другие элементы, содержавшиеся в исходном кремнеземе, такие как бор, фосфор, алюминий¸ железо[vi].


Главным побочным продуктом такого процесса является раскаленная смесь монооксида углерода и паров кремния. После выхода из печи полученные газы охлаждают, нагревая водяной пар, который далее используется для генерации электроэнергии, значительно снижая затраты на производство. Охлажденные же газы фильтруют, конденсируя кремниевые пары и получая дополнительно еще около 300 кг кремниевого конденсата на каждую тонну произведенного металлического кремния[vii].

2. Очистка технического кремния через силаны

Большая часть кремния технической чистоты используется далее в металлургических производствах, в качестве компонента сплавов, например, бронзы, при выплавке чугуна и сталей, а также в качестве легирующего элемента или модификатора свойств металлов. Только небольшая часть металлургического кремния очищается дальше для использования в полупроводниковой промышленности.

Очистка такого кремния происходит следующим образом. Измельченный в порошок металлургический кремний смешивают с соляной кислотой в отсутствие воды при 300 °С в специальном реакторе и получают трихлорсилан SiHCl3.

В ходе этой реакции такие примеси, как Fe, Al, и B, образуют свои галоидные соединения (FeCl3, AlCl3, и BCl3). Низкая температура кипения SiHCl3, составляющая 31.8°С, используется для его очистки от примесей дистилляцией. В получившемся таким образом SiHCl3 концентрация электрически активных примесей, таких как Al, P, B, Fe, Cu или Au, составляет меньше одного атома на миллиард атомов кремния[viii].

Для восстановления кремния в технологиях, использующих трихлорсилан, в основном применяется Сименс-процесс (называемый так из-за того, что в свое время был разработан компанией Siemens): в протоке смеси газообразных силанов и водорода на поверхности нагретых до 650−1300°С кремниевых стержней (либо крошек в кипящем слое) происходит восстановление силана и осаждение свободного кремния[ix].

Эта реакция протекает в больших вакуумных камерах в течение 200−300 часов, в результате чего образуются бруски ультрачистого поликристаллического кремния диаметром 150−200 мм, Рис. 4[x]. Образующиеся в ходе реакции газообразные продукты уносятся протоком непрореагировавшей парогазовой смеси и после очистки и разделения могут быть использованы повторно.


Также иногда применяют другие модификации этого метода, использующие разложение силана SiH4, тетрахлорсилана SiCl4 или других галогенидов кремния, таких как фторид SiF4. Они бывают удобными для удаления некоторых специфических примесей, а также, благодаря различным температурам кипения разных силанов, могут быть более выгодными по энергоемкости и материалоемкости по сравнению с Сименс-процессом[xi]. Тем не менее, на сегодняшний день основным методом получения поликристаллического кремния является именно восстановление трихлорсилана.

3. Получение монокристаллического кремния

Самым известным методом получения монокристаллического кремния высокой чистоты является метод Чохральского[xiv].

Метод был разработан польским химиком Яном Чохральским и первоначально использовался им для измерения степени кристаллизации металлов (олово, цинк, свинец).

Выращивание монокристаллов методом Чохральского происходит следующим образом, Рис. 5[xvi]:


  1. Дробленый поликристаллический кремний (шихту) закладывают в кварцевый тигель.
  2. В установке создается атмосфера с необходимыми параметрами. Для монокристаллического кремния – это нейтральная аргоновая атмосфера с давлением не более чем 1/25 атмосферного. Изменяя давление и состав атмосферы можно регулировать содержание летучих легирующих компонентов в получающемся монокристалле.
  3. Навеска шихты нагревается до температуры порядка 1500 ˚С, расплавляется, при этом подвод энергии ведется преимущественно снизу и с боков контейнера. Плавление и дальнейшее выдерживание расплавленного кремния производится в соответствии с определенными условиями, необходимыми для стабилизации потоков и равномерного распределения температуры.
  4. Далее затравочный монокристалл, закрепленный на подвеске, опускают вниз и приводят в контакт с поверхностью расплава, где он оплавляется для удаления дефектов и обеспечения равномерного роста кристалла.
  5. После этого начинается вытягивание кристалла наверх в холодную зону, Рис. 6. Размер получаемого кристалла регулируют, изменяя температуру расплава и скорость вытягивания. Также нужно учитывать, что при выращивании кристаллов из тигля происходит загрязнение расплава материалом тигля. Так, для кремния, выращиваемого из кварцевого тигля, главными загрязняющими элементами будут содержащиеся в кварце кислород, бор, фосфор, алюминий и железо. С другой стороны, в расплав также можно добавлять и легирующие компоненты, изменяющие в нужную сторону полупроводниковые свойства получаемого монокристалла. Интересно, что примесный кислород, попадающий в кристалл из кварца тигля, предотвращает загрязнение монокристалла атомами металлов, негативно влияющих на полупроводниковые свойства кремния, а также увеличивает его прочность.


Для обеспечения более равномерного распределения температуры и примесей по объему расплава затравочный кристалл и тигель с расплавом вращают, причем обычно в противоположных направлениях. Несмотря на это, вращения в заведомо неоднородно нагретой среде всегда приводят к появлению на поверхности слитка мелкой винтовой нарезки. Более того, в случае неблагоприятных условий роста, помимо винтовой нарезки на поверхности, сам слиток может начать расти в форме штопора. Аналогичная картина и с распределением примесей: несмотря на вращения, вдоль фронта кристаллизации всегда остается неподвижная область расплава переменной толщины, в которой перенос примесей осуществляется медленно, исключительно за счет диффузии. Это обусловливает неравномерность распределения компонентов расплава по диаметру слитка.

С другой стороны, метод Чохральского отличается наличием большого объема расплава, который по мере роста слитка постепенно уменьшается за счет формирования монокристалла. При росте кристалла расплав постепенно обедняется компонентами, интенсивно встраивающимися в кристалл, и обогащается компонентами, оттесняемыми при росте кристалла. По мере роста концентрации компонента в расплаве его концентрация повышается и в кристалле, поэтому распределение компонентов по длине слитка неравномерно (для кристаллов кремния характерно повышение концентраций углерода и легирующих примесей к концу слитка).

  1. После вытягивания кристалла нужного размера, температуру повышают, скорость вытягивания увеличивают, в результате кристалл сужается, после чего производится отрыв слитка от расплава и его постепенное охлаждение.

Все режимные параметры каждого из этапов процесса являются, как правило, ноу-хау конкретного производителя. В результате получаются цилиндрические слитки моно- или поликристаллической структуры с диаметром до 40 см, Рис. 7.


Несмотря на то, что метод Чохральского повсеместно используется для выращивания подложек в промышленных масштабах, полученный с его помощью кремний обладает некоторыми недостатками, которые не желательны, если ваша цель — максимально возможный КПД, как, например, в лабораториях или при изготовлении элементов для солнечных батарей.

Подложки Чохральского содержат большое количество кислорода. Кислород уменьшает время жизни неосновных носителей заряда, таким образом снижая напряжение, ток и КПД. Кроме того, при больших температурах кислород или соединения кислорода с другими веществами могут стать активными, что делает подложки чувствительными к высокотемпературной обработке. Чтобы избавиться от этих проблем, используют метод зонной плавки[xvii].

Обработке таким методом, как и в случае с методом Чохральского, подвергается поликристаллический кремний солнечного или электронного качества, полученный в результате силановой очистки. Суть метода заключается в том, что область, расплавленная с помощью индукционной катушки, медленно движется вдоль поликристаллического кремниевого слитка, Рис. 8. Примеси при этом не кристаллизируются, а концентрируются в расплавленной области. Также из-за отсутствия примесей в пройденной области, слиток может формировать идеальный монокристалл, если в его начало поместить затравочный кристалл для инициации направленного роста. Таким образом, после прохождения катушки, примеси оказываются собранными в одной части получившегося монокристалла, которую потом удаляют[xviii].


После этого выращенные монокристаллы кремния подвергаются механической обработке. Как правило, механическая обработка слитков кремния ведется с использованием алмазного инструмента: ленточных пил, пильных дисков, шлифовальных профилированных и непрофилированных дисков, чаш. На текущий момент в оборудовании наблюдается постепенный переход с ленточных пил на проволочную резку алмазно-импрегнированной проволокой, а также проволочную резку стальной проволокой в карбид-кремниевой суспензии.

При механической обработке сначала из слитка вырезают части пригодные (по своим структурным, геометрическим и электрофизическим свойствам) для изготовления приборов. Затем монокристаллический кремний, предназначенный для изготовления электронных приборов (электронный кремний), подвергается калибровке под заданный диаметр[xiii]. После предварительной подготовки слиток нарезается на пластины диаметром до 45 см и толщиной в несколько сот микрометров[xix].

Читайте также: