Как различаются датчики по принципу действия 8 класс кратко

Обновлено: 02.07.2024

Чтобы контролировать работу различных систем, используют специальные устройства – датчики (сенсоры, детекторы). Для каждого типа оборудования применяется определённый тип датчиков, оснащенный необходимым функционалом и опциями. При покупке или замене прибора нужно ориентироваться на специфические характеристики и принцип работы новой модели.

Что собой представляет датчик

Датчик − электронное либо электромеханическое устройство, трансформирующее силу воздействия в электрический импульс (сигнал) посредством одного или нескольких преобразователей.

С виду это чёрная коробка, формирующая на входе сигнал, который передается и обрабатывается в дальнейшем. Такие устройства располагают на разных расстояниях от обслуживаемого объекта либо системы. Все зависит от длины кабеля или радиосигнала.

Базовое устройство и принцип работы

По характеру регистрируемых воздействий данные устройства бывают:

  • Контактные, подразумевающие механическое воздействие. Ярким представителем этого вида считаются концевые выключатели – датчики, ограничивающие ход рабочего механизма.
  • Бесконтактные. Работают на нескольких принципах обнаружения сигнала: магнитном, оптическом, микроволновом и пр.



У каждого прибора имеются свои особенности, которые определяют сферу применения. Например, бесконтактные оптико-электронные детекторы работают на удаленном расстоянии от объекта. Остальные используются исключительно на ограниченных расстояниях.

Задачи и функции

Основная задача датчиков заключается в передаче исследуемых параметров на специальный приемник и последующую обработку сигнала. Также они контролируют исследуемый объект и замеряют его характеристики в определенных диапазонах. Существуют многофункциональные модели, фильтрующие, предварительно обрабатывающие необходимые параметры.

Датчики представляют собой часть технических систем, благодаря которым можно выполнять измерение, регулировку, настройку объектов.

Приборы преобразуют полученные данные, например, о контролируемой среде (давление, температура, частота, скорость) в электро-, пневмо-, оптические импульсы. При этом формируется подходящая для передачи и приятия приемником форма для дальнейшей обработки, хранения, регистрации информации.

Сфера применения


Различные виды датчиков давно и активно применяются в самых разных сферах:

  • автоматических и телеметрических системах;
  • системах безопасности (пожарной, охранной);
  • робототехнике;
  • здравоохранении;
  • промышленности и производстве;
  • измерительных системах.

В быту их используют в выключателях, барометрах, бытовой технике (тостерах, утюгах, кухонных плитах) и пр.


Датчики нужны там, где для слаженной работы объекта требуется мониторинг определенных факторов. Например, контроль температуры, когда пожарный детектор мгновенно фиксирует превышение порогового значения и передает к узлам сигнализации информацию об этом, а узел активирует звук, свет, автоматическое пожаротушение.

Классификация датчиков


На рынке можно найти много видов сенсоров. Практически все они базируются на воспринимающих элементах, улавливающих определенные параметры объекта. Например, чувствительной частью выступает:

  • лазер либо оптический луч, установленный в детекторах скорости вращения;
  • резистор, изготовленный из специального сплава, меняющий сопротивление под воздействием смены температур: ставится в терморезистивные датчики;
  • спайка из различных сплавов, при некоторых температурах, реагирующая образованием электродвижущей силы;
  • биметаллические пластины, управляющие электрическими контактами;
  • тензометрические элементы, преобразующие величину деформации и меняющие характеристики.

Также это могут быть магниты, поплавки, химические реактивы.

Классификация датчиков по выходным параметрам (образованию наиболее удобного для восприятия импульса, в который преобразуется входной сигнал исследуемой среды), следующая:

  • электродвижущей силы и напряжения;
  • сопротивления;
  • света, радиосигнала, звука.

Большинство датчиков являются электрическими приборами, так как именно они имеют множество преимуществ:

  • электрический сигнал удобен для передачи на разные расстояния без задержки скорости;
  • любые параметры легко преобразуются в электричество.
  • электросенсоры очень точные, чувствительные, быстродействующие.

Детекторы разделяют на три класса:

  1. Аналоговые, образующие аналоговый сигнал потоку входных данных.
  2. Цифровые или электронные, генерирующие последовательности импульсов.
  3. Бинарные, создающие двухуровневый сигнал.


По принципу действия сенсоры бывают генераторными, гальваническими, тахометрическими, параметрическими, индуктивными, емкостными. Также существуют не особенно распространенные виды классификаций сенсоров:

  • дискретные и непрерывные – по динамическому характеру трансформации;
  • аналоговые и цифровые – по виду измерительных импульсов;
  • проводные и беспроводные – по среде подачи импульсов;
  • одномерные и многомерные – по количеству входящих параметров.


По виду измеряемых величин наиболее популярны следующие разновидности детекторов:

  • давления: абсолютного, избыточного, разрежения, разности давления, давления-разрежения;
  • расхода: механические, ультразвуковые, вихревые, электромагнитные, кориолисовые;
  • уровня: радарные, емкостные, поплавковые, кондуктометрические;
  • температуры: термопара, сопротивления, пирометры, теплового потока;
  • перемещения: абсолютные, относительные;
  • радиоактивности: ионизационные, прямого заряда;
  • фотодатчики: фотодиоидные, фотосопротивления, фотоматричные.

Также бывают датчики влажности, положения, вибрации, механических величин, дуговой защиты.

Критерии выбора

При выборе оборудования в первую очередь учитывают, для каких целей оно приобретается и что нужно оценивать. Если сенсор сломан, ищут новый прибор, совпадающий по прежним параметрам.

Обязательно обращают внимание на следующие критерии:

  • диапазон параметров обслуживаемых факторов (например, температура, давление);
  • время, за которое срабатывает датчик;
  • точность и максимальная погрешность;
  • мощность, включая трансформируемый сигнал;
  • усилие от принимаемого сигнала;
  • выходной импеданс;
  • способность различать импульсы.

Выбирая подходящий датчик, необходимо учитывать совокупность характеристик, соответствующих конкретному оборудованию.

Статические качества

Показывают, насколько корректно работает сенсор на выходе. Данный критерий отображает правильность замеряемых величин через некоторый отрезок времени после их изменения. Сюда входит чувствительность сенсора, его разрешение и линейность, а также коэффициент усиления. Дополнительно изучается отклонение показателей детектора, его рабочий диапазон, отклонение между повторяющимися измерениями и воспроизводимость.


Динамические характеристики

Учитывается время прохождения зоны нечувствительности, период запаздывания подаваемого сигнала, время нарастания и достижения первого максимума. Также необходимо обращать внимание на допустимые статические ошибки и разницу между максимально установленными параметрами от истинной величины. Данные характеристики особенно важны для сверхчувствительных приборов, где минимальные отклонения работы прибора сильно влияют на результат.

Типичные требования для датчиков


Если производитель допускает большую погрешность, и она не оказывает отрицательного воздействия на работу датчика, такое устройство можно приобретать. Однако все виды сенсоров должны соответствовать оптимальным параметрам:

  • однозначность взаимозависимости выходной и входной величины;
  • стабильность качественных показателей во временном пространстве;
  • чувствительность – чем она выше, тем надежней считается прибор;
  • небольшие габариты и маленький вес;
  • широкий диапазон рабочих величин (если это не ухудшает основные его характеристики).

Также необходимо учитывать возможность монтировать устройство на любых плоскостях и поверхностях.


Датчики представляют собой сложные устройства, которые часто используются для обнаружения и реагирования на электрические или оптические сигналы. Устройство преобразует физический параметр (температура, кровяное давление, влажность, скорость) в сигнал, который может быть измерен прибором.

Миниатюрный датчик

Классификация датчиков при этом может быть различной. Есть несколько основных параметров распределения измерительных устройств, о которых речь пойдет дальше. В основном такое разделение связано с действием различных сил.

Это просто объяснить на примере измерения температуры. Ртуть в стеклянном термометре расширяется и сжимает жидкость, чтобы преобразовать измеренную температуру, которая может быть считана наблюдателем с калиброванной стеклянной трубки.

Критерии выбора

Существуют определенные особенности, которые необходимо учитывать при классификации датчика. Они указаны ниже:

  1. Точность.
  2. Условия окружающей среды - обычно датчики имеют ограничения по температуре, влажности.
  3. Диапазон - предел измерения датчика.
  4. Калибровка - необходима для большинства измерительных приборов, так как показания меняются со временем.
  5. Стоимость.
  6. Повторяемость - изменяемые показания многократно измеряются в одной и той же среде.

Распределение по категориям

Классификации датчиков подразделяются на следующие категории:

  1. Первичное входное количество параметров.
  2. Принципы трансдукции (использование физических и химических эффектов).
  3. Материал и технология.
  4. Назначение.

Принцип трансдукции является фундаментальным критерием, которому следуют для эффективного сбора информации. Обычно материально-технические критерии выбираются группой разработки.

Классификация датчиков на основе свойств распределяется следующим образом:

  1. Температура: термисторы, термопары, термометры сопротивления, микросхемы.
  2. Давление: оптоволоконные, вакуумные, эластичные манометры на жидкой основе, LVDT, электронные.
  3. Поток: электромагнитные, перепад давления, позиционное смещение, тепловая масса.
  4. Датчики уровня: перепад давления, ультразвуковая радиочастота, радар, тепловое смещение.
  5. Близость и смещение: LVDT, фотоэлектрический, емкостный, магнитный, ультразвуковой.
  6. Биосенсоры: резонансное зеркало, электрохимический, поверхностный плазмонный резонанс, светоадресуемый потенциометрический.
  7. Изображение: устройства с зарядовой связью, CMOS.
  8. Газ и химия: полупроводник, инфракрасный, проводимость, электрохимический.
  9. Ускорение: гироскопы, акселерометры.
  10. Другие: датчик влажности, датчик скорости, масса, датчик наклона, сила, вязкость.

Это большая группа, состоящая из подразделов. Примечательно, что с открытием новых технологий разделы постоянно пополняются.

Назначение классификации датчиков, основанное на направлении использования:

  1. Контроль, измерение и автоматизация производственного процесса.
  2. Непромышленное использование: авиация, медицинские изделия, автомобили, бытовая электроника.

Датчики могут быть классифицированы в зависимости от требований к питанию:

  1. Активный датчик - приборы, которые требуют питания. Например, LiDAR (обнаружение света и дальномер), фотопроводящая ячейка.
  2. Пассивный датчик - датчики, которые не требуют питания. Например, радиометры, пленочная фотография.

В эти два раздела входят все известные науке приборы.

В текущих применениях назначение классификации датчиков можно распределить по группам следующим образом:

  1. Акселерометры - основаны на технологии микроэлектромеханического сенсора. Они используются для мониторинга пациентов, которые включают кардиостимуляторы. и динамических систем автомобиля.
  2. Биосенсоры - основаны на электрохимической технологии. Применяются для тестирования продуктов питания, медицинских устройств, воды и обнаружения опасных биологических патогенов.
  3. Датчики изображения - основаны на технологии CMOS. Они используются в бытовой электронике, биометрии, наблюдении за дорожным движением и безопасностью, а также на компьютерных изображениях.
  4. Детекторы движения - основаны на инфракрасной, ультразвуковой и микроволновой/ радиолокационной технологиях. Задействуются в видеоиграх и симуляторах, световой активации и обнаружении безопасности.

Типы датчиков

Есть и основная группа. Она разделена на шесть основных направлений:

  1. Температура.
  2. Инфракрасное излучение.
  3. Ультрафиолет.
  4. Сенсор.
  5. Приближение, движение.
  6. Ультразвук.

В каждую группу могут входить подразделы, если технология даже частично используется в составе конкретного устройства.

1. Датчики температуры

Это одна из основных групп. Классификация датчиков температуры объединяет все устройства, имеющие способность проводить оценку параметров исходя из нагрева или остывания конкретного типа вещества либо материала.

Температурные модули

Это устройство собирает информацию о температуре от источника и преобразует ее в форму, понятную для другого оборудования или человека. Лучшая иллюстрация датчика температуры - ртуть в стеклянном термометре. Ртуть в стекле расширяется и сжимается в зависимости от изменений температуры. Наружная температура является исходным элементом для измерения показателя. Положение ртути наблюдает зритель, чтобы измерить параметр. Существует два основных типа датчиков температуры:

  1. Контактные датчики. Этот тип устройств требует прямого физического контакта с объектом или носителем. Они контролируют температуру твердых веществ, жидкостей и газов в широком диапазоне температур.
  2. Бесконтактные датчики. Этот тип датчиков не требует какого-либо физического контакта с измеряемым объектом или носителем. Они контролируют неотражающие твердые вещества и жидкости, но бесполезны для газов из-за их естественной прозрачности. Эти приборы используют закон Планка для измерения температуры. Этот закон касается тепла, излучаемого источником для измерения контрольного показателя.

Работа с различными устройствами

Принцип действия и классификация датчиков температуры разделяются и на использование технологии в других типах оборудования. Это могут быть приборные панели в автомобиле и специальные производственные установки в промышленном цеху.

  1. Термопара - модули изготовлены из двух проводов (каждый - из разных однородных сплавов или металлов), которые образуют измерительный переход путем соединения на одном конце. Этот измерительный узел открыт для изучаемых элементов. Другой конец провода заканчивается измерительным устройством, где формируется опорный переход. Ток протекает по цепи, так как температура двух соединений различна. Полученное милливольтное напряжение измеряется для определения температуры на стыке.
  2. Термодатчики сопротивления (RTD) - это типы терморезисторов, которые изготавливаются для измерения электрического сопротивления при изменении температуры. Они дороже, чем любые другие устройства для определения температуры.
  3. Термисторы. Они представляют собой другой тип термического резистора, в котором большое изменение сопротивления пропорционально небольшому изменению температуры.

2. ИК-датчик

Это устройство излучает или обнаруживает инфракрасное излучение для определения конкретной фазы в окружающей среде. Как правило, тепловое излучение испускается всеми объектами в инфракрасном спектре. Этот датчик обнаруживает тип источника, который не виден человеческим глазом.

ИК сенсор

Основная идея состоит в том, чтобы использовать инфракрасные светодиоды для передачи световых волн на объект. Другой ИК-диод того же типа должен использоваться для обнаружения отраженной волны от объекта.

Принцип действия

Классификация датчиков в системе автоматики в этом направлении распространена. Это связано с тем, что технология дает возможность задействовать дополнительные средства для оценки внешних параметров. Когда инфракрасный приемник подвергается воздействию инфракрасного света, на проводах возникает разность напряжений. Электрические свойства компонентов ИК-датчика можно использовать для измерения расстояния до объекта. Когда инфракрасный приемник подвергается воздействию света, разность потенциалов возникает через провода.

  1. Термография: согласно закону об излучении объектов, можно наблюдать за окружающей средой с видимым освещением или без него, используя эту технологию.
  2. Нагревание: инфракрасное излучение можно использовать для приготовления и разогревания пищевых продуктов. Они могут убрать лед с крыльев самолета. Преобразователи популярны в промышленной области, такой как печать, формование пластмасс и сварка полимеров.
  3. Спектроскопия: этот метод используется для идентификации молекул путем анализа составляющих связей. Технология использует световое излучение для изучения органических соединений.
  4. Метеорология: измерить высоту облаков, рассчитать температуру земли и поверхности возможно, если метеорологические спутники оснащены сканирующими радиометрами.
  5. Фотобиомодуляция: используется для химиотерапии у онкологических больных. Дополнительно технология используется для лечения вируса герпеса.
  6. Климатология: мониторинг обмена энергией между атмосферой и землей.
  7. Связь: инфракрасный лазер обеспечивает свет для связи по оптоволокну. Эти излучения также используются для связи на короткие расстояния между мобильными и компьютерными периферийными устройствами.

3. УФ-датчик

Эти датчики измеряют интенсивность или мощность падающего ультрафиолетового излучения. Форма электромагнитного излучения имеет большую длину волны, чем рентгеновское излучение, но все же короче, чем видимое излучение.

УФ устройство

Активный материал, известный как поликристаллический алмаз, используется для надежного измерения ультрафиолета. Приборы могут обнаруживать различное воздействие на окружающую среду.

Критерии выбора устройства:

  1. Диапазоны длин волн в нанометрах (нм), которые могут быть обнаружены ультрафиолетовыми датчиками.
  2. Рабочая температура.
  3. Точность.
  4. Вес.
  5. Диапазон мощности.

Принцип действия

Ультрафиолетовый датчик принимает один тип энергетического сигнала и передает другой тип сигналов. Для наблюдения и записи этих выходных потоков они направляются на электрический счетчик. Для создания графиков и отчетов показатели передаются на аналого-цифровой преобразователь (АЦП), а затем на компьютер с программным обеспечением.

Используется в следующих приборах:

  1. Ультрафиолетовые фототрубки - это чувствительные к излучению датчики, контролирующие обработку воздуха в ультрафиолете, обработку воды в ультрафиолете и облучение солнцем.
  2. Датчики света - измеряют интенсивность падающего луча.
  3. Датчики ультрафиолетового спектра - представляют собой устройства с зарядовой связью (ПЗС), используемые в лабораторных снимках.
  4. Детекторы ультрафиолетового света.
  5. Бактерицидные УФ-детекторы.
  6. Датчики фотостабильности.

4. Сенсорный датчик

Это еще одна большая группа устройств. Классификация датчиков давления применяется для проведения оценки внешних параметров, отвечающих за появление дополнительных характеристик при действии определенного объекта либо вещества.

Тип подключения

Датчик касания действует как переменный резистор в соответствии с местом, где он подключается.

Сенсорный датчик состоит из:

  1. Полностью проводящее вещество, такое как медь.
  2. Изолированный промежуточный материал, такой как пена или пластик.
  3. Частично проводящий материал.

При этом строгого разделения нет. Классификация датчиков давления устанавливается посредством выбора конкретного сенсора, который и оценивает появляющееся напряжение внутри либо снаружи изучаемого объекта.

Принцип действия

Частично проводящий материал противодействует течению тока. Принципом линейного датчика положения является то, что поток тока считается более противоположным, когда длина материала, по которому должен пройти ток, больше. В результате сопротивление материала изменяется путем изменения положения, в котором он вступает в контакт с полностью проводящим объектом.

Классификация датчиков автоматики строится полностью на описанном принципе. Здесь же задействуют дополнительные ресурсы в виде специально разработанного ПО. Как правило, программное обеспечение связано с сенсорными датчиками. Устройства могут запомнить "последнее прикосновение", когда датчик отключен. Они могут зарегистрировать "первое прикосновение", как только датчик активируется, и понять все значения, связанные с ним. Это действие аналогично перемещению компьютерной мыши на другой конец коврика, чтобы переместить курсор в дальнюю сторону экрана.

5. Датчик приближения

Все чаще в современных транспортных средствах используют эту технологию. Классификация электрических датчиков с использованием световых и сенсорных модулей набирает популярность у автомобильных производителей.

Устройство приближения

Датчик приближения обнаруживает наличие объектов, которые находятся почти без каких-либо точек соприкосновения. Поскольку нет контакта между модулями и воспринимаемым объектом и отсутствуют механические детали, эти устройства имеют длительный срок службы и высокую надежность.

Различные типы датчиков приближения:

  1. Индуктивные датчики приближения.
  2. Емкостные датчики приближения.
  3. Ультразвуковые датчики приближения.
  4. Фотоэлектрические датчики.
  5. Датчики Холла.

Принцип действия

Датчик приближения излучает электромагнитное или электростатическое поле или пучок электромагнитного излучения (например, инфракрасного) и ожидает ответного сигнала или изменений в поле. Обнаруживаемый объект известен как цель регистрирующего модуля.

Классификация датчиков по принципу действия и назначению будет следующей:

  1. Индуктивные устройства: на входе имеется генератор, который изменяет сопротивление потерь на близость электропроводящей среды. Эти устройства предпочтительны для металлических объектов.
  2. Емкостные датчики приближения: они преобразуют изменение электростатической емкости между электродами обнаружения и заземлением. Это происходит при приближении к близлежащему объекту с изменением частоты колебаний. Для обнаружения близлежащего объекта частота колебаний преобразуется в напряжение постоянного тока, которое сравнивается с заданным пороговым значением. Эти приборы предпочтительны для пластиковых объектов.

Классификация измерительной аппаратуры и датчиков при этом не ограничивается представленным выше описанием и параметрами. С появлением новых образцов измерительных приборов общая группа увеличивается. Разные определения утверждены для различения датчиков и преобразователей. Датчики могут быть определены как элемент, который воспринимает энергию, чтобы произвести вариант в той же или другой форме энергии. Датчик преобразует измеряемую величину в желаемый выходной сигнал, используя принцип преобразования.

На основании полученных и созданных сигналов принцип можно разделить на следующие группы: электрические, механические, термические, химические, излучающие и магнитные.

6. Ультразвуковые датчики

Ультразвуковой датчик используется для обнаружения присутствия объекта. Это достигается за счет излучения ультразвуковых волн от головки устройства и последующего приема отраженного ультразвукового сигнала от соответствующего объекта. Это помогает в обнаружении положения, присутствия и движения объектов.

Ультразвуковые сенсоры

Поскольку ультразвуковые датчики полагаются на звук, а не на свет при обнаружении, они широко используются для измерения уровня воды, медицинских процедур сканирования и в автомобильной промышленности. Ультразвуковые волны могут обнаружить невидимые объекты, такие как прозрачные пленки, стеклянные бутылки, пластиковые бутылки и листовое стекло, с помощью своих отражающих датчиков.

Принцип действия

Классификация индуктивных датчиков строится на сфере их использования. Здесь важно учитывать физические и химические свойства объектов. Движение ультразвуковых волн различается в зависимости от формы и типа среды. Например, ультразвуковые волны движутся прямо в однородной среде и отражаются и передаются обратно на границу между различными средами. Человеческое тело в воздухе вызывает значительное отражение и может быть легко обнаружено.

В технологии используются следующие принципы:

  1. Мультиотражение. Многократное отражение имеет место, когда волны отражаются более одного раза между датчиком и объектом обнаружения.
  2. Предельная зона. Минимальное расстояние срабатывания и максимальное расстояние срабатывания можно регулировать. Это называется лимитной зоной.
  3. Зона обнаружения. Это интервал между поверхностью головки датчика и минимальным расстоянием обнаружения, полученным в результате регулировки расстояния сканирования.

Устройства, оборудованные этой технологией, позволяют проводить сканирование различных типов объектов. Ультразвуковые источники активно применяются при создании транспортных средств.

Резисторный датчик сопротивлением 3 Ом включен последовательно с регулировочным резистором Rp=0,6 Ом в сеть с напряжением 12 В. Определить силу тока в цепи датчика.

Часть А – Дайте правильный ответ

А-1. На какие виды делятся системы автоматизации?

А) автоматизированные системы управления;

Б) автоматизация производственных (технологических) процессов;

В) автоматизация умственного труда человека;

Г) системы автоматического управления.

А-2. Отметьте, что необходимо в системе автоматического управления?

Г) программа (алгоритм) управления.

А-3. Механизация это:

А) подключение к станку компьютера;

Б) применение комплекса средств, позволяющих осуществлять

производственные процессы без непосредственного участия человека;

В) замена ручного труда машинами и механизмами;

Г) Замена человека роботом;

А-4. Какие устройства используются для построения систем автоматического управления?

Б) большая интегральная схема;

А-5. Откуда устройство управления знает о состоянии выхода объекта?

В) от исполнительного механизма;

А-6. Что на ваш взгляд относится к требованиям к САУ:

А) непрерывность работы;

Б) точность управления;

В) качество работы;

Г) комфортность в работе

Д) большой срок службы;

А-7 Системы автоматического контроля и сигнализации выполняют:

А) охранные функции;

Б) подают сигнал тревоги;

В) показывают параметры объекта;

Г) порядок действий;

Д) оценку качества выполнения операций;

Е) останавливают процесс;

Ж) показывают положение или состояние объекта.

В) по физическому принципу действия;

Г) по диапазону измеряемого параметра;

Д) по наименованию;

Е) по измеряемой величине.

А-12. Термопара измеряют температуру:

А) до 1000 градусов С°;

Б) выше 1500 градусов С°;

В) до 500 градусов С°.

А-13. Какую систему можно построить с помощью программируемого контроллера?

В) любой сложности.

А-14. Что делает шаговый двигатель?

А) перемещает объект шагами;

Б) вращается скачками;

В) поворачивается на заданный угол;

Г) вращается шагами.

А-15. Выберите из списка, что относится к исполнительным механизмам:

Д) электромагнитный клапан;

Часть В – Дополните

В-1. Величину, характеризующую тепловое состояние тела называют ________________

В-2. Приборы, измеряющие количество вещества, называются __________

С-1. 1. Написать формулу.

2. Подставить значения.

3. Расставить единицы измерения.

Резисторный датчик сопротивлением 3 Ом включен последовательно с регулировочным резистором Rp=0,6 Ом в сеть с напряжением 12 В. Определить силу тока в цепи датчика.

Часть А – Дайте правильный ответ

А-1. На какие виды делятся системы автоматизации?

А) автоматизированные системы управления;

Б) автоматизация производственных (технологических) процессов;

В) автоматизация умственного труда человека;

Г) системы автоматического управления.

А-2. Отметьте, что необходимо в системе автоматического управления?




Г) программа (алгоритм) управления.

А-3. Механизация это:

А) подключение к станку компьютера;

Б) применение комплекса средств, позволяющих осуществлять

производственные процессы без непосредственного участия человека;

В) замена ручного труда машинами и механизмами;

Г) Замена человека роботом;

А-4. Какие устройства используются для построения систем автоматического управления?

Б) большая интегральная схема;

А-5. Откуда устройство управления знает о состоянии выхода объекта?

В) от исполнительного механизма;

А-6. Что на ваш взгляд относится к требованиям к САУ:

А) непрерывность работы;

Б) точность управления;

В) качество работы;

Г) комфортность в работе

Д) большой срок службы;

А-7 Системы автоматического контроля и сигнализации выполняют:

При изучении робототехники возникает вопрос – что такое датчики? Датчики еще часто называю сенсорами.

Датчики — это детекторы, которые имеют возможность измерять некоторые физические качества, такие как давление или свет.

Датчик после этого будет преобразовывать измерение в сигнал, который может быть передан для анализа. Большинство датчиков, используемых сегодня существует для того, чтобы иметь возможность общаться с электронным устройством, которое будет делать измерения и записи.

Что такое датчик

датчик что это

Наличие датчиков обязательно для всех систем автоматизации. Именно датчики позволяют создать робота, который может реагировать на изменение различных параметров окружающей среды. Получая информацию от датчиков, робот выполняет различные действия согласно заложенной в него программе.

Можно сказать, что наличие датчиков и обратной связи с ними, отличает робота от автоматизированного устройства. Изучая робототехнику можно быстро узнать, что такое датчик и как использовать различные типы датчиков.

Сегодня вы сможете найти датчики в широком диапазоне различных устройств, которые вы используете регулярно. Сенсорный экран, который у вас есть на телефоне.

Сенсорный экран

экран смартфона

Ультразвуковые датчики для открытия дверей в торговых центрах, герконовые датчики для систем сигнализации и множество других. Датчики являются очень распространенной частью повседневной жизни.

Введение в датчики

Мир полон сенсоров. В нашей повседневной жизни мы сталкиваемся с автоматизацией во всех видах деятельности. Автоматизация включает включение света и вентилятора, с использованием мобильных телефонов. Управление телевизором с помощью мобильных приложений.

Системы управления и мониторинга

управление и мониторинг

Регулировки температуры в помещении. Обеспечение пожарной безопасности при помощи детекторов дыма и т.д. Все это делается с помощью датчиков. В наши дни любой встроенный системный продукт имеет встроенные датчики. Есть множество приложений, таких как мобильные управляемые камеры видеонаблюдения.

Приложения мониторинга и прогнозирования погоды и т. д. Датчики играют очень важную роль в профилактике и обнаружении заболеваний в здравоохранении. Поэтому, прежде чем проектировать датчик, использующий приложение, мы должны понять, что такое датчик, что именно делает датчик и сколько типов датчиков доступны.

Что такое датчик?

Датчик определяется как устройство или модуль, который помогает обнаружить любые изменения в физической величине такой как давление, сила или электрическая величина, как ток или любой другой вид энергии. После наблюдать изменениями, датчик посылает обнаруженный входной сигнал к микроконтроллеру или микропроцессору.

Микроконтроллер

микроконтроллер

Наконец, датчик выдает считываемый выходной сигнал, который может быть либо оптическим, либо электрическим, либо любой формой сигнала, соответствующей изменению входного сигнала. В любой измерительной системе большую роль играют датчики.

Фактически, датчики являются первым элементом в структурной схеме измерительной системы, который вступает в непосредственный контакт с переменными для получения действительного выхода. Теперь вы знаете, что такое датчик и что на самом деле означает датчик.

Классификация датчиков

Активный датчик

Что такое активные датчик – это тип датчиков, который производит выходной сигнал с помощью внешнего источника возбуждения.

Собственные физические свойства датчика изменяются в зависимости от применяемого внешнего воздействия. Например, тензометрический датчик.

тензометрический датчик

тензометрический датчик

При нажатии на такой датчик воздействие преобразуется в электрический сигнал и сигнал передается в считывающее устройство.

Пассивный датчик

Пассивные датчики тип датчиков, который производит выходной сигнал без помощи внешнего источника возбуждения.

Им не нужны никакие дополнительные токи или напряжения. Например, термопара, которая генерирует значение напряжения, соответствующее приложенному теплу.

термопара

датчик температуры

Она не требует никакого внешнего электропитания.

Также датчики подразделяются на

Аналоговые

Что такое аналоговый датчик – это сенсор, который производит непрерывный сигнал относительно времени с аналоговым выходом.

Сформированный аналоговый выходной сигнал пропорционален измеряемому им входному сигналу. Как правило, аналоговое напряжение лежит в диапазоне от 0 до 10 В или в качестве выходного сигнала используется ток.

аналоговый датчик Arduino

Примерами физических параметров для непрерывных сигналов могут служить температура, усилие, давление, смещение и др. Например, аналоговый датчик линии Arduino.

Цифровые

Цифровые датчики-это те, которые производят дискретные выходные сигналы.

Дискретные сигналы будут не непрерывными во времени и могут быть представлены в “битах” для последовательной передачи и в “байтах” для параллельной передачи. Измеряемая величина будет представлена в цифровом формате. Цифровой выход может быть в форме логики 1 или логики 0 (включено-выключено).

Цифровой датчик состоит из датчика, кабеля и передатчика. Измеренный сигнал преобразован в цифровой сигнал внутри датчика самого без любого внешнего компонента. Кабель используется для передачи на большие расстояния. Примером цифрового датчика может служить энкодер.

Энкодеры

энкодеры

Он включает в себя цифровой светодиод и фотодиод, используемый для получения цифрового сигнала для измерения скорости вращающегося вала. Диск прикреплен к вращающемуся валу. Вращающийся вал имеет по окружности прозрачные пазы. Когда вал вращается со скоростью, диск также вращается вместе с ним.

энкодер

принцип работы энкодера

Сигнал от светодиода проходит через паз и фиксируется фотодиодом. Выходным сигналом будет логическая 1 или логический 0. Выходные данные отображаются на ЖК-дисплее после прохождения через счетчик.

В настоящее время есть огромное количество датчиков для различных целей и каждый год датчики становятся все совершеннее. Сейчас все больше становится программируемых датчиков, которые можно калибровать и программировать на различные виды измерений.

Обычно в комплекте с этими датчиками идет достаточно подробная инструкция со схемами подключения, способами настройки и программирования датчиков.

Читайте также: