Как сформировалась кислородная атмосфера земли кратко

Обновлено: 04.07.2024

№8. Первичная атмосфера Земли состояла из метана, оксидов углерода (II) и (IV), аммиака, оксида серы (IV), сероводорода и других газов. Воздух не содержал свободного кислорода. Он входил в состав воды и газообразных соединений атмосферы. Земные водоросли начали окислять метан и оксид углерода (II) в углекислый газ, а аммиак - в молекулярный азот.

Кислород появился одновременно с первыми хлорофилловыми организмами. В процессе фотосинтеза содержание углекислого газа падало, а кислорода-увеличивалось. Фиксация азота в химических соединениях происходила в природе в результате синтеза в атмосфере под действием грозовых разрядов и солнечной радиации, а также в почве в результате жизнедеятельности особого вида бактерий. Сейчас атмосфера - это смесь следующих газов:

78,09% N2; 20,95% O2; 0,93% Ar; 0,03% CO2 и водяные пары.

Вы здесь: Главная Познавательное Погода и климат Как формировалась атмосфера?

Как формировалась атмосфера?


Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов — 78% азота, 21% кислорода и небольшого количества других газов,— например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода — она состояла из газов, первоначально существовавших в Солнечной системе.

Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.

Зарождение атмосферы


Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.


Вулканическое происхождение


1. Древняя, безвоздушная Земля. 2. Извержение газов.

Согласно этой теории, на поверхности юной планеты Земля активно извергались вулканы. Ранняя атмосфера, вероятно, сформировалась тогда, когда газы, заключенные в кремниевой оболочке планеты, вырвались наружу через сопла вулканов.

Вы здесь: Главная Познавательное Погода и климат Как формировалась атмосфера?

Популярные материалы из данной категории:


Из чего состоит атмосфера?

Картинка кликабельна У воздуха, окутывающего Землю, нет видимых границ. Однако, проведя исследования с использованием ракет и воздушных шаров, ученые сделали вывод о том, что воздух можно разделить на пять слоев. Эти слои (церечисляя их от поверхности Земли)…



Как образуется туман

Туман по сути — это облако, существующее низко над поверхностью. Он появляется, когда неизбежен контакт теплого, влажного воздуха с более холодным.


Где кончается атмосфера?

Если смотреть из космоса, то атмосфера покажется бесплотной завесой, едва удерживаемой силой тяжести Земли. Однако, глядя с поверхности планеты, мы видим ее простирающейся невероятно высоко и темно-синей там, где она сливается с космосом. На самом деле, у…

Если мы бы оказались с тобой дорогой читатель, на новорожденной Земле то продержались бы недолго. Нас встретит черное небо и ослепительные звезды. Мы чувствуем дрожь Земли от падения гигантских метеоритов, но не слышим звуков. Могильный холод вмораживает ноги в камень, а головы жжет радиация

Через 3 минуты мы бы лопнули как детские шары из-за нулевого атмосферного давления. Ведь на юной Земле нет воздуха, лишь вакуум и тишина.

Без кислорода

Но через миллион лет младенец Земля подрастёт. Магнитное поле сформировалось, и газы больше не уносит в космос. Взрывы и извержения остаются в небе, газы превращаются в первую атмосферу.

Атмосфера из водорода и гелия, как и у матери - Солнца. Но благодаря магнитному полю и вода падающих комет остается на планете. Вода превращается в океан и его испарение меняет первую атмосферу Земли.

Вторая атмосфера Земли смертельна для современных форм жизни. Парниковые и вулканические газы - водяной пар, аммиак, метан, диоксид серы. Но среди этого зла нарастает доля второго после кислорода газа космической жизни. Углекислого газа.

Вся космическая жизнь делится на автотрофов и гетеротрофов . Тех, кто создает еду для себя и тех, кто их потребляет. Автотрофы - разведчики и теплицы в одном лице. Бактерии, водоросли и растения. Им не нужен кислород, им нужен углекислый газ, вода или солнечный свет.

Автотрофы появляются на молодой Земле и с помощью углекислого газа производят глюкозу и углеводы в качестве собственного питания и кислород в качестве отходов. Мы назовем это потом фотосинтезом и химиосинтезом.

Пока автотрофы прячутся на дне архаичного океана, солнечная радиация бушует на мертвых континентах. Но крепнущий океан и его испарения делают дело - газообразного кислорода все больше поднимается в воздух.

Пока не нужный никому, кислород летит в стратосферу на высоту 50 километров и кружит там воздушными потоками вокруг углекислой планеты.

В стратосфере кислород снова атакуют беспощадные солнечные лучи. Они расщепляют H2O, испаряют воду. Но разорванные молекулы крепко сцепляются, уже тремя атомами кислорода. Так появляется озон - О₃ и озоновый слой Земли становится богатырским щитом, блокирующим смертельную радиацию Солнца.

Озоновый слой позволил начать наземную колонизацию, автотрофы - бактерии и растения ползут на сушу. Они плодятся и дружно производят кислород в качестве отходов и не подозревают, что приближают этим свой конец.

Через сотни миллионов лет доля кислорода в воздухе стала критической. Углекислые растения вымерли и заменились кислородными, которых мы с вами знаем.

Круговорот

Вслед за растениями на сушу выползли гетеротрофы - кто их поедает. Грибы, животные, насекомые, человек - не производят сами пищу, а потребляют тех, кто может ее производить для себя - автотрофов.

Гетеротрофов мало еще, потому расплодившиеся растения вырабатывают переизбыток кислорода, вызывая гигантские мутации насекомых.

Потом пермское вымирание и доля кислорода в воздухе вернется к современному уровню. Тогда окончательно и сформируется вечный круговорот земной жизни - производства кислорода и углекислоты силами живых.

Гетеротрофы - животные, потребляют лишний кислород произведенный автотрофами - растениями и едят лишних автотрофов. Автотрофы забирают выдохнутый животными углекислый газ на производство собственного корма и кислорода.

Эта система надежно обеспечивала Землю миллиарды лет, но не смогла учесть влияние лишь одного вида - человека.

Всего за сотню последних лет изобретения - машины, заводы и города разрушили земной баланс. Гибнет озоновый слой, вырубаются леса, больше углекислоты и парникового эффекта. Антарктида тает, растет температура.

Процесс видимо неуправляем и закончится неизбежным Ледниковым периодом. Когда планета очистится от человечества, она вернется к своим истокам.

Обоюдоострый меч О2

Биологические свойства молекулярного кислорода (O2) как минимум двуедины. Кислород — мощный окислитель, с помощью которого можно получить много полезной энергии, и в то же время сильный яд, свободно проходящий сквозь клеточные мембраны и разрушающий клетки, если с ним неаккуратно обращаться. Иногда говорят, что кислород — это обоюдоострый меч (Current Biology, 2009, 19, 14, R567–R574). У всех организмов, имеющих дело с кислородом, обязательно есть и специальные ферментные системы, гасящие его химическое воздействие. Те, у кого таких ферментных систем нет, обречены быть строгими анаэробами, выживающими только в бескислородной среде. На современной Земле это некоторые бактерии и археи.

Практически наверняка бескислородный фотосинтез появился гораздо раньше кислородного. Поэтому в первый миллиард лет существования жизни (а скорее всего, дольше) фотосинтез хотя и шел, но никакого насыщения атмосферы Земли кислородом не вызывал. Содержание кислорода в атмосфере в те времена составляло не больше 0,001% от современного — попросту говоря, это значит, что его там толком не было.

Все изменилось, когда на сцену вышли синезеленые водоросли, или цианобактерии. Впоследствии эти существа стали предками пластид, фотосинтезирующих органелл клеток эукариот (напомним, что эукариотами называются организмы с клеточными ядрами, в отличие от прокариот — обладателей безъядерных клеток). Цианобактерии — очень древняя эволюционная ветвь. По меркам земной истории они удивительно неизменны. Например, широко распространенная в современных водоемах синезеленая водоросль осциллятория (Oscillatoria) имеет ископаемых родственников, живших 800 миллионов лет назад, причем они практически неотличимы от современных осцилляторий (Ecology of Cyanobacteria II. Their Diversity in Space and Time, Springer, 2012, 15–36). Таким образом, осциллятория — впечатляющий пример живого ископаемого. Но самые первые цианобактерии появились намного раньше нее — это подтверждается палеонтологическими данными.

Типичная цианобактерия — осциллятория — и ее древние родственники: современные синезеленые водоросли разных видов рода Oscillatoria (а, б), ископаемые синезеленые водоросли Oscillatoriopsis breviconvexa и Cephalophytarion grande (в, г) из австралийского местонахождения Биттер-Спрингс, возраст которого — примерно 800 млн лет. Сходство настолько велико, что эти древние водоросли вполне можно было бы и не относить к особым родам

График изменения концентрации кислорода в атмосфере Земли. Первый резкий подъем — это кислородная революция

Сразу оказалось, что кислородное окисление глюкозы (дыхание) в энергетическом плане намного эффективнее бескислородного (брожения). Оно дает в несколько раз больше свободной энергии на одну молекулу глюкозы, чем любой сколь угодно усложненный вариант бескислородного обмена. При этом начальные этапы распада глюкозы у пользователей дыхания и брожения остались общими: кислородное окисление послужило всего лишь надстройкой над уже имевшимся древним биохимическим механизмом, который сам по себе в кислороде не нуждался.

Группа микробов, которая освоила рискованное, но эффективное получение энергии с помощью кислорода, называется протеобактериями. Согласно общепринятой сейчас теории, именно от них произошли дыхательные органеллы эукариотных клеток — митохондрии.

По генетическим данным, ближайший современный родственник митохондрий — пурпурная спиральная альфа-протеобактерия Rhodospirillum rubrum (Molecular Biology and Evolution, 2004, 21, 9, 1643–1660). Родоспириллум обладает и дыханием, и брожением, и бескислородным фотосинтезом, в котором вместо воды используется сероводород, и может переключаться между этими тремя типами обмена в зависимости от внешних условий. Несомненно, такой симбионт — то есть в данном случае внутренний сожитель — был очень полезен предку эукариот.

Эпохи жизни

Вся история Земли делится на четыре огромных промежутка, именуемых эонами (это выше, чем эра). Названия эонов следующие: катархей, или гадей (4,6–4,0 млрд лет назад), архей (4,0–2,5 млрд лет назад), протерозой (2,5–0,54 млрд лет назад) и фанерозой (начался 0,54 млрд лет назад и продолжается сейчас). Это деление будет нам постоянно помогать, оно действительно удобно. Сделаем оговорку, что почти во всех подобных случаях запоминать стоит не временные границы, а последовательность эпох и относящихся к ним событий: это гораздо важнее. Исключение можно сделать разве что для двух-трех основополагающих дат вроде возраста Земли.

Протерозой — это эпоха кислорода и эукариот. С датировкой происхождения эукариот связан интересный парадокс. Дело в том, что более-менее надежно определимые многоклеточные эукариоты появляются в палеонтологической летописи заметно раньше, чем столь же надежно определимые одноклеточные. Нитчатая водоросль Grypania spiralis, которую обычно считают эукариотом, появилась 2,1 миллиарда лет назад (Australasian Journal of Palaeontology, 2016, doi: 10.1080/ 03115518.2016.1127725 ). Справедливости ради нужно сказать, что главным доводом за эукариотную природу грипании служит ее крупный размер — все остальные признаки не дают уверенности, что это не гигантская цианобактерия (Palaeontology, 2015, 58, 1, 5–17). Но дело в том, что эта находка не единственная. Самым древним известным эукариотом сейчас считается грибообразный организм Diskagma buttonii возрастом 2,2 миллиарда лет (Precambrian Research, 2013, 235, 71–87). А еще есть загадочные крупные спиралевидные существа — скорее всего, водоросли, возраст остатков которых — не меньше 2,1 миллиарда лет, как и у грипании (Nature, 2010, 466, 7302, 100–104). Зато самые ранние одноклеточные, однозначно определяемые как эукариоты, имеют возраст всего 1,6 миллиарда лет (Philosophical Transactions of the Royal Society B, 2006, 361, 1470, 1023-1038). Это, разумеется, не значит, что многоклеточные эукариоты действительно появились раньше одноклеточных, — такое предположение противоречит всем имеющимся молекулярным данным. Одноклеточные просто хуже сохраняются, да и признаков, по которым можно определить организм, у них меньше.

Самый древний известный эукариот — загадочный организм Diskagma buttonii возрастом 2,2 млрд лет. Он напоминает строением современные гломеромицеты — примитивные грибы, живущие в симбиозе с синезелеными водорослями

Тем не менее из таких датировок следуют очень важные выводы. Вспомним, что дата кислородной революции — 2,4 миллиарда лет назад. Следовательно, мы знаем, что всего через 200 миллионов лет после нее в палеонтологической летописи появляются не просто эукариоты, а многоклеточные эукариоты. Это означает, что первые этапы эволюции эукариот были пройдены по меркам глобальной истории очень быстро. Безусловно, эукариотной клетке потребовалось время, чтобы оформить симбиоз с предками митохондрий, создать ядро, усложнить цитоскелет — внутриклеточную систему опорных структур. Но когда эти процессы закончились, создать первые многоклеточные организмы удалось почти сразу. Никаких дополнительных приспособлений на уровне клетки это не потребовало. Любая эукариотная клетка уже имеет в наличии полный набор молекулярных элементов, нужных, чтобы построить из таких клеток многоклеточное тело (хотя бы относительно простое). Разумеется, все эти элементы не менее полезны и для жизни одиночной клетки, иначе они бы просто не возникли. Общий предок эукариот, без сомнений, был одноклеточным, и очень многим его потомкам многоклеточность никогда не пригодилась. Примеры современных одноклеточных эукариот — амебы, эвглены, инфузории — мы знаем благодаря школьным учебникам, но на самом деле их гораздо больше.

Кислородная революция имела еще одно важное последствие, коснувшееся состава атмосферы. В архейской атмосфере было много азота (как и сейчас), а также углекислого газа и метана (гораздо больше, чем сейчас). Углекислый газ и метан очень хорошо поглощают инфракрасное излучение и тем самым удерживают в атмосфере Земли тепло, мешая ему уходить в космос. Это называется парниковым эффектом. Причем считается, что от метана парниковый эффект минимум раз в 20–30 сильнее, чем от углекислого газа. А в архейские времена метана в атмосфере Земли было примерно в 1000 раз больше, чем сейчас, и это обеспечивало довольно теплый климат.

Тут вмешивается еще и астрономия. Согласно общепринятой теории эволюции звезд, светимость Солнца медленно, но непрерывно растет. В архее она составляла всего 70–80% от современной — понятно, почему парниковый эффект был важен для поддержания планеты в тепле. Но после кислородной революции атмосфера стала окислительной и почти весь метан (CH4) превратился в углекислый газ (CO2), эффективность которого как парникового газа гораздо ниже. Это вызвало катастрофическое гуронское оледенение, длившееся около 100 миллионов лет и в некоторые моменты охватившее всю Землю: на участках суши, которые тогда находились всего в нескольких градусах широты от экватора, найдены следы ледников (Proceedings of the National Academy of Sciences USA, 2005, 102, 32, 11131–11136). Пик гуронского оледенения наступил 2,3 миллиарда лет назад. К счастью, оледенение не могло остановить тектоническую активность земной мантии; вулканы продолжали выбрасывать в атмосферу углекислый газ, и со временем его накопилось достаточно, чтобы восстановить парниковый эффект и растопить льды.

Однако главные климатические испытания были еще впереди.

В чем тут дело? Напрашивается мысль, что многоклеточность как таковая гораздо более совместима с образом жизни растения, чем животного. Любая клетка растения заключена в жесткую клеточную стенку, и нет сомнений, что это сильно облегчает регуляцию взаимного расположения клеток в сложном теле. Наоборот, клетки животных лишены клеточной стенки, их форма неустойчива, да еще и постоянно меняется при актах фагоцитоза, то есть поглощения пищевых частиц. Собрать из таких клеток целый организм — сложная задача. Если бы никаких многоклеточных животных не появилось вовсе, а биологами стали представители растений либо грибов, они, скорее всего, после изучения этой проблемы пришли бы к выводу, что сочетание многоклеточности с отсутствием клеточной стенки просто невозможно. Во всяком случае, это объясняет, почему многоклеточность много раз возникала в разных группах водорослей, но только один раз — у животных.

Буквально в те же годы теорией оледенений занялся известный геофизик, ленинградец Михаил Иванович Будыко. Он обратил внимание на то, что оледенение может саморазвиваться. Ледяной покров имеет высокую отражательную способность (альбедо), поэтому чем больше суммарная площадь ледников, тем большая доля солнечного излучения отражается обратно в космос, унося с собой тепло. А чем меньше Земля получает тепла, тем на ней становится холоднее, и площадь ледяного покрова в результате растет, повышая альбедо еще сильнее. Получается, что оледенение — это процесс с положительной обратной связью, то есть способный усиливать сам себя. А в таком случае должен существовать некоторый критический уровень оледенения, после которого оно будет нарастать, пока волны льда с Северного и Южного полюсов не схлопнутся на экваторе, полностью заключив планету в ледяной покров и понизив ее температуру на несколько десятков градусов. Будыко математически показал, что такое развитие событий возможно (Tellus, 1969, 21, 5, 611–619). Но он и понятия не имел, что в истории Земли оно несколько раз происходило! Потому что на тот момент Будыко и Харленд еще не читали друг друга.

Земля-снежок

Дело в том, что оборот углекислого газа гораздо меньше зависит от живых существ, чем оборот кислорода. Основным источником атмосферного CO2 на Земле до сих пор служат извержения вулканов, а основным стоком — процесс, который называется химическим выветриванием. Углекислый газ взаимодействует с горными породами, разрушая их, а сам при этом превращается в карбонаты (ионы HCO3 − или CO3 2− ). Последние хорошо растворяются в воде, зато в состав атмосферы больше не входят. И получается предельно простая зависимость. Если интенсивность работы вулканов превосходит интенсивность химического выветривания, атмосферная концентрация CO2 растет. Если наоборот — падает.

Вулканизм, которым распад суперконтинента неизбежно сопровождался, мог бы компенсировать это, если бы не одно случайное обстоятельство. В силу каких-то причуд дрейфа континентов и Родиния, и ее обломки находились у экватора, в теплом поясе, где химическое выветривание шло особенно быстро. Математические модели показывают, что именно по этой причине концентрация CO2 опустилась ниже порога, за которым начинается оледенение (Nature, 2004, 428, 6980, 303–306). А когда оно началось, тормозить выветривание было уже поздно.

Надо признать, что положение континентов в позднем протерозое оказалось настолько неудачным (с точки зрения обитателей планеты), насколько это вообще возможно. Дрейф континентов управляется потоками вещества земной мантии, динамика которых, по сути, неведома. Но мы знаем, что в данном случае эти потоки собрали всю земную сушу в единый континент, находящийся точно на экваторе и вытянутый по широте. Если бы он оказался на одном из полюсов или был вытянут с севера на юг, начавшееся оледенение закрыло бы часть пород от выветривания и тем самым приостановило уход углекислого газа из атмосферы — тогда процесс мог затормозиться. Как раз такую ситуацию мы наблюдаем сейчас, когда есть ледяные щиты Антарктиды и Гренландии (Scientific American, 1999, 9, 38). А в конце протерозоя почти все крупные участки суши находились близко к экватору — и были обнажены до того момента, когда северный и южный ледяные покровы сомкнулись. Земля стала ледяным шаром.

О живой природе криогения известно мало. Климат тогда на всей Земле был, по нынешним меркам, антарктическим. Большую часть Мирового океана покрывал километровый слой льда, так что интенсивность фотосинтеза не могла быть высокой. Свет, неожиданно ставший ценнейшим ресурсом, попадал в океан только местами, сквозь трещины, полыньи или небольшие участки тонкого льда. Удивительно, что некоторые многоклеточные организмы сумели пережить криогений, совершенно не изменившись, — например, красные водоросли. Они и сейчас приспособлены к тому, чтобы использовать очень слабый свет, проникающий на такую глубину, где уже не живут никакие другие фотосинтезирующие существа (Ю. Т. Дьяков. Введение в альгологию и микологию. М.: Изд-во МГУ, 2000). Никуда не делся и одноклеточный планктон. Содержание кислорода в криогениевом океане сильно упало, поэтому жизнь на его дне, скорее всего, была в основном анаэробной, но подробности этого от нас пока скрыты.

Читайте также: