Как возникает электростатическое поле кратко 7 класс технология

Обновлено: 05.07.2024

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Пример однородности

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

Рис. 3. Электрический диполь Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Электрическое поле положительного и отрицательного вектора напряжённости

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Направление линий напряжённости положительных и отрицательных зарядов

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Электростатическое поле представляет собой один из видов материи, возникающий вокруг любого неподвижного заряженного тела.

Оно проявляется в том, что передаёт действие одних наэлектризованных тел на другие, т.е. неподвижные электрические заряды вызывают в окружающем пространстве какие–то физические изменения, приводящие к тому, что на всякий другой заряд, помещённый на некотором расстоянии от рассматриваемого, действует сила. Взаимодействие двух зарядов заключается в том, что один из зарядов создаёт в окружающем его пространстве электрическое поле и это поле действует на другой заряд с определённой силой.

Эта сила, например, для двух точечных зарядов определяется законом Кулона:

где – источник поля, а – заряд, находящийся на расстоянии r от него;

– диэлектрическая проницаемость среды, которая показывает во сколько раз сила взаимодействия электрических зарядов в данной среде меньше, чем в вакууме.

Так как в одной и той же точке поля на разные по величине заряды действуют разные силы, то сила не может быть характеристикой поля.

Электрическое поле описывается двумя главными характеристиками напряжённостью и потенциалом. Из закона Кулона (1) следует, что сила F, действующая на заряд q, помещённый в данную точку электростатического поля, пропорциональна величине заряда.

Действительно, сама сила зависит от величины и знака заряда, и не может служить характеристикой поля. Но отношение силы к заряду уже не зависит от величины заряда q и характеризует только электрическое поле в данной точке:

где r – расстояние от заряда Q, создающего поле, до точки поля, напряжённость в которой определяется.

Напряжённостью Е электрического поля в какой–либо точке поля называют силу, в которой поле действует на единичный положительный заряд, помещённый в эту точку поля. Направление напряжённости совпадает с направлением действия силы: . Напряжённость является силовой характеристикой электрического поля.

Поле, напряжённость которого во всех точках имеет одинаковую величину и направление, называется однородным. Единицей напряжённости электрического поля является В/м.

Если поле созданj положительным точечным зарядом Q, то вектор напряжённости направлен вдоль силовой линии – от заряда. Если отрицательным – к заряду.

Работа перемещения электрического заряда q в электрическом поле не зависит от формы пути перемещения, а определяется начальной и конечной точками перемещения и пропорциональна величине заряда. Следовательно, потенциальная энергия W заряда есть функция только координат и величины заряда q. Отношение потенциальной энергии заряда к величине заряда уже не зависит от величины заряда и характеризует электрическое поле в данной точке. Потенциальную энергию, которой обладает единичный положительный электрический заряд, помещённый в какую–либо точку поля, называют потенциалом поля в этой точке.

Работа перемещения электрического заряда q в электрическом поле равняется произведению величины переносимого заряда на разность потенциалов начальной и конечной точек пути:

Потенциальная энергия заряда в какой–либо точке электрического поля равна работе, которую совершают силы поля при перемещении единичного положительного заряда из этой точки в бесконечно удалённую, т.е. за пределы электрического поля, где потенциал поля принимается равным нулю. Потенциал поля точечного заряда определяется по формуле:

Потенциал – энергетическая характеристика электрического поля. Как и всякая энергия, потенциал поля есть величина скалярная. Потенциал и напряжение измеряются в вольтах.

Электрическое поле можно задать, указав для каждой точки величину и направление вектора . Совокупность этих векторов образует поле вектора напряжённости электрического поля. Электрическое поле можно представить наглядно с помощью линий напряжённости. Линии напряжённости проводятся таким образом, чтобы касательная к ним в каждой точке совпадала с направлением вектора . Линии напряжённости называются также силовыми линиями электрического поля.

Так как напряжённость поля в любой точке имеет вполне определённое направление, то силовые линии не могут пересекаться между собой. Они выходят из положительного заряда и входят в отрицательный заряд. Силовые линии поля положительного точечного заряда изображены на рис. 1.




Потенциал электрического поля является функцией координат. Но во всех реальных случаях можно выделить совокупность таких точек, потенциалы которых одинаковы. Геометрическое место точек с одинаковым потенциалом называется эквипотенциальной поверхностью. Пересекаясь с плоскостью, такая поверхность образует эквипотенциальную линию.

Из сказанного следует:

а) работа перемещения заряда вдоль эквипотенциальной поверхности равна нулю;

б) силовые линии в любой точке поля перпендикулярны к эквипотенциальной поверхности в этой точке;

в) поле стремится перемещать положительный заряд в направлении уменьшения потенциала, а отрицательный заряд в направлении возрастания потенциала. Рис.2.

Из теории электростатического поля следует, что:

где dn – отрезок нормали к двум соседним эквипотенциальным линиям и .

Целью работы является изучение качественной картины плоского электростатического поля, создаваемого двумя металлическими электродами в слабопроводящей среде.

Электростатическое поле представляет собой один из видов материи, возникающий вокруг любого неподвижного заряженного тела.

Оно проявляется в том, что передаёт действие одних наэлектризованных тел на другие, т.е. неподвижные электрические заряды вызывают в окружающем пространстве какие–то физические изменения, приводящие к тому, что на всякий другой заряд, помещённый на некотором расстоянии от рассматриваемого, действует сила. Взаимодействие двух зарядов заключается в том, что один из зарядов создаёт в окружающем его пространстве электрическое поле и это поле действует на другой заряд с определённой силой.

Эта сила, например, для двух точечных зарядов определяется законом Кулона:

где – источник поля, а – заряд, находящийся на расстоянии r от него;

– диэлектрическая проницаемость среды, которая показывает во сколько раз сила взаимодействия электрических зарядов в данной среде меньше, чем в вакууме.

Так как в одной и той же точке поля на разные по величине заряды действуют разные силы, то сила не может быть характеристикой поля.

Электрическое поле описывается двумя главными характеристиками напряжённостью и потенциалом. Из закона Кулона (1) следует, что сила F, действующая на заряд q, помещённый в данную точку электростатического поля, пропорциональна величине заряда.

Действительно, сама сила зависит от величины и знака заряда, и не может служить характеристикой поля. Но отношение силы к заряду уже не зависит от величины заряда q и характеризует только электрическое поле в данной точке:

где r – расстояние от заряда Q, создающего поле, до точки поля, напряжённость в которой определяется.

Напряжённостью Е электрического поля в какой–либо точке поля называют силу, в которой поле действует на единичный положительный заряд, помещённый в эту точку поля. Направление напряжённости совпадает с направлением действия силы: . Напряжённость является силовой характеристикой электрического поля.

Поле, напряжённость которого во всех точках имеет одинаковую величину и направление, называется однородным. Единицей напряжённости электрического поля является В/м.

Если поле созданj положительным точечным зарядом Q, то вектор напряжённости направлен вдоль силовой линии – от заряда. Если отрицательным – к заряду.

Работа перемещения электрического заряда q в электрическом поле не зависит от формы пути перемещения, а определяется начальной и конечной точками перемещения и пропорциональна величине заряда. Следовательно, потенциальная энергия W заряда есть функция только координат и величины заряда q. Отношение потенциальной энергии заряда к величине заряда уже не зависит от величины заряда и характеризует электрическое поле в данной точке. Потенциальную энергию, которой обладает единичный положительный электрический заряд, помещённый в какую–либо точку поля, называют потенциалом поля в этой точке.

Работа перемещения электрического заряда q в электрическом поле равняется произведению величины переносимого заряда на разность потенциалов начальной и конечной точек пути:

Потенциальная энергия заряда в какой–либо точке электрического поля равна работе, которую совершают силы поля при перемещении единичного положительного заряда из этой точки в бесконечно удалённую, т.е. за пределы электрического поля, где потенциал поля принимается равным нулю. Потенциал поля точечного заряда определяется по формуле:

Потенциал – энергетическая характеристика электрического поля. Как и всякая энергия, потенциал поля есть величина скалярная. Потенциал и напряжение измеряются в вольтах.

Электрическое поле можно задать, указав для каждой точки величину и направление вектора . Совокупность этих векторов образует поле вектора напряжённости электрического поля. Электрическое поле можно представить наглядно с помощью линий напряжённости. Линии напряжённости проводятся таким образом, чтобы касательная к ним в каждой точке совпадала с направлением вектора . Линии напряжённости называются также силовыми линиями электрического поля.

Так как напряжённость поля в любой точке имеет вполне определённое направление, то силовые линии не могут пересекаться между собой. Они выходят из положительного заряда и входят в отрицательный заряд. Силовые линии поля положительного точечного заряда изображены на рис. 1.

Потенциал электрического поля является функцией координат. Но во всех реальных случаях можно выделить совокупность таких точек, потенциалы которых одинаковы. Геометрическое место точек с одинаковым потенциалом называется эквипотенциальной поверхностью. Пересекаясь с плоскостью, такая поверхность образует эквипотенциальную линию.

Из сказанного следует:

а) работа перемещения заряда вдоль эквипотенциальной поверхности равна нулю;

б) силовые линии в любой точке поля перпендикулярны к эквипотенциальной поверхности в этой точке;

в) поле стремится перемещать положительный заряд в направлении уменьшения потенциала, а отрицательный заряд в направлении возрастания потенциала. Рис.2.

Из теории электростатического поля следует, что:

где dn – отрезок нормали к двум соседним эквипотенциальным линиям и .

Целью работы является изучение качественной картины плоского электростатического поля, создаваемого двумя металлическими электродами в слабопроводящей среде.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Электростатическое поле

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Свойства электрического поля:

- действует на заряд с некоторой силой;

- способно совершить работу по перемещению заряда.

Основные характеристики:

Напряженность (силовая характеристика)

Потенциал (энергетическая характеристика)

Напряжённость электрического поля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда:

Единицы измерения: [Е] = В/м = Н/Кл

Из закона Кулона следует:

Напряжённость электростатического поля шара:

Принцип суперпозиции полей:

Если поле создано простейшей совокупностью зарядов, которая состоит из положительного и отрицательного зарядов, находящихся на некотором расстоянии друг от друга, то результирующее поле в точке наблюдения находится, с помощью правила параллелограмма.

hello_html_cfc90c8.jpg

В случае если поле создается заряженным телом, имеющим протяжённые линейные размеры. То его необходимо мысленно разбить на небольшие участки, действие которых можно считать аналогичным действию точечных зарядов. И провести геометрическое суммирование полей этих отдельных участков.

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Направление линий напряжённости между двумя разноимённо заряженными пластинами

hello_html_m725ef940.jpg

Силовые линии электростатического поля – линии, касательные к которым в каждой точке совпадают с направлением вектора напряжённости.

Свойства силовых линий:

1.Всегда незамкнуты: начинаются на положительных и заканчиваются на отрицательных зарядах;

3.Густота линий тем больше, чем больше напряженность, то есть напряженность поля прямо пропорциональна количеству силовых линий, проходящих через единицу площади поверхности.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном или в бесконечности, где нет поля.

На рисунке в изображены поля двух равных разноимённых зарядов.

На рисунке г изображены поля двух равных одноимённых зарядов;

Электрический заряд, помещенный в некоторую точку пространства, изменяет свойства данного пространства. То есть заряд порождает вокруг себя электрическое поле. Электростатическое поле – особый вид материи.

Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность

Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.

Если на пробный заряд, действуют силы со стороны нескольких зарядов, то эти силы по принципу суперпозиции сил независимы, и результирующая этих сил равна векторной сумме сил. Принцип суперпозиции (наложения) электрических полей: Напряженность электрического поля системы зарядов в данной точке пространства равна векторной сумме напряженностей электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:


Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).


Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).

Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.

Потенциал - скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ - потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают [φ] = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:

Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Основные характеристики

Силовые линии электростатического поля

  1. Всегда незамкнуты: начинаются на положительных и заканчиваются на отрицательных зарядах
  2. Не пересекаются
  3. Густота линий тем больше, чем больше напряженность, то есть напряженность поля прямо пропорциональна количеству силовых линий, проходящих через единицу площади поверхности

См. также

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. статью.
  • Проставить шаблон-карточку, который существует для предмета статьи. Пример использования шаблона есть в статьях на похожую тематику.
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электростатическое поле" в других словарях:

электростатическое поле — Электрическое поле неподвижных заряженных тел при отсутствии в них электрических токов. [ГОСТ Р 52002 2003] электростатическое поле Электрическое поле неподвижных электрических зарядов. Принципы рассматриваемого поля используются при создании… … Справочник технического переводчика

Электростатическое поле — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и объеме веществ, материалов, изделий. Источник … Словарь-справочник терминов нормативно-технической документации

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ — электрич. поле неподвижных электрич. зарядов, осуществляющее вз ствие между ними. Как и перем. электрич. поле, Э. п. характеризуется напряжённостью электрич. поля К отношением силы, действующей со стороны поля на заряд, к величине заряда. Силовые … Физическая энциклопедия

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ — электрическое поле неподвижных электрических зарядов … Большой Энциклопедический словарь

Электростатическое поле — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и объеме веществ, материалов, изделий. Источник: МСанПиН 001 96. Санитарные нормы допустимых уровней физических факторов … Официальная терминология

электростатическое поле — электрическое поле неподвижных электрических зарядов. * * * ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.… … Энциклопедический словарь

электростатическое поле — elektrostatinis laukas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electrostatic field vok. elektrostatisches Feld, n rus. электростатическое поле, n pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электростатическое поле — elektrostatinis laukas statusas T sritis Standartizacija ir metrologija apibrėžtis Nejudančių elektringųjų dalelių elektrinis laukas. atitikmenys: angl. electrostatic field vok. elektrostatisches Feld, n rus. электростатическое поле, n pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электростатическое поле — elektrostatinis laukas statusas T sritis fizika atitikmenys: angl. electrostatic field vok. elektrostatisches Feld, n rus. электростатическое поле, n pranc. champ électrostatique, m … Fizikos terminų žodynas

Электростатическое поле — электрическое поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними. Как и переменное электрическое поле, Э. п. характеризуется напряжённостью электрического поля Е: отношением силы, действующей на заряд, к… … Большая советская энциклопедия

Читайте также: